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Equivariant Embeddings into Smooth Toric
Varieties
Jürgen Hausen

Abstract. We characterize embeddability of algebraic varieties into smooth toric varieties and preva-
rieties. Our embedding results hold also in an equivariant context and thus generalize a well-known
embedding theorem of Sumihiro on quasiprojective G-varieties. The main idea is to reduce the em-
bedding problem to the affine case. This is done by constructing equivariant affine conoids, a tool
which extends the concept of an equivariant affine cone over a projective G-variety to a more general
framework.

Introduction

Classical algebraic geometry mainly deals with quasiprojective varieties. These va-
rieties thus come embedded into an ambient space whose structure is rather well
understood, a fact on which rely many basic ideas and explicit working tools of the
classical theory. The modern concept of defining a variety by gluing affine pieces is
much more flexible, but the price for this flexibility is the loss of structural insight
offered by the ambient space. The intention of embedding theorems is to regain such
insight.

Since about 1970, toric varieties have been thoroughly studied. A most remarkable
feature is their explicit description by combinatorial data. The class of toric varieties
contains the classical ambient spaces, namely the affine and projective spaces, but
it is considerably larger. In fact, by a theorem of Włodarczyk [15], toric varieties
may serve as ambient spaces for surprisingly many varieties: A normal variety X
can always be embedded into a toric prevariety, and X admits an embedding into
a separated toric variety if and only if every two points of X have a common affine
neighbourhood.

In the present article, we study some problems arising from Włodarczyk’s result.
The first one concerns singularities: On the one hand, one would like to get rid of
the assumption of X being normal, on the other hand it is important to know when
one can choose a smooth ambient space. So it is natural to ask, compare [15, Prob-
lems 5.4 and 5.5]: Which varieties admit embeddings into smooth toric varieties?
A second point is the problem of embedding equivariantly with respect to algebraic
group actions. Such embeddings are for example interesting in the context of quo-
tient constructions, as these are quite well understood in the toric case.

To address the above problems, we introduce a tool that generalizes the concept of
an affine cone over a projective variety: An affine conoid over a not necessarily pro-
jective variety X is an affine variety X together with an action of an algebraic torus H
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Equivariant Embeddings 555

and a dense open invariant subset X̂ ⊂ X where H acts freely with a geometric quo-
tient q : X̂ → X = X̂/H. These affine conoids are the key to reduce the embedding
problem to the affine case. However, they might also be of interest independently
from our applications to embeddings, see e.g. Remark 3.9.

Our first main result characterizes existence of affine conoids for arbitrary vari-
eties and relates it to embeddability. Following Borelli [5], we call an irreducible
variety X divisorial, if for every x ∈ X there is an effective Cartier divisor D on X such
that X \ Supp(D) is an affine neighbourhood of x. The class of divisorial varieties
considerably extends the class of quasiprojective varieties; for example it includes all
Q-factorial varieties and their subvarieties. We prove (see Theorem 3.2):

Theorem 1 For an irreducible variety X, the following statements are equivalent:

i) X is divisorial.
ii) There exists an affine conoid over X.
iii) X admits a closed embedding into a smooth toric prevariety of affine intersection.

Here we say that a prevariety Y is of affine intersection if for any two open affine
subvarieties of Y , their intersection is again affine. This means that the non-sepa-
ratedness of Y is of quite mild nature. In fact, using the appropriate formulation
of divisoriality, we obtain the above result even for reducible varieties X. For the
crucial part, the implication “i)⇒ ii)”, we extend known constructions by Cox [6]
and Kajiwara [11] from the setting of toric varieties to arbitrary divisorial varieties.
As to the question of embeddability into separated smooth toric varieties, we obtain
(see Corollary 5.4):

Theorem 2 An irreducible variety X admits a closed embedding into a smooth toric
variety if and only if for any two x, x ′ ∈ X, there is an effective Cartier divisor D on X
such that X \ Supp(D) is affine and contains x and x ′.

We now turn to the second problem, namely, equivariant embeddings. If a con-
nected linear algebraic group acts on a normal quasiprojective variety, then Sumi-
hiro’s Equivariant Embedding Theorem [13, Theorem 1] guarantees existence of a
locally closed equivariant embedding into a projective space. We extend this result to
the divisorial case (see Theorem 3.4 and Corollary 5.7):

Theorem 3 Let X be a normal divisorial variety with a regular action of a connected
linear algebraic group G.

i) There exist a smooth toric prevariety Z of affine intersection with a linear G-action
and a G-equivariant closed embedding X → Z.

ii) If for any two x, x ′ ∈ X, there is an effective Cartier divisor D on X such that
X \Supp(D) is affine and contains x and x ′, then one can choose Z to be a separated
smooth toric variety.

Similar to the case of Z being a projective space, a linear action on a toric preva-
riety Z is an action induced by some linear representation “over” Z; for the precise
formulation see Section 1. Again, the basic step in the proof is the construction of
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affine conoids, but now in an equivariant manner. A consequence of Theorem 3 is
that every Q-factorial toric variety can be embedded into a smooth one by means of
a toric morphism (see Corollary 5.8).

The criterion of Theorem 2 and Theorem 3 ii) on pairs of points x, x ′ ∈ X can
also be formulated for k-tuples of points; we call the resulting property k-divisoriality.
In view of the Kleiman-Chevalley-Criterion, increasing k means “approximating”
quasiprojectivity. We show that Theorem 2 and Theorem 3 ii) have analogous state-
ments for k > 2, that means k-divisorial varieties can be embedded into k-divisorial
smooth toric varieties (see Theorems 5.3 and 5.6). In particular, we prove a conjec-
ture of Włodarczyk [15, 5.3] in the Q-factorial case.

