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Abstract

For a semigroup S , let S 1 be the semigroup obtained from S by adding a new symbol 1 as its identity
if S has no identity; otherwise let S 1 = S . Mitsch defined the natural partial order 6 on a semigroup S
as follows: for a, b ∈ S , a 6 b if and only if a = xb = by and a = ay for some x, y ∈ S 1. In this paper, we
characterise the natural partial order on some transformation semigroups. In these partially ordered sets,
we determine the compatibility of their elements, and find all minimal and maximal elements.
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1. Introduction and preliminaries

Let S be a semigroup. The semigroup S 1 is obtained from S by adding 1 as its identity
if S has no identity; otherwise, let S 1 = S . If, for each a ∈ S , there exists an element
x ∈ S such that a = axa, then we call S a regular semigroup. An inverse semigroup
S is a regular semigroup in which every element a has a unique element a−1 ∈ S , the
inverse of a, such that a = aa−1a and a−1 = a−1aa−1. For a ∈ S , if a = a2 then a is
called an idempotent, and we denote by E(S ) the set of idempotents of S .

In the study of algebraic semigroups, an order relation on a semigroup may be
defined via the multiplication of the semigroup. An important such order relation is
the natural partial order. There are many studies in the literature about this order. The
natural partial order arose in 1952 when Wagner [9] introduced the order, denoted by
6, on inverse semigroups in the following way. Let S be an inverse semigroup and let
a and b be elements in S ; then we define

a 6 b if and only if a = aa−1b.

Note that aa−1 and a−1a are idempotents in S . Later, in 1980, Hartwig [1] and
Nambooripad [7] independently extended the notion of the natural partial order to
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regular semigroups. For a regular semigroup S and a, b ∈ S ,

a 6 b if and only if a = eb = b f for some e, f ∈ E(S ). (1.1)

Next, in 1986, Mitsch [6] showed that, given a semigroup S , the relation 6 defined by

a 6 b if and only if a = xb = by and a = ay for some x, y ∈ S 1, (1.2)

where a, b ∈ S , is a partial order. The partial orders (1.1) and (1.2) are actually the
same on regular semigroups. Then (1.2) can be considered as the natural partial order
on general semigroups. In 1994, Higgins stated in [2, Theorem 2.5] that if T is a
regular subsemigroup of a semigroup S and a, b ∈ T , then a 6 b on T if and only if
a 6 b on S . An element c in a semigroup S is left (respectively, right) compatible with
the natural partial order 6 if, for each a, b ∈ S , we have ca 6 cb (respectively, ac 6 bc)
on S whenever a 6 b on S .

Much research on the natural partial order concerns semigroups of transformations.
In this paper, we are interested in two semigroups of transformations, the semigroup of
almost one-to-one transformations and the semigroup of almost onto transformations.

Let X be a nonempty set and let

P(X) = {α : A→ X : A ⊆ X},

T (X) = {α ∈ P(X) : dom α = X}.

It is clear that, under composition, P(X) and T (X) are semigroups. We call P(X) the
partial transformation semigroup on X, and T (X) the full transformation semigroup
on X. Note that T (X) is a regular subsemigroup of P(X).

In 1986, the natural partial order (1.1) was studied on T (X) by Kowol and
Mitsch [4]. Moreover, they described the minimal and maximal elements in (T (X), 6).
Next, in 2003, Marques-Smith and Sullivan [5] studied the natural partial order (1.2)
on P(X), and then generalised the results of Kowol and Mitsch [4]. Furthermore, they
characterised the left and the right compatible elements in (P(X), 6) and (T (X), 6) and
determined the minimal and maximal elements in (P(X), 6).

Throughout, all maps act on the right-hand side of the argument, and α−1 stands
for the inverse relation of α, where α ∈ P(X). For a nonempty subset A of X, we let 0
and 1A be the empty transformation and the identity map on A, respectively. Both are
contained in P(X) where 0 is the zero element and 1X the identity element.

