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Introduction. Denote by Zdþ (resp. Cd) the set of all d-tuples of nonnegative
integers (respectively complex numbers). If � ¼ ð�1; . . . ; �dÞ 2 Zdþ and
z ¼ ðz1; . . . ; zdÞ 2 Cd, then we write j�j ¼ �1 þ . . .þ �d, z� ¼ z�1

1 � � � z�dd and
�zz ¼ ð �zz1; . . . ; �zzdÞ. Let F be a nonempty closed subset of Cd and let
cðnÞ ¼ fcð�; �Þ : �; � 2 Zdþ; j�j þ j�j 	 ng be a finite multisequence of complex num-
bers (n � 0). The truncated (multidimensional and complex) F-moment problem of
order n consists in determining conditions under which there exists a positive Borel
measure � on C

d such that the closed support supp� of � is contained in F and1

cð�; �Þ ¼

Z
z� �zz�d�ðzÞ; �; � 2 Zdþ; j�j þ j�j 	 n: ð1Þ

A positive Borel measure � on Cd satisfying (1) is called a representing measure of
cðnÞ, while the numbers

R
z� �zz�d�ðzÞ are customarily called moments of �.

Let now c ¼ fcð�; �Þ : �; � 2 Zdþg be a multisequence of complex numbers. The
full (multidimensional and complex) F-moment problem entails determining whether
there exists a positive Borel measure � on C

d such that supp� � F and

cð�; �Þ ¼

Z
z� �zz�d�ðzÞ; �; � 2 Zdþ: ð2Þ

As above, a positive Borel measure � on Cd satisfying (2) is called a representing
measure of c. We say that a multisequence of moments is determinate if it has pre-
cisely one representing measure.

The literature concerning the full F-moment problem (not necessarily complex)
is extensive and it is still growing (see for instance [6, 7, 18, 19, 1, 23, 3, 22, 4, 25, 16,
30] and [8, 26, 27, 15, 28, 5, 29] where semi-algebraic F’s are considered). The truncated
F-moment problem has been intensively studied since the early 90’s mostly by Curto
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1Throughout the whole paper, we tacitly assume that all the functions under the integral sign are abso-
lutely integrable. In particular, by (1), the measure � is finite and consequently it is regular (e.g. see [24],
Theorem 2.18]).
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and Fialkow (cf. [2, 20, 21, 11, 12, 10, 13, 14]). In 1994 R. E. Curto asked a ques-
tion2 whether the truncated F-moment problem is more general than the full F-
moment problem (see also [21, p. 5]). In the same year I answered this question in
the affirmative (see [11] for the negative answer to the converse question). The pre-
sent paper contains the proof of this statement (some ideas involved in it may
appear in the literature under different circumstances; for the reader’s convenience
we include all the details).

An auxiliary result. Denote by A
0 the dual Banach space of a normed space A

and by �ðA0;AÞ the weak-star topology on A
0. Given a locally compact Hausdorff

space X, we write C0ðX Þ for the Banach space (equipped with the supremum norm
k � kX) of all continuous complex functions on X that vanish at infinity. CcðX Þ stands
for the set of all f 2 C0ðX Þ such that the closed support of f is compact. The set CcðX Þ

is dense in C0ðX Þ (cf. [24, Theorem 3.17]). We attach to every complex Borel measure
� on X the functional b�� 2 C0ðX Þ

0 defined by

b��ð f Þ ¼ Z
X

fd�; f 2 C0ðX Þ:

Proposition 1. Let F be a nonempty closed subset of Cd and let � be a non-
negative continuous function on F. Assume that f�!g!2� is a net of finite positive Borel
measures on F and � is a finite positive Borel measure on F such that

(i) the net fb��!g!2� is �ðCcðF Þ0; CcðF ÞÞ-convergent to b��,
(ii) sup!2�

R
F �d�! <1.

Define the measures 
! and 
 on F by d
! ¼ �d�! and d
 ¼ �d�. Then
(iii) 
ðF Þ < 1 and the net fb

!g!2� is �ðC0ðF Þ

0; C0ðF ÞÞ-convergent to b

.
Moreover, if the set fz 2 F : �ðzÞ 	 rg is compact for some r > 0, then the net

fb��!g!2� is �ðC0ðF Þ
0; C0ðF ÞÞ-convergent to b�� and

R
F fd� ¼ lim!2�

R
F fd�! for every

f : F! C such that f
1þ� 2 C0ðF Þ.