The present paper is organized as follows: In Section 1, we introduce equivari-
ant affine conoids and show that they give rise to equivariant embeddings into toric
prevarieties. In Section 2 we present our construction of equivariant affine conoids
over divisorial G-varieties. The first main results are proved in Section 3. Moreover,
we relate embeddings via affine conoids to classical projective embeddings, and dis-
cuss a consequence concerning Geometric Invariant Theory in this section. Finally,
Sections 4 and 5 are devoted to the problem of embedding into separated and, more
specially, k-divisorial smooth toric varieties.

1 Affine Conoids and Embeddability

Affine cones are a useful tool to study projective varieties. The purpose of this section
is to extend that tool to more general varieties. We introduce the notion of an equiv-
ariant affine conoid over a G-variety X, and we show in Proposition 1.7 that such
an affine conoid gives rise to a G-equivariant embedding of X into a certain smooth
toric prevariety.

Throughout the whole article, we work in the categories of varieties and prevari-
eties defined over a fixed algebraically closed field K. For the general background, we
refer for example to [10, Chapter I]. We say that a prevariety X is of affine intersection
if the diagonal morphism X → X × X is affine. A variety is a separated but possibly
reducible prevariety.

Let us recall some notation on group actions. A G-variety is a variety X together
with a regular action G × X → X of an algebraic group G. We say that the action of
a G-variety X is free at x ∈ X if the orbit map g 7→ g ·x is a locally closed embedding
of G into X. Moreover, we call an action free if it is free at every point.

We shall be concerned with the following type of quotients: A geometric quotient
for a G-variety X is an affine regular map p : X → Y onto a variety Y = X/G such
that the p-fibres are precisely the G-orbits and OY = p∗(OX)G holds. Sometimes we
allow in this setting also non-separated quotient spaces Y ; then we speak of geometric
prequotients.

Definition 1.1 An affine conoid over a variety X is an affine variety X together with
a regular action of an algebraic torus H and a dense open H-invariant subset X̂ ⊂ X
where H acts freely with geometric quotient q : X̂ → X = X̂/H.
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Clearly this concept includes the classical notion of an affine cone over a projective
variety. In order to present non-projective complete varieties admitting an affine
conoid, we consider toric varieties. Recall at this point that a toric variety is a normal,
and hence irreducible variety together with a regular action of an algebraic torus
having a dense free orbit. There exist many non-projective complete smooth toric
varieties (see e.g. [7, p. 74]), and a construction of Cox [6] provides affine conoids in
that cases:

Example 1.2 Let X be a complete smooth toric variety arising from a fan ∆ in a
lattice N. Denote by ∆(1) the set of onedimensional cones of ∆. Consider the lattice
homomorphism

Q : Z∆(1)

→ N, e% 7→ v%,

where e% is the canonical base vector corresponding to % ∈ ∆(1) and v% denotes the
primitive lattice vector of % ∈ ∆(1). For every cone σ ∈ ∆ let σ(1) be the set of its
extremal rays and define a cone

σ̂ := cone(e%; % ∈ σ(1)) ⊂ R∆(1)

.

These cones form a fan in Z∆(1)

, and the associated toric variety X̂ is an open sub-

variety of X := K∆(1)

. The toric morphism q : X̂ → X defined by Q is a geometric
quotient for the free action of the algebraic torus H := ker(q) on X̂.

As we are also interested in the equivariant setting, we have to fix an appropriate
equivariant notion of an affine conoid. Let G be an algebraic group, and let X be a
G-variety. Suppose that X is an affine conoid over X, and let H, X̂ and q : X̂ → X be
the associated data as in 1.1. Assume moreover that G acts also regularly on X.

Definition 1.3 We say that X is a G-equivariant affine conoid over X if the actions
of G and H on X commute, G leaves X̂ ⊂ X invariant, and the map q : X̂ → X is
G-equivariant.

In the subsequent constructions, we shall use a characterization of free torus ac-
tions in terms of certain regular functions. Assume that an algebraic torus H acts
regularly on a variety X. Recall that a function f ∈ O(X) is called homogeneous with
respect to a character χ ∈ Char(H) if f (t ·x) = χ(t) f (x) holds for every t ∈ H and
every x ∈ X.

Remark 1.4 Let H be an algebraic torus, and let X be an affine H-variety. The
action of H is free at x ∈ X if and only if x has an H-invariant open neighbourhood
U ⊂ X admitting for every χ ∈ Char(H) a χ-homogeneous f ∈ O(U ) with f (x) 6=
0.

We begin the construction of equivariant embeddings with two auxiliary results
concerning the following situation: Let G be a linear algebraic group and let Y de-
note an affine G-variety. Suppose that H is an algebraic torus contained as a closed
subgroup in the center of G, and that V ⊂ Y is a G-invariant open subset such that
H acts freely on V . Under these assumptions we have:
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Lemma 1.5 There exist a linear G-action on some Kn, a G-equivariant closed embed-
ding Φ : Y → Kn and an open subset U ⊂ Kn with the following properties:

i) U is invariant under the actions of G and Tn := (K∗)n.
ii) H ⊂ G acts diagonally on Kn and freely on U .
iii) V = Φ−1(U ) holds.