Let α ∈ T (X) and let x ∈ X. Then α is said to be one-to-one at x if |(xα)α−1| = 1.
From [8], if {x ∈ X : α is not one-to-one at x} is finite, then α is called an almost one-
to-one transformation on X. We denote by AM(X) the set of almost one-to-one
transformations on X, that is,

AM(X) = {α ∈ T (X) : {x ∈ X : α is not one-to-one at x} is finite}.

For convenience, we let K(α) = {x ∈ ran α : |xα−1| > 1} and
⋃

x∈K(α) xα−1 = {x ∈ X :
α is not one-to-one at x}. Then

AM(X) =

{
α ∈ T (X) :

⋃
x∈K(α)

xα−1 is finite
}
.
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Note that for each α ∈ T (X), α ∈ AM(X) if and only if K(α) and xα−1 are finite sets for
every x in K(α). Let

AE(X) = {α ∈ T (X) : X \ ran α is finite}.

Each element of AE(X) is called an almost onto transformation on X. From [8], AM(X)
and AE(X) are subsemigroups of T (X) with the identity 1X . It is easy to see that if X
is finite, then AM(X) = T (X) = AE(X). As the natural partial order on T (X) has been
thoroughly studied, in this paper we suppose X is an infinite set if we do not specify
otherwise. In this case, it was shown in [3] that AM(X) and AE(X) are not regular
subsemigroups of T (X). Therefore, by [2, Theorem 2.5], the natural partial order
(1.2) on these semigroups cannot be reproduced from T (X). Throughout this paper, 6
denotes the natural partial order (1.2).

For convenience, let Ai and B j be disjoint nonempty subsets of X and xi, y j ∈ X for
all i ∈ I, j ∈ J, where I and J are index sets. Define

α =

(
Ai B j

xi y j

)
i∈I, j∈J

,

which means α ∈ P(X) such that

xα =

xi if x ∈ Ai,

y j if x ∈ B j.

In particular, we let (
Ai b
xi y

)
i∈I

=

(
Ai {b}
xi y

)
i∈I

,

where b ∈ X \
⋃

i∈I Ai and y ∈ X. Without loss of generality, more mapping symbols in
this article can be easily applied.

The following remark and some known results on the natural partial order will be
used.

R 1.1. Let S be a semigroup.

(i) If S contains the zero 0, then 0 is the minimum.
(ii) If S contains the identity 1 and s ∈ S , then:

(a) s 6 1 if and only if s is an idempotent;
(b) 1 is a maximal element.

(iii) For any subsemigroup T of S and a, b ∈ T , a 6 b on T implies a 6 b on S .

T 1.2 [5]. For α, β ∈ T (X), α 6 β on T (X) if and only if the following
conditions hold:

(i) ran α ⊆ ran β;
(ii) αβ−1 ⊆ αα−1;
(iii) ββ−1 ⊆ αα−1.
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T 1.3 [5]. Suppose γ ∈ T (X) and |X| ≥ 3. Then:

(i) γ is left compatible on (T (X), 6) if and only if γ is onto;
(ii) γ is right compatible on (T (X), 6) if and only if γ is one-to-one or constant.

T 1.4 [4]. Let α ∈ T (X). Then:

(i) α is a minimal element in (T (X), 6) if and only if α is a constant map;
(ii) α is a maximal element in (T (X), 6) if and only if α is a one-to-one or onto map.

The next proposition was extracted from the proof of [5, Theorem 2].

P 1.5. Let α, β ∈ T (X) be such that ran α ⊆ ran β. Then the following
assertions hold.

(i) α =
(

Ai
xi

)
i∈I

and β =
(

Bi C j
xi y j

)
i∈I, j∈J

for some Ai, Bi,C j ⊆ X and distinct xi, y j ∈ X,

where i ∈ I and j ∈ J.
(ii) If αβ−1 ⊆ αα−1, then Bi ⊆ Ai for all i ∈ I.
(iii) If αβ−1 ⊆ αα−1 and ββ−1 ⊆ αα−1, then Ai = Bi ∪

⋃
j∈Ji

C j, where Ji = { j ∈ J :
Ai ∩C j , ∅} and i ∈ I.