Proof. Assume that F is not compact. Let fFng
1
n¼1 be an increasing sequence of

compact subsets of F such that F ¼
S1

n¼1 Fn. By [24, Theorem 2.12], for every n � 1
there exists  n 2 CcðF Þ such that 0 	  n 	 1, and  n ¼ 1 on Fn. Applying the
Lebesgue monotone convergence theorem, (i) and (ii) we obtainZ

F

�d� ¼ lim
n!1

Z
Fn

�d� 	 lim sup
n!1

Z
F

 n�d�

¼ lim sup
n!1

lim
!2�

Z
F

 n�d�! 	 lim sup
!
�

Z
F

�d�! <1:

ð3Þ

According to (ii) and (i), the net fb

!g!2� � C0ðF Þ
0 is uniformly bounded and

pointwise convergent on a dense subspace CcðF Þ of C0ðF Þ to b

 2 C0ðF Þ
0. Hence it is

�ðC0ðF Þ
0; C0ðF ÞÞ-convergent tob

 as well3.

2at the Semester on Linear Operators held in the Stefan Banach International Mathematical Center (the
organizers: J. Janas, F. H. Szafraniec and J. Zemánek).
3Notice that the �-compactness of F is not essential in the proof of part (iii) of Proposition 1; indeed, the
continuity of � and the regularity of � (cf. footnote 1) imply the inner regularity of 
 which, in turn, yields

ðF Þ	 sup!2�

R
F �d�! <1 (mimic (3)).
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Suppose that K ¼ fz 2 F : �ðzÞ 	 rg is compact. Let  2 CcðF Þ be such that
0 	  	 1, and  ¼ 1 on K. Since lim!

R
F  d�! ¼

R
F  d�, there exists !0 2 � such

that
R
F  d�! 	M ¼

R
F  d�þ 1 for ! � !0. This implies that �!ðKÞ 	

R
F  d�! 	M

for ! � !0. On the other hand, by (ii), we have �!ðF n KÞ 	 1
r

R
FnK �d�! 	

1
r sup�2�

R
F �d��, for ! 2 �, so that sup!�!0

�!ðF Þ <1. This means that the net
fb��!g!�!0

is uniformly bounded and pointwise convergent on CcðF Þ to b��. Conse-
quently, the net fb��!g!2� is �ðC0ðF Þ

0; C0ðF ÞÞ-convergent to b��. Since the net
f d�! þ 
!�! þ 
!g!2� is �ðC0ðF Þ

0; C0ðF ÞÞ-convergent to d�þ 
�þ 
, we getZ
F

fd� ¼

Z
F

f

1 þ �
d ð�þ 
Þ ¼ lim

!2�

Z
F

f

1 þ �
d ð�! þ 
!Þ ¼ lim

!2�

Z
F

fd�!

for every f : F! C such that f
1þ� 2 C0ðF Þ. This completes the proof. &

Corollary 2. Let fcðm; nÞ : m; n � 0; mþ n 	 2N� 1g be a finite sequence of
complex numbers ðN � 1Þ and let F be a nonempty closed subset of C. Assume that
f�!g!2� is a net of finite positive Borel measures on F and � is a finite positive Borel
measure on F such that

(i) the net fb��!g!2� is �ðCcðF Þ0; CcðF ÞÞ-convergent to b��,
(ii) cðm; nÞ ¼

R
F z

m �zznd�!ðzÞ for m; n � 0 with mþ n 	 2N� 1 and ! 2 �,
(iii) sup!2�

R
F z

N �zzNd�!ðzÞ <1.
Then
(iv) cðm; nÞ ¼

R
F z

m �zznd�ðzÞ for m; n � 0 with mþ n 	 2N� 1.

Proof. Apply Proposition 1 to the functions �ðzÞ ¼ zN �zzN and fðzÞ ¼ zm �zzn (z 2 F)
with m; n � 0 such that mþ n 	 2N� 1 (notice that f

1þ� 2 C0ðF Þ). &

We emphasize that Corollary 2 is optimum in a sense. Namely, it may happen
that the equality in (ii) holds for all ! 2 � and for all integer lattice points ðm; nÞ in
the convex triangle � with vertices ð0; 0Þ, ð0; 2N Þ and ð2N; 0Þ, though no integer
lattice point ðm; nÞ belonging to the edge of � joining ð0; 2N Þ and ð2N; 0Þ satisfies
the equality in (iv) (cf. Figure 1). Moreover, the set of all representing measures of a
truncated F-moment sequence of order 2N may not be �ðC0ðF Þ

0; C0ðF ÞÞ-closed.
Example 3 deals with the case N ¼ 1 and F ¼ C.

