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NORMAL VARIATIONS OF INVARIANT 
HYPERSURFACES OF FRAMED MANIFOLDS 

BY 

SAMUEL I. GOLDBERGO 

1. Introduction. A hypersurface of a globally framed /-manifold (briefly, a 
framed manifold), does not in general possess a framed structure as one may see 
by considering the 4-sphere S* in R5 or S5. For, a hypersurface so endowed carries 
an almost complex structure, or else, it admits a nonsingular differentiable vector 
field. Since an almost complex manifold may be considered as being globally 
framed, with no complementary frames, this situation is in marked contrast with 
the well known fact that a hypersurface (real codimension 1) of an almost complex 
manifold admits a framed structure, more specifically, an almost contact structure. 
For example, when considered as a unit sphere in E6 or S6, S5 is framed [as 
an (almost) contact manifold]. In the examples cited, the immersions are not 
invariant, for, on the one hand, it is impossible to immerse a manifold as an 
invariant hypersurface of a contact space [2], and, on the other hand, an invariant 
hypersurface of an almost complex manifold is itself almost complex. 

We are thereby led to consider hypersurfaces of framed manifolds immersed 
in such a way that they admit framed structures of the same rank. These hyper­
surfaces may be invariant or deviate from this property by a "normal variation" 
determined by some 1-form induced by the/-structure. Since S7 is framed we might 
expect that S6 can be immersed in it as an invariant hypersurface thereby showing 
that S6 possesses a complex structure. However, *S6 is not parallelizable, hence it 
cannot be invariantly immersed (see §3). When the ambient space M is affinely 
cosymplectic this situation was studied in some detail in [2]. The metric case was 
found to be particularly interesting. Indeed, if M is cosymplectic, an invariant 
hypersurface or a normal variation of it, carries a Kaehlerian structure. The same 
situation prevails if the ambient space is a normal contact metric manifold. 

2. Framed manifolds. An «-dimensional C00 manifold M carrying a linear trans­
formation field/of class C00 satisfying the algebraic condition 

/3+/=o 
is called an f-manifold provided the /structure f is of constant rank r at each point 
of M. The existence of such a structure is equivalent to a reduction of the structural 
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group of the tangent bundle to U(rj2) X 0{n—r). As examples, there are the almost 
complex structures for «=2m and the almost contact structures for n=2m — 1, the 
former having maximal rank and the latter having rank 2m—2. Moreover, direct 
products of almost complex and almost contact spaces give rise to/-manifolds [1]. 

By putting 

s=-f\ *=/*+/, 
where lis the identity field, 

s+t = I, 

s2 = 5, t2 = t, 

st=zts = 0, 

f2S = - S , ft = 0. 

The operators s and t acting in the tangent space at each point of M are therefore 
complementary projection operators defining distributions S and T in M corre­
sponding to s and t, respectively. The distribution S is r-dimensional and 
dim T=n—r. 

The union of the tangent spaces at each point of the distribution T has a bundle 
structure denoted by &'. It is clearly a subbundle of the tangent bundle of M and 
its dimension is 2n—r. If the vector bundle ̂  is trivial it may be naturally identified 
with MxRn~r. In this case, the latter admits an almost complex structure. 

If there are n—r vector fields Ea spanning ^ at each point of M, together with 
n—r differential forms rja satisfying 

(2.1) Va(Eb) = St, 
where <5£, a, 6 = 1 , . . . , n—r is the 'Kronecker delta', and if 

(2.2) f=-I+n«®Ea, 

where ® denotes the tensor product, the summation convention being employed 
here and in the sequel, then M is called a globally framed f-manifold or, simply, a 
framed manifold. As examples, there are the almost complex manifolds for n=2m 
and the almost contact spaces for n=2m — 1. Moreover, direct products of almost 
complex and almost contact spaces are framed structures [1]. Parallelizable 
manifolds are globally framed. In this case , /=0 and rja(g)Ea=L 

The framed structure on M will be denoted by M(f Ea, rja). From (2.1) and 
(2.2) one easily obtains the relations 

(2.3) fEa = 0, if of = o, a = 1,. . . , n - r . 