In this paper, we give necessary and sufficient conditions for two elements in
AM(X) and AE(X) to be related under the natural partial order (1.2). The left and
right compatible elements and the minimal and maximal elements in these posets are
characterised.

2. The natural partial order

For any α, β ∈ AM(X), it is clear that α 6 β on AM(X) implies α 6 β on T (X). In
this section we show that the converse is also true.

E 2.1. Since X is an infinite set, there are disjoint sets A, B ( X such that
|X| = |A| = |B| and X = A ∪ B. Choose distinct elements a, b ∈ B. It is clear that
|X \ {a, b}| = |A|. Let φ be a bijection from X \ {a, b} onto A and define α, β ∈ AM(X)
by

α =

(
{a, b} x

a xφ

)
x∈X\{a,b}

and β =

(
a b x
b a xφ

)
x∈X\{a,b}

.

Clearly, ran α ⊆ ran β. Then we will show that α 6 β on T (X). We have that

αβ−1 = {(a, b)} ∪ 1X\{a},

αα−1 = {(a, b), (b, a)} ∪ 1X ,

ββ−1 = 1X .

So αβ−1 ⊆ αα−1 and ββ−1 ⊆ αα−1. By Theorem 1.2, we have α 6 β on T (X). Following
the proof of Theorem 1.2, one will get λ ∈ T (X) and µ ∈ T (X) \ AM(X) such that
α = λβ = βµ and α = αµ. This does not allow us to conclude that α 6 β on AM(X).
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Due to this example, it is worth studying the natural partial order on AM(X).
In Theorem 2.3 we provide necessary and sufficient conditions for two elements in
AM(X) to be related. We start with a lemma.

L 2.2. Let α, β ∈ AM(X) be defined by

α =

(
Ai

xi

)
i∈I

and β =

(
Bi C j

xi y j

)
i∈I, j∈J

for some Ai, Bi,C j ⊆ X and distinct xi, y j ∈ X, where i ∈ I and j ∈ J. Assume that
αβ−1 ⊆ αα−1, ββ−1 ⊆ αα−1 and let

µ =

(
Aiβ a
xi a

)
i∈I, a∈A

,

where A = X \
⋃

i∈I Aiβ. Then the following hold:

(i) for each i ∈ I, xi < A;
(ii) for each i ∈ I, xiµ

−1 ∩ A = ∅;
(iii) µ ∈ T (X);
(iv) K(µ) = {xi : |xiµ

−1| > 1} is a finite set;
(v) for each x ∈ K(µ), xµ−1 is a finite set.

Moreover, µ ∈ AM(X).

P. (i) By Proposition 1.5(ii), xi ∈ Biβ ⊆ Aiβ, so xi < A for all i ∈ I.
(ii) If there is i ∈ I and b ∈ xiµ

−1 ∩ A, then xi = bµ = b ∈ A, which contradicts (i).
(iii) This follows from (i), (ii) and Proposition 1.5(iii).
(iv) By (ii),

{i ∈ I : |xiµ
−1| > 1} = {i ∈ I : |Aiβ| > 1}

⊆ {i ∈ I : |Ai| > 1},

which is a finite set, since α ∈ AM(X). Also, K(µ) is finite.
(v) Let x ∈ K(µ). Then xµ−1 = Aiβ for some i ∈ I. Thus |xµ−1| = |Aiβ| 6 |Ai| = |xiα

−1|

is finite, since α ∈ AM(X). �

Now we are ready to give the first main result.

T 2.3. For α, β ∈ AM(X), α 6 β on AM(X) if and only if the following
conditions hold:

(i) ran α ⊆ ran β;
(ii) αβ−1 ⊆ αα−1;
(iii) ββ−1 ⊆ αα−1.

P. Let α, β ∈ AM(X). The necessity follows from Remark 1.1(iii) and
Theorem 1.2.
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To see the sufficiency, we suppose that the three conditions (i)–(iii) hold. Since
ran α ⊆ ran β,

α =

(
Ai

xi

)
i∈I

and β =

(
Bi C j

xi y j

)
i∈I, j∈J

for some Ai, Bi,C j ⊆ X and distinct elements xi, y j ∈ X, with i ∈ I and j ∈ J. For each
i ∈ I, choose bi ∈ Bi and let

λ =

(
Ai

bi

)
i∈I

.