Moreover, if G is an algebraic torus, then one can achieve that G acts diagonally on Kn.

Proof Choose generators f1, . . . , fr of O(Y ) such that for some s < r, the functions
f1, . . . , fs generate the ideal of Y \ V . Let Mi ⊂ O(Y ) be the (finite-dimensional)
vector subspace generated by G· fi , and let Ni denote the dual G-module of Mi . Then
we obtain G-equivariant regular maps

Φi : X → Ni , x 7→
(

h 7→ h(x)
)
.

Let N := N1 ⊕ · · · ⊕ Nr, and let Φ : Y → N be the map with components Φi . Note
that Φ is a G-equivariant closed embedding. Choosing for every Ni a basis consisting
of H-homogeneous vectors, we may assume that N = Kn holds and that H acts
diagonally, i.e., as a subgroup of the big torus Tn ⊂ Kn.

The set U ′ ⊂ Kn consisting of all free H-orbits is invariant under the actions of G
and Tn, because these actions commute with the action of H. Moreover, Remark 1.4
implies that U ′ is open in Kn. Since H acts freely on V , we have Φ(V ) ⊂ U ′. Set

U := U ′ \ (Ns+1 ⊕ · · · ⊕ Nr).

Then also U is open and invariant under the actions of G and the big torus Tn. By
construction, we have V = Φ−1(U ). So U has the desired properties. The supple-
ment for the case of G being a torus is obvious.

For the next statment, recall that a toric prevariety is a normal prevariety together
with a regular action of an algebraic torus having a dense free orbit. An introduction
to toric prevarieties is given in [2].

Lemma 1.6 Notation as in 1.5. The action of H on U admits a geometric prequotient
p : U → Z := U/H. Moreover, Z is a smooth toric prevariety of affine intersection and
G acts regularly on Z making p : U → Z equivariant.

Proof Cover U by H-invariant affine open sets Ui ⊂ U , and set Zi :=
Spec

(
O(Ui)H

)
. Since H acts freely, the natural maps pi : Ui → Zi are geometric

quotients. Using Remark 1.4, one easily verifies that the maps pi are even locally
trivial. In particular, each Zi is a smooth affine variety.

The varieties Zi glue together along the open subsets Zi j := pi(Ui ∩ U j) to a
smooth prevariety Z. Since each Zi j is the quotient space of the affine variety Ui∩U j ,
it is again affine. Consequently the prevariety Z is of affine intersection. Moreover,
the maps pi : Ui → Zi glue together to a geometric prequotient p : U → Z.
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Since the actions of G and Tn on U commute with the action of H, universality of
geometric prequotients yields regular actions of G and Tn on Z making p : U → Z
equivariant. In particular, Z becomes a toric prevariety.

As the G-action on the toric prevariety Z in the above lemma is induced by a linear
representation of G on Kn, we call it linear. We are now ready for the main result of
this section:

Proposition 1.7 Let G be a linear algebraic group, and suppose that the G-variety X
has a G-equivariant affine conoid. Then X admits a closed G-equivariant embedding
into a smooth toric prevariety of affine intersection on which G acts linearly.

Proof Let X be a G-equivariant affine conoid over X and let q : X̂ → X = X̂/H
denote the associated geometric quotient. Lemma 1.5 yields a G × H-equivariant
embedding Φ : X → Kn and a G× H-invariant open set U ⊂ Kn with Φ−1(U ) = X̂
such that H acts freely on U . As we showed in Lemma 1.6, the geometric prequotient
U → U/H exists and Z := U/H is a smooth toric prevariety of affine intersection.

By the universal property of geometric prequotients, the restriction Φ : X̂ → U
induces a regular map X → Z on the level of quotients. By construction, this map
is equivariant with respect to the induced linear G-action on Z. Moreover, by H-
closedness of the geometric prequotient U → Z, the map X → Z is a closed embed-
ding.

2 Ample Groups of Line Bundles

In this section we perform our construction of equivariant affine conoids. The basic
tool is a suitable generalization of ample line bundles: Instead of a single line bundle,
we shall use certain groups of line bundles. First we make precise what we mean by a
group of line bundles.

Let X be a variety and consider a cover U = (Ui)i∈I of X by open subsets. This
cover gives rise to an additive group Λ(U) of line bundles on X: For each cocycle
ξ ∈ Z1(U,O∗X), let Lξ denote the line bundle obtained by gluing the products Ui × K
along the maps

(x, z) 7→
(

x, ξi j(x)z
)
.

The sum Lξ + Lη of two such line bundles is by definition the line bundle Lξη = Lηξ .
So the set Λ(U) consisting of all the bundles Lξ is in fact an abelian group, isomorphic
to Z1(U,O∗X). When we speak of a group of line bundles on X, we think of a subgroup
of some group Λ(U) as above.

Now, let Λ be a finitely generated free group of line bundles on X. In the sequel,
we associate to this group of line bundles a variety X̂ over X. For each line bundle
L ∈ Λ, let AL denote its sheaf of sections. We identify A0 with the structure sheaf OX .

The sections of a line bundle Lξ ∈ Λ over an open set U ⊂ X are described by
families fi ∈ OX(U ∩Ui) that are compatible with the gluing cocycle ξ. Thus, for any
two sections f ∈ AL(U ) and f ′ ∈ AL ′(U ), we can take the product ( fi f ′i ) of their
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defining families ( fi) and ( f ′i ) to obtain a section f f ′ ∈ AL+L ′(U ). Extending this
operation yields a multiplication on

A :=
⊕
L∈Λ

AL.