Example 3. Since
P1

j¼1
1
j ¼ 1, there exists a strictly increasing sequence of

positive integers f�ng
1
n¼1 such that

Figure 1. Integer lattice points involved in Corollary 2.
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un ¼
df

X�nþ1

j¼�n

1

j
	

1

4
for n � 1 and lim

m!1
um ¼

1

4
: ð4Þ

Therefore we have

an ¼
df 1

2
þ un �

X�nþ1

j¼�n

1

j 2
> 0;

2bn ¼
df 1

2
� un �

X�nþ1

j¼�n

1

j 3=2
> 0

and

2cn ¼
df 1

2
� un þ

X�nþ1

j¼�n

1

j 3=2
> 0 for n � 1:

Because
P1

j¼1
1
j3=2
<1, (4) yields limn!1 an ¼

3
4 and limn!1 bn ¼ limn!1 cn ¼

1
8.

Denote by �z the probability Borel measure on C concentrated at the point z. Set

� ¼
df 3

4
�0 þ

1

8
�1 þ

1

8
��1

and

�n ¼
df
an�0 þ bn�1 þ cn��1 þ

X�nþ1

j¼�n

1

j 2
� ffi

j
p for n � 1:

It is a matter of direct verification that
R
fd� ¼ limn!1

R
fd�n, for every bounded

continuous complex function f on C (in particular fb��ng1n¼1 is �ðC0ðCÞ
0; C0ðCÞÞ-con-

vergent to b��). Moreover, for every n � 1, the following conditions hold trueZ
z0 �zz0d�nðzÞ ¼

Z
z0 �zz0d�ðzÞ ¼ 1;Z

z1 �zz0d�nðzÞ ¼

Z
z0 �zz1d�nðzÞ ¼

Z
z1 �zz0d�ðzÞ ¼

Z
z0 �zz1d�ðzÞ ¼ 0;Z

z2 �zz0d�nðzÞ ¼

Z
z1 �zz1d�nðzÞ ¼

Z
z0 �zz2d�nðzÞ ¼

1

2
;Z

z2 �zz0d�ðzÞ ¼

Z
z1 �zz1d�ðzÞ ¼

Z
z0 �zz2d�ðzÞ ¼

1

4
:

The main result.

Theorem 4. Let F be a nonempty closed subset of Cd and let fcð�; �Þg�;�2Zdþ
be a

multisequence of complex numbers. If for every n � 0 there exists a positive Borel
measure �n on F such that

(i) cð�; �Þ ¼
R
F z

� �zz�d�nðzÞ, for all �; � 2 Zdþ with j�j þ j�j 	 n,
then there exists a positive Borel measure � on F such that cð�; �Þ ¼

R
F z

� �zz�d�ðzÞ for
all �; � 2 Zdþ.
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Proof. Assume that F is not compact (the other case is simpler). Since F is
locally compact metrizable and separable, one can see — applying [9, Theorem
V.6.6] to the one-point compactification4 of F — that5

C0ðF Þ is a separable Banach space: ð5Þ

Given �; � 2 Zdþ, we define the function ’�;� : C
d
! C by

’�;�ðzÞ ¼
z� �zz�Qd

j¼1ð1 þ jzjj
2Þ
�jþ�jþ1

; ðz 2 C
d
Þ:

Since the functions z 7! zm �zzn

ð1þjzj2Þmþnþ1 (m; n � 0) are in C0ðCÞ and the d-fold tensor pro-
duct of C0 functions is again a C0 function, we conclude that

’�;� 2 C0ðF Þ; �; � 2 Zdþ: ð6Þ

It follows from (i) that jb��nð f Þj 	 R
F z

0 �zz0d�nðzÞk f kF ¼ cð0; 0Þk f kF, for every
f 2 C0ðF Þ and so b��n belongs to cð0; 0ÞB, where B is the closed unit ball in C0ðF Þ