Recall that K(α) = {xi : |xiα
−1| > 1} and K(λ) = {bi : |biλ

−1| > 1}. Since α ∈ AM(X) and⋃
bi∈K(λ) biλ

−1 =
⋃

xi∈K(α) xiα
−1, we have λ ∈ AM(X). Consequently,

α = λβ.

By Proposition 1.5(ii), we have ∅ , Biβ ⊆ Aiβ for all i ∈ I. Let A = X \
⋃

i∈I Aiβ and
define

µ =

(
Aiβ a
xi a

)
i∈I, a∈A

.

By Lemma 2.2, we get µ ∈ AM(X). Let x ∈ X. Then x ∈ Ai for some i ∈ I, so
xα = xi = xβµ and xα = xi = xiµ = xαµ, since xi ∈ Biβ ⊆ Aiβ. Therefore,

α = βµ and α = αµ,

which implies that α 6 β on AM(X). �

Recall α, β ∈ AM(X) in Example 2.1, where

α =

(
{a, b} x

a xφ

)
x∈X\{a,b}

and β =

(
a b x
b a xφ

)
x∈X\{a,b}

.

Since ran α ⊆ ran β, αβ−1 ⊆ αα−1 and ββ−1 ⊆ αα−1, by Theorem 2.3, α 6 β on AM(X).
The following corollary is obtained from Theorems 1.2 and 2.3. This result

confirms that the converse of [2, Theorem 2.5] is not true.

C 2.4. Let α, β ∈ AM(X). Then the following are equivalent:

(i) α 6 β on AM(X);
(ii) α 6 β on T (X);
(iii) α 6 β on P(X).

As we have seen above, AM(X) inherits the natural partial order from T (X).
However, this is not the case for AE(X). Furthermore, in the main theorem we give
necessary and sufficient conditions for two elements in AE(X) to be related under the
natural partial order.
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E 2.5. Since X is an infinite set, there are disjoint subsets A, B ( X such that
|X| = |A| = |B| and X = A ∪ B. Choose d ∈ A and e ∈ B. It is clear that |A| = |X \ {d, e}|.
Let φ be a bijection from A onto X \ {d, e}, and define α, β ∈ AE(X) by

α =

(
a B

aφ d

)
a∈A

and β =

(
a e B \ {e}

aφ d e

)
a∈A

.

Clearly, ran α ⊆ ran β. Then we will show that α 6 β on T (X). Since

αβ−1 = 1A ∪ (B × {e}),

αα−1 = 1A ∪ (B × B),

ββ−1 = 1A∪{e} ∪ (B \ {e} × B \ {e}),

we get that αβ−1 ⊆ αα−1 and ββ−1 ⊆ αα−1. By Theorem 1.2, we have α 6 β on T (X).
We show that α 
 β on AE(X). Suppose on the contrary that α 6 β on AE(X). Then
there exists λ ∈ AE(X) such that α = λβ. Let x ∈ X.

Case 1: x ∈ A. Then xφ = xα = xλβ. Therefore, xλ = x.

Case 2: x ∈ B. Then d = xα = xλβ. Therefore, xλ = e.

Hence we can write

α =

(
a B
a e

)
a∈A

.

Then X \ ran λ = B \ {e}, which is an infinite set and this contradicts the fact that λ is
in AE(X).

T 2.6. For α, β ∈ AE(X), α 6 β on AE(X) if and only if the following conditions
hold:

(i) ran α ⊆ ran β;
(ii) αβ−1 ⊆ αα−1;
(iii) ββ−1 ⊆ αα−1;
(iv) (ran β \ ran α)β−1 is a finite set.