Let M(f Ea, rja) be an «-dimensional framed manifold of rank r. Since Rn~r 

admits a (trivial) framed structure, the direct product MxRn~r admits a framed 
structure of rank r, and hence an underlying almost complex structure/' (see [1]). 
I f / ' is integrable, the framed structure on M is said to be normal, and in this 
case the tensor field 

Sf~[f,f]+dria®Ea 

vanishes [3], where [/,/](Z, y )=[ /Z , /F ] - / [ /X , Y]-f[X,fY]+p[X, Y]. 
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3. Hypersurfaces of framed manifolds. Let M(f Ea, fj
a) be a framed manifold 

of dimension n>2 and rank r,a=l,. . . , n—r. We consider an («—l)-dimensional 
hypersurface M immersed in M with immersion i:M->M such that: For each 
me M the vectors Ea9 a = l , . . . ,n—r—l at i(m) belong to the tangent hyperplane 
ofi(M) and 

(En-r)i(m) $ K^)i(m)' 

The vector field £=£n_r is then an affine normal to i(M), so we may write 

(3.1) AX = iJX+6(X)E9 

(3.2) / £ = 0 , 

where/and 0 are tensor fields on M of types (1, 1) and (0, 1), respectively, and /„. 
is the induced tangent map. If 0=0, the submanifold is an invariant hypersurface 
of M. On the other hand, if 0^0 , it provides a measure of the deviation of M 
from this property. Such a hypersurface will be called noninvariant or a normal 
variation of M. A hypersurface may, of course, be neither invariant nor non-
invariant. However, in the sequel, unless otherwise specified, i(M) will be a 
noninvariant hypersurface of the framed manifold M. We shall occasionally refer 
to M as the hypersurface. 

Applying / t o both sides of (3.1), we get 

-i*X+fja(i*X)Ea = iJ2X+6(fX)E, 

from which, since there are vector fields Ea on M such that 

Ea = iJEa9 a = 1,. . . , n-r-1, 
we obtain 

(3-3> CO = rj 
where 

rja = i*fja, 0 = 1 , . . . , n — r — 1 , 

i* is the dual map of /*, C0 is the 1-form on M defined by 

Cd(X) = 6(fX) 
and 

rj = ?f ~r. 

From (2.1), t ?
a(^) = ( / ^ a ) ( ^ ) = ^ a ( / ^ / î ) = ^ a ( ^ ) = (5;. Moreover, by (2.3), 

fÊa=AEa=UfEa+e(E^E9 s o / £ a = 0 and 0(£a)=O, a = l , . . . , n-r-h 

THEOREM 1. >4 noninvariant hypersurface of a framed manifold admits a framed 
structure of the same rank as the ambient space. Moreover, it admits a 1-form 6 
determining an (n—r—îydimensional distribution complementary to the distribution 
determined by the Pfaffian system 

?f = 0, a = 1,. . . , n - r - 1 . 
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COROLLARY. There are no noninvariant hyper surfaces of a parallelizable manifold, 
that is, 6=0. 

If M is integrable, we obtain 

THEOREM 2. A noninvariant hyper surface of a normal framed manifold 
M(f, £a9 fja) is a normal framed manifold of the same rank r carrying a l-form whose 
differential has bidegree (1, 1) with respect to the induced f-structure. 

Proof. Given a symmetric affine connection D on M, an affine connection D is 
defined on M with respect to the affine normal Ë by the Gauss equation 

(3.4) DUXUY = i*DxY+h(X, Y)E9 

where h is a symmetric tensor field of type (0, 2) on M, namely, the second funda­
mental tensor of M with respect to E. 

Since (/, Ea9 fja) is normal, S? vanishes, so by [3] 

(3.5) L s / = 0 , L ^ = 0, 

where fj=fjn~r and Lx denotes the Lie derivative with respect to the vector field 
X. Expressing S fix, y), where x and y are any two vector fields on M, in the form 

SKx, y) = (Dfxf)y-(Djyf)x+f(Dyf)x 
1 ; -f&J)y+[(Dxr)(y)-(Dyfj°)(x)]Ea, 
then by judiciously applying (2.2), (3.1) and (3.4), 

Sf(Î^X9 ï*^0 = (A+/X+0(X)^/) ï*^~(A*/F+0(F)^/) ï '*^ 
+/{(À.r/)'**-(À.x/)>'*r} 
+ {($ùxr)(i*Y)-(Dimrfj