We call A the graded OX-algebra associated to Λ. This algebra is reduced, and
moreover, it is locally of finite type over A0 = OX ; that means over sufficently small
affine open sets U ⊂ X, the O(U )-algebra A(U ) is finitely generated. Consequently
we obtain a variety

X̂ := Spec(A)

by glueing the affine varieties Spec
(
A(U )

)
, where U ranges over small open affine

neighbourhoods U ⊂ X. In this process, the inclusion map OX = A0 → A gives rise
to an affine regular map

q : X̂ → X,

and we have A = q∗(OX̂). We refer to X̂ as to the variety over X associated to the
group Λ. The Λ-grading of the OX-algebra A defines a regular action of the algebraic
torus

H := Spec(K[Λ])

on X̂ such that for each affine open set U ⊂ X, the sections AL(U ) are precisely
the functions of q−1(U ) that are homogeneous with respect to the character χL ∈
Char(H). Using Remark 1.4, we observe:

Remark 2.1

i) H acts freely on X̂, and the map q : X̂ → X is a geometric quotient for the action
of H on X̂.

ii) For a section f ∈ AL(X), let Z( f ) ⊂ X denote its set of zeroes. Then the set of
zeroes of f , viewed as a regular function on X̂, is just

N(X̂; f ) = q−1
(

Z( f )
)
⊂ X̂.

To proceed in our construction of affine conoids, we need a condition on the
group Λ of line bundles which guarantees that the associated variety X̂ over X is
quasiaffine.

Definition 2.2 We call a finitely generated free group Λ of line bundles on X am-
ple if its associated graded OX-algebra A admits homogeneous sections f1, . . . , fr ∈
A(X) such that the open sets X \ Z( fi) form an affine cover of X.

Note that this generalizes the usual concept of ampleness in the sense that an am-
ple line bundle generates an ample group. Moreover, the above notion of an ample
group yields precisely what we are looking for:

Proposition 2.3 Let G be a linear algebraic group, and let X be a G-variety. If Λ is an
ample group of line bundles on X and every L ∈ Λ is G-linearizable, then X admits a
G-equivariant affine conoid.
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For the proof we need two statements ensuring existence of suitable equivariant
affine closures. We use the following common notation: For a variety Y and a func-
tion h ∈ O(Y ), let Yh := {y ∈ Y ; h(y) 6= 0}.

Lemma 2.4 Let Y be a variety endowed with an action of a linear algebraic group G.
Suppose that

i) there are f1, . . . , fr ∈ O(Y ) such that the sets Yi := Y fi are affine, cover Y and
satisfy O(Yi) = O(Y ) fi ,

ii) the representation of G on O(Y ) given by (g · f )(y) = f (g−1 ·y) is rational.

Then there is an affine G-variety Y containing Y as a dense open invariant subvariety
such that the fi extend regularly to Y , and Y fi = Y fi holds.

Proof The main point is that O(Y ) needs not be of finite type over K. However, we
find h1, . . . , hs ∈ O(Y ) such that there are generators for each K-algebra O(Yi) among
the functions h j/ f l

i . Consider the subalgebra A ⊂ O(Y ) generated by h1, . . . , hs and
f1, . . . , fr. By rationality of the G-representation on O(Y ), we can enlarge A such that
it is G-invariant but remains finitely generated.

Consider the affine G-variety Y := Spec(A). Then the inclusion A ⊂ O(Y ) defines
a G-equivariant regular map ϕ : Y → Y . Moreover, each function fi ∈ O(Y ) is the
pullback of a function on Y , denoted again by fi . By construction, restricting ϕ gives
isomorphisms Y fi → Y fi of affine varieties. Since Y fi = ϕ−1(Y fi ) holds, we see that
ϕ is the desired open embedding.

Lemma 2.5 Let Λ be an ample group of line bundles on a variety X, and suppose that
the sections f1, . . . , fr of the graded OX-algebra A associated to Λ are as in 2.2. Then,
setting Xi := X \ Z( fi), we have A(Xi) = A(X) fi .

Proof Let Li ∈ Λ be the degree of fi . Then there is an inverse f−1
i ∈ A−Li (Xi) of

fi |Xi . So we obtain an injection A(X) fi ⊂ A(Xi). This map is also surjective: Let
L ∈ Λ and f ∈ AL(Xi). Arguing locally, we see that for some suitably large integer
m, the section f f m

i ∈ AL+mLi (Xi) admits an extension to a section of AL+mLi (X),
compare e.g. [5, Proposition 2.2]. But this means f ∈ A(X) fi .

Proof of Proposition 2.3 Fix a basis L1, . . . , Lk of the free abelian group Λ, and
choose for every L j a G-linearization. Via tensoring these G-linearizations, we obtain
a G-linearization for each L ∈ Λ. This makes the associated graded OX-algebra A

into a G-sheaf: for a section f ∈ AL(U ) let

(g · f )(x) := g ·
(

f (g−1 ·x)
)
.