0. By
(5), the set cð0; 0ÞB is weak-star metrizable and weak-star compact (cf. [9, Theorems
V.3.1 and V.5.1]). Hence there exists a subsequence fb��kng1n¼0 of fb��ng1n¼0 that is weak-
star convergent to a functional � 2 cð0; 0ÞB. Notice that if f 2 C0ðF Þ and f � 0, then
�ð f Þ ¼ limn!1 b��kn ð f Þ � 0 and so by the Riesz representation theorem (cf. [24,
Theorems 2.14 and 6.19] or [17, § 56]) there exists a finite positive Borel measure � on
F such that � ¼ b��. If nð�Þ 2 Zþ is chosen so that knð�Þ � 2j�j, then, by (i), we haveZ

F

z� �zz�d�kn ðzÞ ¼ cð�; �Þ for n � nð�Þ ð� 2 ZdþÞ:

Applying Proposition 1 to �ðzÞ ¼ z� �zz� gives us
R
F z

� �zz�d�ðzÞ <1 for � 2 Zdþ and

lim
n!1

Z
F

fðzÞz� �zz�d�knðzÞ ¼

Z
F

fðzÞz� �zz�d�ðzÞ; f 2 C0ðF Þ; � 2 Zdþ: ð7Þ

It follows from (i), (6) and (7) that

cð�; �Þ ¼ lim
n!1

Z
F

z� �zz�d�kn ðzÞ

¼ lim
n!1

Z
F

’�;�ðzÞ
Yd
j¼1

ð1 þ jzjj
2Þ
�jþ�jþ1d�knðzÞ

¼

Z
F

’�;�ðzÞ
Yd
j¼1

ð1 þ jzjj
2Þ
�jþ�jþ1d�ðzÞ

¼

Z
F

z� �zz�d�ðzÞ; �; � 2 Zdþ;

which completes the proof. &

4One can show that if X is a locally compact Hausdorff space that is not compact, then the one-point
compactification of X is metrizable if and only if X is metrizable and separable.
5The separability of C0ðF Þ can also be deduced from the Stone-Weierstrass theorem.
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Remark 5. In fact, we have proved that if for every n � 0 there exists a positive
Borel measure �n on F satisfying condition (i) of Theorem 4, then there exists a
positive Borel measure � on F with all its moments finite and a subsequence f�kng

1
n¼0

of f�ng
1
n¼0 such that fc��kn��kng

1
n¼0 is �ðC0ðF Þ

0; C0ðF ÞÞ-convergent to c���� for � 2 Zdþ; here
d
�ðzÞ ¼ z� �zz�d
ðzÞ for 
 ¼ �;�n. This, in turn, has enabled us to show that � is a
representing measure of fcð�; �Þg�;�2Zdþ

. It is clear that all representing measures of
fcð�; �Þg�;�2Zdþ

can be obtained by way of this limit procedure. In case � is unique we
can prove more.

Theorem 6. Let fcð�; �Þg�;�2Zdþ
, F, �n and � be as in Theorem 4. If, moreover, the

multisequence fcð�; �Þg�;�2Zdþ
is determinate, then the sequence fc��n��ng1n¼0 is

�ðC0ðF Þ
0; C0ðF ÞÞ-convergent to c����, for every � 2 Zdþ.

Proof. Analysis similar to that in the proof of Theorem 4 (cf. Remark 5) shows
that for every subsequence f�kng

1
n¼0 of f�ng

1
n¼0 there exists a subsequence f�kln g

1
n¼0 of

f�kng
1
n¼0 such that fd��kln��kln g

1
n¼0 is �ðC0ðF Þ

0; C0ðF ÞÞ-convergent to c���� for � 2 Zdþ (use the
fact that the representing measure � is unique). Hence the general topological
characterization of convergent sequences yields the conclusion. &

It is worth while to notice that if the multisequence of moments fcð�; �Þg�;�2Zdþ
is

not determinate, then fb��ng1n¼0 may not be �ðC0ðF Þ
0; C0ðF ÞÞ-convergent. Indeed, if

� 6¼ 
 are two representing measures of fcð�; �Þg�;�2Zdþ
and the sequence f�ng

1
n¼0 is

defined by �2k ¼ � and �2kþ1 ¼ 
 for k � 0, then f�ng
1
n¼0 satisfies condition (i) of

Theorem 4 but fb��ng1n¼0 is not �ðC0ðF Þ
0; C0ðF ÞÞ-convergent (indeed, otherwise it must

be b�� ¼b

 which, by the Riesz representation theorem (see also footnote 1), gives us
� ¼ 
, a contradiction).

Theorems 4 and 6 can easily be adapted to the context of other classical moment
problems and in particular to the multidimensional Hamburger moment problem.
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