a)(i*X)}Êa 

= A.fx(fi*Y) -fB^xUY+OiXXBgftitY 
-Bt,trUi.X)+fB{.tYUX-0(YXBsj)ux 

+/{A<F(/ ' *^)- /À.r( ' *^)-Â.x( / ' *n+/Â.xO*ï ' )} 

-DUT(r(i*X))+fj%Bi.ri*X)}K 

= imDfX(fY)+h(fX,fY)Ë+(fX • Ô(Y))Ë 

+d(Y)DUfXË-iJDfXY-d(DfXY)£+d(X)0ef)i*Y 

-i*DtY{fX)-h(fX,fY)£-{fY • 6{X))E 

-d(X)Di,fYË+iJDfrX+e(DfrX)£-d(Y)(DÊf)ii,X 

+f{i*Dr(fX)+h(YJX)£} + 6(X)fDur£ 

+ i„DrX-fj(iil!DrX)£-f{iit!Dx(fY)+h(X,fY)Ê} 

-%r)fBttXE-itDxY+rj(imDxY)E 

+ {DX((6 of)Y)-fja(i*DxY)- DY((6 °f)X)+rjXi*DrX)}£a 

= h{UJ](X, Y)+drj"(X, Y)EX} 

+LÉf{d(X)i*Y-d(Y)i*X} + {d6(fX,Y)+dd(X,fY)}Ë. 
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Applying (3.5), we obtain 

SfaX, i,Y) = i*Sf(X, Y)+{d6(fX, Y)+d6(X,fY)}Ê. 

The left-hand side being zero, S? must vanish and dd must be of bidegree (1, 1) 
with respect t o / 

COROLLARY 1. An invariant hypersurface of a normal framed manifold is a 
normal framed manifold of the same rank. 

Since S7 is parallelizable we might expect that S6 can be immersed in it as an 
invariant hypersurface or a normal variation of it thereby showing that S6 

possesses an integrable almost complex structure. But S* is not parallelizable, 
hence, it cannot be so imbedded. For the same reason S2 cannot be invariantly 
or noninvariantly immersed in S3, but it does possess a complex structure. 

If d imi( f=2m+l , it has an almost contact structure ( / ' , E2n_r+l9 rj2n~r+1)9 

where 

/ ' = /+q«® Ë^-tf^^E^ î = l , . . . , m-~2 . 

Thus, 

f%X = iJ'X+0(X)E, 
where 

is the induced almost complex structure on M. Applying [3, Theorem 1], we 
obtain the following generalization of [2, Theorem 1]. 

COROLLARY 2. A noninvariant hypersurface of an odd dimensional normal 
framed manifold is a complex manifold carrying a l-form 0 whose differential has 
bidegree (1, 1) with respect to the almost complex structure. 

COROLLARY 3. An invariant hypersurface of an odd dimensional normal framed 
manifold is a complex manifold. 

The direct product of an odd number of normal almost contact manifolds being 
a normal framed manifold [1, Theorem 3], we obtain the following generalization 
of [2, Theorem 1]. 

COROLLARY 4. An invariant or noninvariant hypersurface of the direct product 
of an odd number of normal almost contact manifolds is a complex manifold. 

The above computation also yields 

THEOREM 3. If E is an infinitesimal automorphism of the framed structure 
M(f,Ea,fj

a), and if for every noninvariant hypersurface the induced f-structure 
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M(f, Ea, rf) is normal, and the differential of the l-form 6 is ofbidegree (1, 1) with 
respect to f then (f, Ea9 fja) is integrable. 

COROLLARY. The framed structure (/, Ea9 rja) is normal if for every invarian 
immersion, the induced structure (/, Ea9 rf) is normal 

4. Framed metric manifolds. The framed manifold M(f9 Ea, rja) is called a 
framed metric manifold if it carries a Riemannian metric g such that 

(i) fja=g(£a, ), < i = l , . . . , / i - r 
and 

(ii) / i s skew symmetric with respect to g. 
It can be shown that a framed manifold carries a metric with these properties. 
We put 

F(X, Y) = g(fX9 Y) 

and call it the fundamental 2-form of the structure. Let g=i*g and let F be the 
fundamental 2-form of the induced/-structure on M. Relating F with F, we get 

F(i*X, UY) = g{JUX9 i*Y) 

= g(fX9 Y)+d(X)fj(i*Y) 

= F(X, Y)+(0 A Cd)(X9 Y), 
that is, 

i*F=F+6 ACd. 

Since/is not of maximal rank, the tensor field 

y = g-Cd ® Cd 

is not a Riemannian metric. However, if n=2m+l and r=2m, f is of maximal 
rank, so / being a regular map, y defines a positive definite metric. In this case, it 
is easily checked that y is hermitian with respect t o / . In fact, if F i s closed, y is 
an almost Kaehler metric and F+O^CO is the fundamental 2-form of the almost 
Kaehler manifold M(f y). If the structure on M is integrable, then M is Kaeh-
lerian. 