Then g·f ∈ AL(g·U ). Moreover, on A0 = OX we have the canonical G-sheaf structure
arising from the G-action on X, and the multiplication of the graded OX-algebra A

associated to Λ is compatible with the G-action. Since G respects the homogeneous
components AL, we infer from [12, Section 2.5] that the representation of G on A(X)
is rational.
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Let X̂ = Spec(A) be the variety over X associated to Λ, and denote by q : X̂ → X
the geometric quotient for the action of H := Spec(K[Λ]). The fact that we made A

into a G-sheaf, allows us to define a G-action on X̂: Fix g ∈ G and let U ⊂ X be an
affine open set. The algebra homomorphism

A(g ·U )→ A(U ), f 7→ g−1 · f

defines a morphism of affine varieties

Tg,U : q−1(U ) = Spec
(
A(U )

)
→ Spec

(
A(g ·U )

)
= q−1(g ·U ).

The maps Tg,U glue together to a map Tg : X̂ → X̂. Moreover, g ·x := Tg(x) defines

a group action on X̂ and the representation of G on O(X̂) = A(X) induced by this
action is the one we started with. In particular, since A0 is canonically G-linearized,
the map q : X̂ → X is G-equivariant.

In order to check that the actions of G and H on X̂ commute, let x ∈ X̂, g ∈ G and
t ∈ H. Choose a q-saturated affine open neighbourhood Û of x. By G-equivariance
of q, both points g·t·x and t·g·x lie in g·Û . Suppose f ∈ O(g·Û ) is homogeneous with
respect to a character χL ∈ Char(H). Then also g−1 · f ∈ O(Û ) is χL-homogeneous,
and we obtain

f (g ·t ·x) = (g−1 · f )(t ·x) = χL(t)(g−1 · f )(x) = χL(t) f (g ·x) = f (t ·g ·x).

Since the H-homogeneous functions separate the points of g ·Û , it follows that g ·t ·x
equals t ·g ·x. So the actions of G and H on X̂ commute. In particular, they define an
action of the product G×H on X̂.

We shall apply Lemma 2.4 to obtain a G × H-equivariant affine closure X of X̂.
First note that the representation of G×H on A(X) is rational, because this holds for
the representations of the factors G and H. So we only have to check Condition 2.4 i).

As to this, let f1, . . . , fr ∈ A(X) as in Definition 2.2. By Remark 2.1 ii), it suffices
to know that for Xi := X \ Z( fi), one has A(Xi) = A(X) fi . But this is guaranteed
by Lemma 2.5. So Condition 2.4 i) is verified, and Lemma 2.4 provides a G × H-
equivariant affine closure X of X̂, which is the desired affine conoid.

As mentioned earlier, our approach generalizes known constructions for toric va-
rieties. The most recent one is due to T. Kajiwara [11]; he proved that a toric variety
with enough invariant effective Cartier divisors is a geometric quotient of a quasi-
affine toric variety. A systematic treatment of quotient presentations of toric varieties
is given in [3].

The following observation is useful to construct ample groups of line bundles on
smooth and, more generally Q-factorial varieties, i.e., normal varieties such that for
every Weil divisor some multiple is Cartier.

Remark 2.6 Suppose on a variety X exist effective Cartier divisors D1, . . . ,Dr such
that the sets X \ Supp(D)i form an affine cover of X. Then any choice of local equa-
tions of the Di defined on a common cover of X associates to each Di a line bundle
Li . Replacing the Di with suitable multiples, one achieves that the Li generate a free
group Λ. This group Λ is ample and the canonical sections fi := 1 ∈ OX(Di) satisfy
to the conditions 2.2.
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3 Characterizing Existence of Affine Conoids

Summing up the considerations of the preceding two sections, we present here our
first main theorems. Moreover, we give some discussion and outline a consequence
to quotient constructions in this section.

Following Borelli [5], we call a prevariety X divisorial if for every x ∈ X there
exists a line bundle L on X admitting a global section f such that removing its zero
set Z( f ) yields an affine open neighbourhood X \ Z( f ) of x.

Remark 3.1

i) A variety is divisorial if and only if it admits an ample group of line bundles.
ii) An irreducible variety X is divisorial if and only if for every x ∈ X there exists an

effective Cartier divisor D on X such that X \ Supp(D) is an open affine neigh-
bourhood of x.

The first main result relates divisoriality, existence of affine conoids and embed-
dability into smooth toric prevarieties to each other:

Theorem 3.2 For a variety X, the following statements are equivalent:

i) X is divisorial.
ii) There exists an affine conoid over X.
iii) X admits a closed embedding into a smooth toric prevariety of affine intersection.

Proof The implication “i)⇒ ii)” is Proposition 2.3, and the implication “ii)⇒ iii)”
is Proposition 1.7. To obtain the remaining direction “iii)⇒ i)”, note that a smooth
prevariety of affine intersection is divisorial and that subvarieties of divisorial preva-
rieties are again divisorial.

Remark 3.3

i) Theorem 3.2 holds as well for prevarieties X. Our proof works without changes.
Note that a divisorial prevariety X is necessarily of affine intersection.

ii) The Hironaka twist is a smooth variety of dimension three that cannot be em-
bedded into a separated toric variety, compare [15].

iii) There exist normal surfaces that admit neither embeddings into toric prevarieties
of affine intersection nor into Q-factorial ones, see [9].

Theorem 3.4 Let X be a normal divisorial variety with a regular action of a con-
nected linear algebraic group G. Then there exist a smooth toric prevariety Z of affine
intersection with a linear G-action and a G-equivariant closed embedding X → Z.