P. Let α, β ∈ AE(X). Assume that α 6 β on AE(X). By Remark 1.1(iii) and
Theorem 1.2, we get (i)–(iii). Since ran α ⊆ ran β,

α =

(
Ai

xi

)
i∈I

and β =

(
Bi C j

xi y j

)
i∈I, j∈J

(2.1)

for some Ai, Bi,C j ⊆ X and distinct elements xi, y j ∈ X, where i ∈ I and j ∈ J. It
is easy to see that (ran β \ ran α)β−1 =

⋃
j∈J C j. We claim that (ran β \ ran α)β−1 is

finite by showing that J and C j are finite sets for all j ∈ J. Since {y j : j ∈ J} =
ran β \ ran α ⊆ X \ ran α and α ∈ AE(X), J is finite. By assumption, α = λβ for some
λ ∈ AE(X). Let j ∈ J. If there is c ∈C j ∩ ran λ, then xλ = c for some x ∈ X, which
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implies xα = xλβ = cβ = y j, which is a contradiction. Then C j ⊆ X \ ran λ, and
therefore C j is finite.

Conversely, (i) implies that α and β satisfy (2.1), and therefore, by
Proposition 1.5(iii), Ai = Bi ∪

⋃
j∈Ji

C j, with Ji = { j ∈ J : Ai ∩C j , ∅} and i ∈ I. For
each i ∈ I, we choose bi ∈ Bi and define λ ∈ T (X) by

λ =

(
x

⋃
j∈Ji

C j

x bi

)
x∈Bi, i∈I

.

Since ran λ =
⋃

i∈I Bi, X \ ran λ =
⋃

j∈J C j = (ran β \ ran α)β−1 is finite. Thus λ ∈
AE(X). Let x ∈ X. Then x ∈ Ai for some i ∈ I.

Case 1: x ∈ Bi. Then xα = xi = xβ = xλβ.

Case 2: x ∈C j for some j ∈ Ji. Then xα = xi = biβ = xλβ.

Thus
α = λβ.

Next, let A = X \
⋃

i∈I Aiβ and let d ∈ ran α. Define

µ =

(
Aiβ A
xi d

)
i∈I

.

By Proposition 1.5(iii), µ is well defined. Since α ∈ AE(X) and ran α = ran µ, we have
µ ∈ AE(X). Let x ∈ X. Then x ∈ Ai for some i ∈ I, so xα = xi = xβµ and xα = xi = xiµ =

xαµ, since xi ∈ Biβ ⊆ Aiβ. Therefore,

α = βµ and α = αµ.

Hence α 6 β on AE(X). �

By Theorems 1.2 and 2.6, we have the following corollary.

C 2.7. Let α, β ∈ AE(X). Then the following assertions are equivalent.

(i) α 6 β on AE(X).
(ii) α 6 β on T (X) and (ran β \ ran α)β−1 is finite.
(iii) α 6 β on P(X) and (ran β \ ran α)β−1 is finite.

As a consequence, we have the following proposition.

P 2.8. The following assertions are equivalent.

(i) X is finite.
(ii) For α, β ∈ AE(X), α 6 β on T (X) if and only if α 6 β on AE(X).
(iii) For α, β ∈ AE(X), α 6 β on P(X) if and only if α 6 β on AE(X).

P. See Corollary 2.7 and Example 2.5. �
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Let S (X) be either AM(X) or AE(X). Then we show that the natural partial order
on S (X) is not the identity relation on S (X).

E 2.9. Let a and b be distinct elements in X. Define α, β ∈ AM(X) ∩ AE(X) by

α =

(
{a, b} x

a x

)
x∈X\{a,b}

and β =

(
a b x
b a x

)
x∈X\{a,b}

.

Clearly, ran α ⊆ ran β. Also,

αβ−1 = {(a, b)} ∪ 1X\{a},

αα−1 = {(a, b), (b, a)} ∪ 1X ,

ββ−1 = 1X .

So αβ−1 ⊆ αα−1 and ββ−1 ⊆ αα−1. Then, by Theorem 2.3, we have α 6 β on AM(X).
Also, we have that (ran β \ ran α)β−1 = {a} is finite. By Theorem 2.6, α 6 β on AE(X).

Hence it is valid to study the compatible elements, the minimal and maximal
elements with respect to the natural partial order on AM(X) and AE(X).