THEOREM 4. In addition to the canonical framed Aetric structure (/, rf,g) the 
noninvariant hyper surface M(f Ea, rf) admits the framed Aetric structure (/, rf9g*)9 

where 

g * = g+6 ® 6. 

Proof. By (ii) and (3.1), 

g(iJX, i*Y)+0(X)W*Y) = -f(/*X, iJ7)-6Wrj(i*X). 

Hence, by (3.3), g(fX, Y)+d{X)Cd(Y)=-g(XJY)-d(Y)C6(X)9 that is 

(g+6 0 d)(fX9 Y) = - ( g + 0 ® 6)(X,fY). 
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Moreover, 
rf{X) = ff(i^O = 10'**, K) = g(W, W = g(X, Ex) 

= g*(X, EX)-B(X)6{EX) = g*{X, Ex). 

COROLLARY. A noninvariant hypersurface M(f g, 6) of an almost contact 
manifold admits the hermitian metric g+0®6. 

This fact is easily generalized. In fact, since/is skew symmetric with respect to 
g, so is 

Thus, since 0 ° / '=0 ° / , / ' is skew symmetric with respect to g*. 

THEOREM 5. A noninvariant hypersurface of an odd dimensional framed metric 
manifold admits the hermitian structure (/', g+0(S)Q). 

5. Hypersurfaces of special manifolds. Weingarten's equation for the immersion 
i and the connection D is 
(5.1) DUXE = -ijIX+a{X)Et 

where H is the second fundamental tensor of type (1, 1) of M with respect to E, 
and co is a 1-form on M defining the connection of the affine normal bundle. 

Co variant differentiation of (3.1) yields after applying (3.4) and (5.1), then (3.1) 

0uxJ)t*Y = U{(Dxf)Y-0(Y)HX} 
(5>2) +{h(X,fY)+(Dx6)(Y)+a>(X)0(Y)}E 

A framed manifold M(f, Ea, fj
a) with a symmetric affine connection D is called 

a K-manifold(2) if 

(5.3) 15/= 0, Bfja=09 

a=l,... ,n—r. Clearly, then, by (3.6), the framed structure is normal. 
Moreover, 

3Ea = 0, a = 1,. . . , n—r, 

so all the structure tensors are parallel fields with respect to D. Hence, by (5.1), 
HX=0 and co(X)=0. Furthermore, by (3.2) 

£ / = 0 , 
(DX6)(Y) = -*(2T,/y). 

(2) In a previous paper [4] this name was used exclusively for even dimensional framed metric 
manifolds. In this case it was shown, if the structure tensors are closed, that there is an underlying 
Kaehlerian structure. 
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The direct product of any number of cosymplectic manifolds is a J£-manifold. 
Moreover, Rn and the «-torus have X-structures. 

If for every vector field X on the hypersurface M, HX=0, then, by (5.1), the 
fields S^XE and E are proportional. Hence, the affine normals are parallel at 
each point of M and M is said to be totally flat. 

THEOREM 6. A noninvariant hypersurface of a K-manifold is a totally flat K-
manifold and the connection in the affine normal bundle is trivial. If the hypersurface 
is invariant it is also totally geodesic. 

COROLLARY. A noninvariant hypersurface of a product of an odd number of 
cosymplectic manifolds is a totally flat Kaehler manifold and the connection in the 
normal bundle is trivial. If the hypersurface is invariant it is also totally geodesic. 

That h vanishes for invariant hypersurfaces may be seen as follows. Since 

h(XJ* Y) = 0, h(X,Y)= n\ Y)h(X, EJ. 

But, D^xE,=Duxi^=i*DxEa+h(X, Ea)E. 
A framed manifold with a symmetric affine connection D is called affinely exact 

if it is integrable and 

= M. 
THEOREM 7. On a nonvariant hypersurface of an affinely exact manifold 

(5.4) / = - # 

and 

6 = co. 

This is a consequence of the relations (3.1) and (5.1). 
A contact manifold is said to be normal if its underlying framed structure is 

normal. 
A normal contact metric manifold being affinely exact, we obtain Proposition 

3 and Theorem 5 of [2]. 

COROLLARY. There are no invariant or noninvariant hypersurfaces of a normal 
contact manifold. 

This is particularly true of the unit sphere S1 in E8. 

Proof. A normal contact manifold with a compatible metric g is affinely exact 
with respect to the Riemannian connection. Since H is symmetric and fis skew 
symmetric with respect to the induced metric i*g, the relation (5.4) cannot hold. 
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