Proof Choose an ample group Λ of line bundles on X and fix a basis L1, . . . , Lr

of Λ. Replacing every Li by a suitable multiple, we achieve that L1, . . . , Lr are G-
linearizable, see e.g. [12, Proposition 2.4]. Since Λ remains ample, the assertion
follows from Propositions 2.3 and 1.7.
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Remark 3.5

i) A condition on X like normality is necessary in Theorem 3.4: Identifying 0 and
∞ in the projective line yields a K∗-variety that cannot be equivariantly embed-
ded into any normal prevariety.

ii) If in the setting of Theorem 3.4, the group G is a torus and acts effectively, then,
by the supplement of Lemma 1.5, one can arrange the embedding in such a way
that G acts as a subtorus of the big torus of Z.

iii) For G = C∗, the main result of [8] provides existence of equivariant embeddings
into toric prevarieties even for non-divisorial normal X.

In the remainder of this section we discuss further aspects of affine conoids. First
we note that the results hold also with a more general definition: In Definition 1.1 we
could replace the algebraic torus H by an arbitrary diagonalizable group. Moreover,
in characteristic zero one could even omit in Definition 1.1 the requirement of H
acting freely on the set X̂. This is due to the following observation:

Remark 3.6 Let H be a diagonalizable group acting regularly and effectively on an
affine variety Y . Suppose Ŷ ⊂ Y is an open subset with geometric quotient Ŷ →
X := Ŷ/H. Then the group Γ ⊂ H generated by Hy , y ∈ Ŷ , is finite. If char(K) = 0,
then X := Y/Γ is an affine conoid over X.

If a complete variety X admits an ample divisor D in the classical sense, then the
linear system of a suitable multiple of D gives rise to an embedding of X into a pro-
jective space. In the following example we discuss the embedding of X provided by
the (ample) group Λ of line bundles induced by D:

Example 3.7 Let X be a variety with O(X) = K, e.g. a complete one. Suppose that
there is a line bundle L on X generating an ample group Λ = ZL. We show that the
method of Propositions 2.3 and 1.7 embeds X into a smooth quasiprojective toric
variety:

Let X̂ denote the variety over X associated to Λ. Note that Spec(K[Λ]) equals K∗.
Choose any K∗-equivariant affine closure X of X̂. Since O(X) = K holds, every K∗-
invariant regular function on X is constant. In particular, the K∗-variety X has an
attractive fixed point.

It follows that the map Φ constructed in Lemma 1.5 embeds X into some Kn with
linear K∗-action having zero as attractive fixed point. Hence the induced map X → Z
used in the proof of Proposition 1.7 embeds X into the set of regular points of a
weighted projective space. In particular, X is quasiprojective.

In view of this observation, it is interisting to know when there exist “small” affine
conoids over a given variety X. For this one needs small ample groups. Here the
Picard group Pic(X) gives some bound:

Proposition 3.8 Let X be a divisorial variety. If Pic(X) is generated by d elements,
then X admits an affine conoid X with dim(X) ≤ dim(X) + d.
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Proof Choose an ample group Λ of line bundles on X. Since Pic(X) is generated by
d elements, there is a subgroup Λ ′ ⊂ Λ of rank at most d such that each L ∈ Λ is
isomorphic to an element of Λ ′. The variety X̂ over X associated to Λ ′ satisfies

dim(X̂) = dim(X) + dim
(

Spec(K[Λ ′])
)

= dim(X) + rk(Λ ′).

Now, the group Λ ′ is obviously ample. Consequently X̂ is quasiaffine, and any equiv-
ariant affine closure X of X̂ is an affine conoid as wanted.

We conclude this section with a “philosophical” consequence of existence of equiv-
ariant affine conoids. Assume that a reductive group G acts regularly on a normal
divisorial variety X. It is the central task of Geometric Invariant Theory to look for
G-invariant open subsets U ⊂ X admitting reasonable quotients. Affine conoids
reduce this problem to the quasiaffine case:

Remark 3.9 Let X be a G-equivariant affine conoid over X and let q : X̂ → X =
X̂/H be the associated geometric quotient. A G-invariant open subset U ⊂ X admits
a categorical (good, geometric) quotient for the action of G if and only if q−1(U ) ⊂ X̂
admits categorical (good, geometric) quotient for the action of G×H.

4 A Finiteness Result

So far we characterized divisoriality of a given variety X by existence of an embedding
into a smooth toric prevariety Z of affine intersection. In this section we provide an
important ingredient for the investigation of embeddings into a separated ambient
space Z.

The following property, also considered in [15] and [14], is crucial: We say that
a prevariety X has the Ak-property, if any k points x1, . . . , xk ∈ X admit a common
open affine neighbourhood in X.

Remark 4.1

i) For k ≥ 2, an Ak-prevariety is necessarily separated.
ii) A toric prevariety is separated if and only if it has the A2-property.

We are interested in open Ak-subsets of a given prevariety X, i.e., open subsets
X ′ ⊂ X that have as a prevariety themselves the Ak-property. The main result of this
section generalizes [14, Theorem 3.5] to the nonseparated case:

Proposition 4.2 A prevariety has only finitely many maximal open Ak-subsets.

This proposition can be obtained by combining [14, Theorem 3.5] with [4, Theo-
rem I]. However, for the sake of self-containedness, we present below a simple direct
proof, based on a slight modification of the arguments used in [14, Section 3].

We apply Proposition 4.2 to actions of connected algebraic groups G. Assume
that G acts by means of a regular map G × X → X on a prevariety X. As immediate
consequences of the above result, we obtain:
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Corollary 4.3 The maximal open Ak-subsets of X are G-invariant.