3. Elements compatible with the natural partial order

Here we characterise the left compatible and right compatible elements in
(AM(X), 6) and (AE(X), 6) when X is an infinite set.

T 3.1. Let γ ∈ AM(X). Then:

(i) γ is left compatible on (AM(X), 6) if and only if γ is onto;
(ii) γ is right compatible on (AM(X), 6) if and only if γ is one-to-one.

P. (i) Assume that γ is left compatible with 6 on AM(X). Choose y ∈ ran γ. Let
x ∈ X and define

αx =

(
y a
x a

)
a∈X\{y}

.

Then αx is an idempotent in AM(X). By Remark 1.1(ii), we have αx 6 1X on
AM(X). Since γ is left compatible, γαx 6 γ on AM(X). By Theorem 2.3(i), we have
x ∈ ran γαx ⊆ ran γ. Since x is arbitrary, γ is onto.

The converse follows from Theorem 1.3(i) and Corollary 2.4.
(ii) Suppose that γ is right compatible with 6 on AM(X) but not one-to-one. Then

there are distinct elements a, b ∈ X such that aγ = bγ. Let c ∈ X \ {a, b}. We define
α ∈ AM(X) by letting

α =

(
a x
c x

)
x∈X\{a}

.

Clearly, α is an idempotent, and by Remark 1.1(ii) we have α 6 1X on AM(X). Since γ
is right compatible, αγ 6 γ on AM(X). By Theorem 2.3(iii), γγ−1 ⊆ αγ(αγ)−1. We also
have (a, b) ∈ γγ−1 ⊆ αγ(αγ)−1, as aγ = bγ. Then there exists z ∈ X such that (a, z) ∈ αγ
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and (z, b) ∈ (αγ)−1. So cγ = aαγ = z = bαγ = bγ. Since c is arbitrary, γ is a constant
map, which is a contradiction.

For the sufficiency, see Theorem 1.3(ii) and Corollary 2.4. �

Furthermore, by Theorems 1.3 and 3.1, we have the following corollaries.

C 3.2. The elements of AM(X) that are left and right compatible with 6 are
the permutations of X.

C 3.3. For γ ∈ AM(X), γ is left (respectively, right) compatible on
(AM(X), 6) if and only if γ is left (respectively, right) compatible on (T (X), 6).

T 3.4. Let γ ∈ AE(X). Then:

(i) γ is left compatible on (AE(X), 6) if and only if γ is onto and xγ−1 is a finite set
for all x ∈ X;

(ii) γ is right compatible on (AE(X), 6) if and only if γ is one-to-one.

P. (i) Assume that γ is left compatible with 6 on AE(X). Then, according to the
proof of Theorem 3.1(i), γ is onto. Let x ∈ X. Then choose y ∈ X \ {x} and define an
idempotent β in AE(X) by

β =

(
x a
y a

)
a∈X\{x}

.

By Remark 1.1(ii), we have β 6 1X on AE(X). Since γ is left compatible, γβ 6 γ on
AE(X). A surjection γ and Theorem 2.6 imply that xγ−1 = (ran γ \ ran γβ)γ−1 is finite.

Conversely, suppose that γ is onto and xγ−1 is finite for all x ∈ X. From
Theorem 1.3(i), we have that γ is left compatible with 6 on T (X). Let α 6 β
on AE(X). Remark 1.1(iii), Theorem 1.3(i) and Theorem 2.6 imply that α 6 β
and γα 6 γβ on T (X) and (ran β \ ran α)β−1 is finite, respectively. By assumption,
(ran γβ \ ran γα)(γβ)−1 = (ran β \ ran α)(γβ)−1 = (ran β \ ran α)β−1γ−1 is finite. Then,
by Corollary 2.7, γα 6 γβ on AE(X). Hence γ is left compatible with 6 on AE(X).

