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Introduction. Denote by Z‘i (resp. (Cd) the set of all d-tuples of nonnegative

. . _ d .,

integers (respectlzely complex pumbers). If a=(y,..., agt) e” + and
z=(z21,...,29) € C% then we write |a|=0o1+...+ag z*=2z"---2 and
z=(z1,...,z4). Let F be a nonempty closed subset of C? and let

" = {c(a, B): &, p € Z%, || + |8l < 1} be a finite multisequence of complex num-
bers (n > 0). The truncated (multidimensional and complex) F-moment problem of
order n consists in determining conditions under which there exists a positive Borel
measure 1 on C? such that the closed support supp u of w is contained in F and'

(o, ) = /z"‘fﬁdu(z), a,BeZ, ol + |8l <n. (1)

A positive Borel measure © on c? satisfying (1) is called a representing measure of
¢, while the numbers [ z%zdju(z) are customarily called moments of .

Let now ¢ = {c(o, B) : 0, B € Zi} be a multisequence of complex numbers. The
full (multidimensional and complex) F-moment problem entails determining whether
there exists a positive Borel measure u on C? such that supp u € F and

c(a, B) = f du(z), o, pezl. )

As above, a positive Borel measure u on c! satisfying (2) is called a representing
measure of ¢. We say that a multisequence of moments is determinate if it has pre-
cisely one representing measure.

The literature concerning the full F-moment problem (not necessarily complex)
is extensive and it is still growing (see for instance [6, 7, 18, 19, 1, 23, 3, 22, 4, 25, 16,
30] and [8, 26, 27, 15, 28, 5, 29] where semi-algebraic F’s are considered). The truncated
F-moment problem has been intensively studied since the early 90’s mostly by Curto

This work was supported at its final stage by the KBN grant # 2 PO3A 004 17.

'Throughout the whole paper, we tacitly assume that all the functions under the integral sign are abso-
lutely integrable. In particular, by (1), the measure u is finite and consequently it is regular (e.g. see [24],
Theorem 2.18]).
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and Fialkow (cf. [2, 20, 21, 11, 12, 10, 13, 14]). In 1994 R. E. Curto asked a ques-
tion> whether the truncated F-moment problem is more general than the full F-
moment problem (see also [21, p. 5]). In the same year I answered this question in
the affirmative (see [11] for the negative answer to the converse question). The pre-
sent paper contains the proof of this statement (some ideas involved in it may
appear in the literature under different circumstances; for the reader’s convenience
we include all the details).

An auxiliary result. Denote by A’ the dual Banach space of a normed space A
and by o(A’, A) the weak-star topology on A’. Given a locally compact Hausdorff
space X, we write Co(X) for the Banach space (equipped with the supremum norm
Il - l¥) of all continuous complex functions on X that vanish at infinity. C.(X) stands
for the set of all f € Co(X) such that the closed support of fis compact. The set C.(X)
is dense in Cy(X) (cf. [24, Theorem 3.17]). We attach to every complex Borel measure
w on X the functional & € Co(X)' defined by

w(f) = /deu, feCyX).

PROPOSITION 1. Let F be a nonempty closed subset of C? and let p be a non-
negative continuous function on F. Assume that {{L,}cq is a net of finite positive Borel
measures on F and [ is a finite positive Borel measure on F such that

(i) the net {1} yeq is o(Co(FY, Cc(F))-convergent to [,

(ii) sup,eq [rpdu, < oo.

Define the measures v, and v on F by dv,, = pdu,, and dv = pdu. Then

(iii) V(F) < oo and the net {V,)},cq is o(Co(F), Co(F))-convergent to V.

Moreover, if the set {z € F: p(z) <r} is compact for some r > 0, then the net
{Bo}oeq is 0(Co(F), Co(F))-convergent to [ and [, fdu = limyeq [, fdu, for every

[+ F— C such that 1{,0 € Co(F).

Proof. Assume that F is not compact. Let {F,}°2, be an increasing sequence of
compact subsets of F such that F =7, F,,. By [24, Theorem 2.12], for every n > 1
there exists ¥, € C.(F) such that 0 <4, <1, and v, =1 on F,. Applying the
Lebesgue monotone convergence theorem, (i) and (ii) we obtain

/pdﬂ = lim pdu < lim sup/ Yapdu
F n—0o0 Fn n— 00 F

3)
= limsup lim | ¥,podu, < limsup / odi, < 00.
QJF weQ  JF

n—oo W€

According to (ii) and (i), the net {V,},cq € Co(F) is uniformly bounded and
pointwise convergent on a dense subspace C.(F) of Co(F) to vV € Co(F)'. Hence it is
a(Co(F), Co(F))-convergent to v as well>.