Proof Compare [2, Proof of Prop. 1.3]. Let X1, . . . ,Xr be the maximal open Ak-
subsets of X. We show that X1 is G-invariant. Each g ∈ G permutes the complements
Ai := X \ Xi . Consequently G is covered by the closed subsets

G(i) := {g ∈ G; g ·A1 ⊂ Ai}.

Now, G is connected, hence G = G(i) for some i. In particular, for the neutral
element eG ∈ G we have eG ·A1 ⊂ Ai . This means Ai = A1. In other words, G leaves
X1 invariant.

Corollary 4.4 X has the Ak-property if and only if for any collection B1, . . . ,Bk ⊂ X
of closed G-orbits there exist xi ∈ Bi such that x1, . . . , xk admit a common open affine
neighbourhood in X.

We turn to the proof of Proposition 4.2. Fix an integer k. Suppose that X is a
topological space such that the product topology on Xk is noetherian, e.g., X is a
prevariety. Let U be any family of open subsets of X. Set

A := Xk \
⋃

U∈U

U k.

Then A is a closed subspace of Xk. Denote by A1, . . . ,Ar the irreducible components
of A. Let pi : Xk → X be the projection onto the i-th factor. For a subset Y ⊂ X, let

X(Y ) := X \
⋃

pi (A j )∩Y =∅

pi(A j).

By a Uk-subset we mean a subset Y ⊂ X such that for any x1, . . . , xk ∈ Y there exists
an U ∈ U that contains the points x1, . . . , xk. The basic properties of the above
construction are subsumed as follows:

Lemma 4.5

i) X has only finitely many subsets of the form X(Y ).
ii) If Y is open in X then we have Y ⊂ X(Y ).
iii) If Y ⊂ X is an open Uk-subset then so is X(Y ).

Proof Only for iii) there is something to show. Suppose that Y is an open Uk-subset
but X(Y ) does not have the Uk-property. Then there exist points x1, . . . , xk ∈ X(Y )
that are not contained in a common U ∈ U. So (x1, . . . , xk) lies in A and hence in
some irreducible component A j of A. In particular, xi ∈ pi(A j) holds for all i.

By definition of X(Y ), the fact xi ∈ pi(A j) implies pi(A j) ∩ Y 6= ∅ for all i. Thus
each p−1

i (Y ) intersects A j . Since A j is irreducible and Y is open, we obtain that Y k

intersects A j . Since Y k is covered by the sets U k, U ∈ U, this is a contradiction to the
definition of A.
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Proof of Proposition 4.2 Let U denote the family of all open affine subvarieties of
X. According to Lemma 4.5 it suffices to show that the open Ak-subsets of X are just
its open Uk-subsets. Clearly every open Ak-subset Y ⊂ X is Uk. The converse is seen
as follows:

Let Y ⊂ X be an open Uk-subset. For given x1, . . . , xk ∈ Y we have to find an
affine open V ⊂ Y that contains x1, . . . , xk. By assumption, there is an open affine
U ⊂ X containing x1, . . . , xk. Choose a function f ∈ O(U ) that vanishes along U \Y
but at no point xi . Then V := U f is the desired affine neighbourhood in Y .

5 Separated Ambient Spaces

Here we discuss embeddings into separated smooth toric varieties. We shall also
consider ambient spaces with additional properties. In order to formulate our results,
we introduce the following terminology:

Definition 5.1 Let k be a positive integer. We say that a prevariety X is k-divisorial,
if for any k points x1, . . . , xk ∈ X there is a line bundle L on X admitting a global
section f such that X \ Z( f ) is affine and contains x1, . . . , xk.

Of course, k-divisoriality is strongly related to the Ak-property discussed in the
preceeding section. Moreover, we note:

Remark 5.2

i) A quasiprojective variety is k-divisorial for all k ∈ N.
ii) An irreducible variety X is k-divisorial if and only if for every x1, . . . , xk ∈ X

there is an effective Cartier divisor D on X such that X \ Supp(D) is affine and
contains x1, . . . , xk.

iii) A Q-factorial variety is k-divisorial if and only if it has the Ak-property.
iv) Every Q-factorial toric variety is 2-divisorial.
v) The smooth toric variety discussed in [1, Example 3.1] is not 3-divisorial.

The first result of this section characterizes embedabbility into k-divisorial smooth
toric varieties. In particular, it implies [15, Conjecture 5.3] for Q-factorial varieties:

Theorem 5.3 Let X be a variety, and let k ≥ 2 be an integer. Then the following
statments are equivalent:

i) X is k-divisorial.
ii) X admits a closed embedding into a k-divisorial smooth toric variety.

As a direct consequence, we obtain the following characterization of embeddabil-
ity into smooth toric varieties and thereby answer [15, Problem 5.4] and, partially,
[15, Problem 5.5]:

Corollary 5.4 A variety X admits a closed embedding into a smooth toric variety if
and only if X is 2-divisorial.
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As an immediate consequence of this statement, we obtain the following special
version of Nagata’s Completion Theorem:

Corollary 5.5 Every 2-divisorial variety admits a 2-divisorial completion.

Proof Given a 2-divisorial variety X, embed it into a smooth toric variety Z. Choose
a smooth toric completion Z of Z. Then the closure of X in Z is the desired comple-
tion.