(ii) The necessity is obtained from the proof of Theorem 3.1(ii).
For the sufficiency, suppose that γ is one-to-one. Let α, β ∈ AE(X) be such that

α 6 β on AE(X). By Corollary 2.7, α 6 β on T (X) and (ran β \ ran α)β−1 is finite. From
Theorem 1.3(ii), it follows that αγ 6 βγ on T (X). We claim that αγ 6 βγ on AE(X).
By Corollary 2.7, it suffices to show that (ran βγ \ ran αγ)(βγ)−1 is finite. Consider

(ran βγ \ ran αγ)(βγ)−1 = (ran βγ \ ran αγ)γ−1β−1

= (ran β \ ran α)γγ−1β−1 (since γ is one-to-one)

= (ran β \ ran α)β−1.

Since (ran β \ ran α)β−1 is a finite set, we have the claim. Therefore, γ is right
compatible on (AE(X), 6). �
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C 3.5. For γ ∈ AE(X), the following assertions hold:

(i) γ is left compatible on (AE(X), 6) if and only if γ is left compatible on (T (X), 6)
and xγ−1 is finite for all x ∈ X;

(ii) γ is right compatible on (AE(X), 6) if and only if γ is right compatible on
(T (X), 6).

Next, we will show that the left elements compatible with 6 on AE(X) and T (X)
are different. Choose A, B to be disjoint subsets of X such that |A| = |B| = |X| and
A ∪ B = X. Let a ∈ A and b ∈ B. Recall α, β ∈ AE(X) with α 6 β on AE(X) from
Example 2.9. That is,

α =

(
{a, b} x

a x

)
x∈X\{a,b}

, β =

(
a b x
b a x

)
x∈X\{a,b}

.

Let φ be a bijection from B \ {b} onto X \ {a, b}. Define a surjection

γ =

(
A b x
a b xφ

)
x∈B\{b}

.

By Theorem 1.3(i), we have that γ is left compatible on T (X). Consider

γα =

(
A ∪ {b} x

a xφ

)
x∈B\{b}

and γβ =

(
A b x
b a xφ

)
x∈B\{b}

.

Then (ran γβ \ ran γα)(γβ)−1 = A is infinite. Also, by Theorem 2.6, we have γα 
 γβ
on AE(X). Hence γ is not left compatible with 6 on AE(X).

Then the cardinality of X and the left compatibility are related as follows.

C 3.6. The following assertions are equivalent.

(i) X is a finite set.
(ii) For γ ∈ AE(X), γ is left compatible on (AE(X), 6) if and only if γ is left

compatible on (T (X), 6).

4. Minimal and maximal elements

In [4], the authors characterised the minimal and maximal elements in (T (X), 6).
As stated before, if X is finite, T (X), AM(X) and AE(X) are the same semigroup. Then,
throughout this section, we assume that X is an infinite set, and we will characterise
the minimal and maximal elements in (AM(X), 6) and (AE(X), 6).

T 4.1. Let α ∈ AM(X). Then:

(i) AM(X) has no minimal elements;
(ii) α is a maximal element in (AM(X), 6) if and only if α is one-to-one or onto.
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P. (i) Since X is an infinite set, α is not a constant map. Then there exist distinct
elements a, b ∈ ran α. Since α ∈ AM(X), aα−1 ∪ bα−1 is finite and β ∈ AM(X), where

β =

(
aα−1 ∪ bα−1 x

a xα

)
x∈X\(aα−1∪bα−1)

.

We claim that β 6 α on AM(X). Clearly, ran β ⊆ ran α. Since α−1
|ran β ⊆ β

−1, we have
βα−1 ⊆ ββ−1. Let (x, y) ∈ αα−1. Then (x, z) ∈ α and (z, y) ∈ α−1 for some z ∈ X.

Case 1: x ∈ aα−1 ∪ bα−1. Then z = xα ∈ {a, b} and (x, a) ∈ β. Since y ∈ zα−1, we have
(a, y) ∈ β−1.

Case 2: x < aα−1 ∪ bα−1. Then xβ = xα = z = yα = yβ, so (x, xα) ∈ β and we have
(xα, y) ∈ β−1.

In either case, αα−1 ⊆ ββ−1. Thus β 6 α on AM(X) and β , α.
(ii) Suppose α is neither one-to-one nor onto. Then there exists d ∈ X \ ran α and

there are distinct elements a, b ∈ X such that aα = bα. Let β ∈ AM(X) be such that

β =

(
b x
d xα

)
x∈X\{b}

.