2at the Semester on Linear Operators held in the Stefan Banach International Mathematical Center (the
organizers: J. Janas, F. H. Szafraniec and J. Zemanek).

$Notice that the o-compactness of F is not essential in the proof of part (iii) of Proposition 1; indeed, the
continuity of p and the regularity of u (cf. footnote ') imply the inner regularity of v which, in turn, yields
V(F)< Sup,eq [ pdpe, < co (mimic (3)).
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Suppose that K={z € F: p(z) <r} is compact. Let ¢ € C.(F) be such that
0 <y <1,and ¥ =1 on K. Since lim,, [ ¥du, = [, ¥du, there exists wy € L such
that [, ¥dp, < M = [, ydu + 1 for @ > wy. This implies that u,(K) < [ ¥du, < M
for w > wy. On the other hand, by (ii)), we have u,(F\K) < %fF\K odi, <
Lsup,eq [rpdp-, for w € Q, so that sup,.,, te(F) < oco. This means that the net
{lo}wsw, is uniformly bounded and pointwise convergent on C (F ) to . Conse-
quently, the net {u}yeq i o(Co(F), Co(F )) -convergent to . Since the net
(o + Volwea 18 0(Co(F), Co(F))-convergent to u v, we get

/fu /—d(u+v)—llm/—d(qurvw)—Li;g/Ffduw

for every f: F — C such that %ﬂ € Co(F). This completes the proof. O

COROLLARY 2. Let {c¢(m,n):m,n >0, m+n<2N — 1} be a finite sequence of
complex numbers (N > 1) and let F be a nonempty closed subset of C. Assume that
{lto}weq is a net of finite positive Borel measures on F and w is a finite positive Borel
measure on F such that

(i) the net {Jiy}peq is 0(Co(FY, Cc(F))-convergent to [,

(i) c(m,n) = [,2"Z"dp,(z) for myn >0 withm+n <2N —1and w € Q,

(i) supyeq [r2VZVdp.(z) < oo.

Then

(iv) c(m,n) = [.2"Z"du(z) for m,n = 0 withm+n < 2N — 1.

Proof. Apply Proposition 1 to the functions ,o(z) =zVzV¥ and f(z) = 2"Z" (z € F)
with m, n > 0 such that m +n < 2N — 1 (notice that 1 S € CO(F)) O

We emphasize that Corollary 2 is optimum in a sense. Namely, it may happen
that the equality in (ii) holds for all w € © and for all integer lattice points (m, n) in
the convex triangle A with vertices (0, 0), (0,2N) and (2N, 0), though no integer
lattice point (m, n) belonging to the edge of A joining (0,2N) and (2N, 0) satisfies
the equality in (iv) (cf. Figure 1). Moreover, the set of all representing measures of a
truncated F-moment sequence of order 2N may not be o(Co(F), Co(F))-closed.
Example 3 deals with the case N =1 and F = C.

ExAMPLE 3. Since Z <+ =00, there exists a strictly increasing sequence of
positive integers {k,},2, such that

2N
2N-1

0 2N-1 2N m
Figure 1. Integer lattice points involved in Corollary 2.
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dr Knt1 1 1 1
u, = ~<-forn>1and lim u, =-. “4)
j:;c”] 4 m—00 4
Therefore we have
df 1 Kn41
2 + Uy — 272 > 07
J=Kn
Kn+1
2by Z ke
/ Ku
and
dar 1 Knt1
2(:,,_2 u,,+Z g/2>0f0rn>1
J= ’(/1

Because Z/ 1 3/2 < 00, (4) yields lim,_ o a, = Z and lim,_ . b, = lim,_ o ¢, = %
Denote by §. the probability Borel measure on C concentrated at the point z. Set

ar 3 1 1

=-8+=6; +=6_

40+81+8 1
and

Kn+1
tn L a,80 + budy + cud_1 + Zj_z 8y forn=1.

J=Kn

It is a matter of direct verification that [ fdu = lim,_, « f fd,, for every bounded
continuous complex function f on C (in particular {,}’2, is o(Co(C)’, Co(C))-con-
vergent to ft). Moreover, for every n > 1, the following COI’ldlthIlS hold true

2220, (z) = /zoéodu(z) =1,

/ 2120w, (2) = / 222 du(2) = f 22%u(z) = / 22'duz) =0,
/zzéod,u,,(z) = /zléld,un(z) = /zofzd,u”(z) = %
/ 20du(z) = / 22 du(z) = / zofzd,u(z):%.

The main result.