Let us turn to G-varieties X. Though it might be surprising at the first glance,
k-divisoriality turns out to be also in the equivariant setting the right criterion. We
prove:

Theorem 5.6 Let G be a connected linear algebraic group, and let X be a normal
G-variety. If X is k-divisorial for some k ≥ 2, then X admits a G-equivariant closed
embedding into a smooth k-divisorial toric variety with linear G-action.

Corollary 5.7 Let G be a connected linear algebraic group and let X be a normal
2-divisorial G-variety. Then X admits a closed G-equivariant embedding of X into a
smooth toric variety with linear G-action.

As in Remark 3.5 ii), the supplement of Lemma 1.5 and the proof given below
yield for an effective action of a torus G on X that one can arrange in Theorem 5.6
the action of G on the ambient toric variety to be a subtorus action. This implies in
particular:

Corollary 5.8 Every Q-factorial toric variety can be embedded by means of a toric
morphism into a smooth toric variety.

Proof of Theorems 5.3 and 5.6 By pulling back the desired data from the ambient
space, we see that k-divisoriality is necessary to embed a given variety X into a smooth
k-divisorial toric variety. We shall show the converse in the setting of Theorem 5.6.
However, normality of X is merely needed to obtain G-linearizations of line bundles.
Thus our proof also settles Theorem 5.3.

So suppose the connected linear algebraic group G acts regularly on the normal
k-divisorial variety X. Consider the k-fold product Xk. This is covered by sets of the
form U k, where U ⊂ X is an affine open subset obtained by removing the zero set of a
section of some line bundle on X. Since finitely many of these U k cover Xk, we obtain
line bundles L1, . . . , Lr on X and sections fi : X → Li such that each Xi := X \ Z( fi)
is affine and any k points x1, . . . , xk ∈ X lie in some common Xi .

Surely, we may assume that L1, . . . , Lr generate a group Λ of line bundles. More-
over, replacing the Li and the fi with suitable multiples, we achieve that Λ is free
and every Li is G-linearizable. Then Λ is ample, and the sections f1, . . . , fr satisfy
to the conditions of Definition 2.2. Let X̂ denote the variety over X associated to Λ.
Recall, that the canonical map q : X̂ → X is a geometric quotient for the action of
H := Spec(K[Λ]) on X̂. Moreover, by Remark 2.1, H acts freely on X̂.
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As in the proof of Proposition 2.3, we endow X̂ with a G-action, commuting with
the action of H, such that q : X̂ → X becomes G-equivariant. In order to obtain an
appropriate G×H-equivariant affine closure X of X̂, we view the sections fi : X → Li

as regular functions on X̂. According to Remark 2.1 ii), we have X̂ fi = q−1(Xi), and

Lemma 2.5 yields O(X̂ fi ) = O(X̂) fi . Thus Lemma 2.4 provides a G × H-equivariant

affine closure X of X̂ such that the functions fi extend regularly to X and X fi =
q−1(Xi) holds.

Choose a G × H-equivariant embedding Φ : X → Kn and a G × H-invariant
open set U ⊂ Kn as in Lemma 1.5. Then Φ−1(U ) = X̂ holds and the geometric
prequotient U → Z := U/H exists. Moreover, we proved in Lemma 1.6 that Z is a
smooth toric prevariety with linear G-action. The map X → Z of quotients induced
by Φ is a G-equivariant closed embedding.

In the sequel, we regard X and X as subvarieties of Kn and Z respectively. We
claim that for any k-points x1, . . . , xk ∈ X there is an affine open neighbourhood
V ⊂ Z with x1, . . . , xk ∈ V . To construct such a V , we take one of the Xi ⊂ X with
x1, . . . , xk ∈ Xi . By our choice of X, we have q−1(Xi) = X fi .

Now, fi ∈ O(X) is the restriction of some H-homogeneous function hi ∈ O(Kn).
Consider the H-invariant affine open set Ui := Kn

hi
. Then q−1(Xi) is a closed H-

invariant subset of Ui . In particular, Ui contains all the fibres q−1(x j). We have to
shrink Ui a little bit: Let A := Ui \U . Then A is a closed H-invariant subset of Ui .
Since q−1(Xi) ⊂ U holds, we obtain A ∩ q−1(Xi) = ∅.

Looking at the quotient Spec
(
O(Ui)H

)
, we find a function f ∈ O(Ui)H that van-

ishes on A but has no zeroes along the H-orbits q−1(x j). Thus, removing the zero
set of this function f from Ui , we achieve that Ui ⊂ U holds, Ui is still H-invariant,
affine and contains all the fibres q−1(x j). Now set V := Ui/H ⊂ Z. Then V is an
affine open set in Z and x1, . . . , xk ∈ V . So our claim is verified.

Let S denote the big torus of the toric prevariety Z. Removing from Z step by
step the (finitely many) closed S-orbits that do not hit X, we arrive at an open S-
invariant subset Z ′ ⊂ Z such that X is contained in Z ′ and each closed S-orbit of Z ′

has nonempty intersection with X. Corollary 4.4 and the above claim imply that Z ′

has the Ak-property and hence is k-divisorial.
To conclude the proof, we have to make Z ′ invariant under the action of G. We

argue in a similar way as above: Let Z ′ ′ be a maximal open Ak-subset of Z such that
Z ′ ⊂ Z ′ ′ holds. Since G and S are connected, we can apply Corollary 4.3, and obtain
that Z ′ ′ is invariant under the actions of both, G and S. So X ⊂ Z ′ ′ is the desired
G-equivariant closed embedding.
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