Clearly, α , β. Theorem 1.2 shows that α 6 β on T (X). By Corollary 2.4, we have
α 6 β on AM(X), which implies that α is not a maximal element in (AM(X), 6).

The converse follows immediately from Theorem 1.4(ii). �

The next corollary follows directly from Theorems 1.4 and 4.1.

C 4.2. For α ∈ AM(X), α is a minimal (respectively, maximal) element in
(AM(X), 6) if and only if α is a minimal (respectively, maximal) element in (T (X), 6).

T 4.3. Let α ∈ AE(X). Then:

(i) α is a minimal element in (AE(X), 6) if and only if xα−1 is an infinite set for all
x ∈ ran α;

(ii) α is a maximal element in (AE(X), 6) if and only if α is one-to-one or onto.

P. (i) Suppose there exists b ∈ ran α such that bα−1 is finite. Since X is an infinite
set and X \ ran α is finite, we can choose a ∈ ran α \ {b}. Define

β =

(
aα−1 ∪ bα−1 x

a xα

)
x∈X\(aα−1∪bα−1)

.

Since α ∈ AE(X), X \ ran β = (X \ ran α) ∪ {b} is finite, which implies that β ∈ AE(X).
By the proof of Theorem 4.1(i), ran β ⊆ ran α, βα−1 ⊆ ββ−1 and αα−1 ⊆ ββ−1. We know
that (ran α \ ran β)α−1 = bα−1 is finite. Thus β 6 α on AE(X) and β , α.

Conversely, suppose xα−1 is infinite for all x ∈ ran α. Assume that there is β ∈
AE(X) such that β 6 α on AE(X). We claim that ran β = ran α. By Theorem 2.6(i),
ran β ⊆ ran α. Suppose that there is b ∈ ran α \ ran β. By Theorem 2.6(iv), bα−1 ⊆

(ran α \ ran β)α−1, which is a finite set. This is a contradiction. Then ran β = ran α.
Let x ∈ X. Since ran α = ran β, there is a ∈ X such that aβ = xα. By Theorem 2.6(ii),
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we have (a, x) ∈ βα−1 ⊆ ββ−1. Then xβ = aβ = xα. Therefore, α = β. Hence α is a
minimal element with respect to 6.

(ii) Suppose that α is neither one-to-one nor onto. By the proof of Theorem 4.1(ii),
we have β ∈ AE(X) \ {α} such that α 6 β on AM(X). It follows from Corollary 2.4 that
α 6 β on T (X). Then

β =

(
b x
d xα

)
x∈X\{b}

,

where a and b are distinct elements such that aα = bα and d < ran α. Consider
(ran β \ ran α)β−1 = dβ−1 = {b}. By Corollary 2.7, α 6 β on AE(X). Hence α is not
maximal in (AE(X), 6).

The converse follows directly from Theorem 1.4(ii). �

We will show that (AE(X), 6) certainly has a minimal element if X is infinite.

E 4.4. Since X is an infinite set, |X| = |X × X|. Let φ be a bijection from X onto
X × X. Observe that:

(i)
⋃

x∈X({x} × X)φ−1 = X;
(ii) ({x} × X)φ−1 ∩ ({y} × X)φ−1 = ∅ for distinct elements x and y in X, since φ is one-

to-one.

Define α ∈ AE(X) by

α =

(
({x} × X)φ−1

x

)
x∈X

.

Since {x} × X is infinite and φ is a bijection, xα−1 = ({x} × X)φ−1 is an infinite set for
all x ∈ X. Then α is a minimal element in (AE(X), 6).

The following two corollaries are obtained from Theorems 1.4 and 4.3.

C 4.5. The following assertions are equivalent.

(i) X is a finite set.
(ii) For α ∈ AE(X), α is a minimal element in (AE(X), 6) if and only if α is a minimal

element in (T (X), 6).

C 4.6. For α ∈ AE(X), α is a maximal element in (AE(X), 6) if and only if α
is a maximal element in (T (X), 6).
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