THEOREM 4. Let F be a nonempty closed subset of C? and let {c(a, B}, pez! be a
multisequence of complex numbers. If for every n > 0 there exists a positive "Borel
measure [, on F such that

1) ca, B) = sz"‘Zﬂd/Ln(z),for alla, B € Zi with |a| + |8 < n,
then there exists a positive Borel measure j on F such that ¢(a, ) = |, r 22ZPdu(z) for
all a, p € 7°.
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Proof. Assume that F is not compact (the other case is simpler). Since F is
locally compact metrizable and separable, one can see — applying [9, Theorem
V.6.6] to the one-point compactification* of F— that®

Co(F) is a separable Banach space. 5)

Given o, 8 € Zi, we define the function ¢y p : c!'>C by

Z“Zﬁ I
Pa, (Z) = 1811 (Z € (D()
B 1—[7:1(1 + |Zj|2)a,+ﬂ/+1
Since the functions zi— % (m,n > 0) are in Cy(C) and the d-fold tensor pro-

duct of Cy functions is again a Cy function, we conclude that
¢up € Co(F), o, peZf. (6)

It follows from (i) that |Z,(/)] < [r2°2°dua)IfIlF = c(0,0) Il for every
f e Cy(F) and so [, belongs to ¢(0, 0)B, where B is the closed unit ball in Co(F) . By
(5), the set ¢(0, 0)B is weak-star metrizable and weak-star compact (cf. [9, Theorems
V.3.1 and V.5.1]). Hence there exists a subsequence {fiz, }oc, of {i,};c, that is weak-
star convergent to a functional A € ¢(0, 0)B. Notice that if f € Co(F) and /> 0, then
A(S) = lim, o 1, (f) = 0 and so by the Riesz representation theorem (cf. [24
Theorems 2.14 and 6.19] or [17, § 56]) there exists a finite positive Borel measure p on
Fsuch that A = &. If n(«) € Z., is chosen so that k) > 2|e], then, by (i), we have

/Fz 2%y, (2) = (e, @) for n > n(a) (o € z¢ 4
Applying Proposition 1 to p(z) = z%z% gives us [,.z*Z%du(z) < oo for « € Z‘i and
lim /F N2 g, (2) = fF fD2dp(z),  feCoF), aeZl. %)
It follows from (i), (6) and (7) that

c(a, B) = lim [ z*ZPduy (2)

n—o0 F

= lim_ | @) H(l + |52 dpy, (2)

/F%,ﬂ(z) l_[(1 + 1z P du(z)

=1

_ f “Bdu(z), « pell,
F

which completes the proof. O
4One can show that if X is a locally compact HausdorfT space that is not compact, then the one-point

compactification of X is metrizable if and only if X is metrizable and separable.
SThe separability of Cy(F) can also be deduced from the Stone-Weierstrass theorem.
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REMARK 5. In fact, we have proved that if for every n > 0 there exists a positive
Borel measure u, on F satisfying condition (i) of Theorem 4, then there exists a
positive Borel measure g on F with all its moments finite and a subsequence {uk boco
of {u,}52, such that {,uk o 18 o(Co(F)', Co(F))-convergent to u® for « € Z ; here
dv¥(z) = z%z%dv(z) for v = u, u,. This, in turn, has enabled us to show that W is a
representing measure of {c(a, B)}, ez’ - It is clear that all representing measures of
{cla, B}, pez? €an be obtained by way “of this limit procedure. In case u is unique we
can prove more.

THEOREM 6. Let {c(a, B)},,. pezts F, w, and u be as in Theorem 4. If, moreover, the
multisequence {c(a, B)}, ezt Lk is determinate, then the sequence {/L‘,’f oo s
a(Co(FY, Co(F))-convergent to u*, for every a € Z

Proof. Analysis similar to that in the proof of Theorem 4 (cf. Remark 5) shows
that for every subsequence {tt, }oo o of {pn}ne, there exists a subsequence {ka, Jooo of
{1k, )0 such that {uk ° 0 18 o(Co(F)', Co(F))-convergent to u® for « € Z (use the
fact that the representmg measure u is unique). Hence the general topologlcal
characterization of convergent sequences yields the conclusion. ]

It is worth while to notice that if the multisequence of moments {c(c, B)}, ezt is
not determinate, then {f,};>, may not be o(Co(F), Co(F))-convergent. Indeed, if
p # v are two representing measures of {c(a, f)},, pez! and the sequence {u,}oo, is
defined by o = u and uyry; = v for k > 0, then {pcn , satisfies condition (i) of
Theorem 4 but {Mn}n:o is not o(Cy(F)', Co(F))-convergent (indeed, otherwise it must
be @ = v which, by the Riesz representation theorem (see also footnote '), gives us
W = v, a contradiction).

Theorems 4 and 6 can easily be adapted to the context of other classical moment
problems and in particular to the multidimensional Hamburger moment problem.
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