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Abstract. The purpose of this note is to prove a conjecture of D. Sullivant that
when the Julia set J of a rational function f is hyperbolic, the Hausdorff dimension
of J depends real analytically on f. We shall obtain this as corollary of a general
result on repellers of real analytic maps (see corollary 5).

Let M be a real analytic manifold of finite dimension N, J a compact subset of
M, and V an open neighbourhood of J in M. We say that J is a (mixing) repeller
for the real analytic map f: V » M if the following conditions are satisfied

(a) there exist C >0, a >1 such that

(Tl = Ca "] (1)
forallxel, ue T,M, n =1 (and some Riemann metric on TM),
(b J={xe V: f'xeVforall n >0},
(c) fis topologically mixing on J, i.e. for every non-empty open set O intersecting
J there is an n >0 such that f"O > J.

From (b) and (c) it follows that fJ =J. Our results would extend easily to the
case where J is topologically + transitive instead of topologically mixing (see [12]).

1. PROPOSITION. Let J be a mixing repeller for the real analytic map f: VM, and
let ¢ : V>R be a real analytic function. Then the series

n n-1

[wy=exp T = T expk§0¢(f"x)

n=1 N xeFixf"
has non-vanishing convergence radius and extends to a meromorphic function of u,
again noted {(u). This function has a simple pole at exp P(¢)>0, and every other
zero or pole of ¢ has modulus >exp P(¢). The function ¢ — P(¢) is convex. There
is a unique Radon measure p on J such that

P(¢ +¢)—-P(@)=p(¥) ()

for all ¢, and p is an f-invariant probability measure (Gibbs measure).

To see this, onc observes that expanding maps have Markov partitions.t Markov
partitions permit a study of the periodic points of f. Assuming only that ¢ is Holder

t Formulated at the conference on dynamical systems in Rio de Janeiro, 1981, see {15].

¥ Markov partitions have been introduced by Sinai {13] for Anosov diffeomorphisms. Their existence
for expanding maps is implicit in Bowen [1]. For an explicit discussion see Ruelle [12). One may
choosc an ‘adapted’ metric on Af such that C =1 in (1). Characterizations of expanding maps as
needed for the existence of Markov partitions are analysed in [5).

https://doi.org/10.1017/50143385700009603 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700009603

100 D. Ruelle

continuous one shows, by methods of statistical mechanics, that { extends to a
circle of radius >exp P in which it has no zero and only a simple pole at exp P.}
One obtains then p satisfying (2) for all Holder continuous functions ¢, ¢ :J > R.

The real analyticity of f and ¢ is needed to prove the meromorphy of ¢ in C.
Using the Markov partition and complex extensions of f and ¢, one expresses ¢
in the terms of Fredholm determinants in the form

N k+1
{(u)= T [det (1~ ug )"

where the %, have continuous kernels on compact sets, depending analytically on
f and ¢ (see Ruelle [11, theorem 1], the application considered here is much the
same as that of theorem 2 of [11]; the Fredholm theory used is based on Grothen-
dieck [6]). In particular, if f and ¢ depend analytically on parameters, then ¢ will
depend analytically on the same parameters. We now formulate this result more

precisely.

2. ProrosrTioN. With the notation of proposition 1, let f and ¢ (now noted f,, ¢»)
depend on a parameter A € U < R™ such that (A, x)~fix, ¢(x) are analytic, and f,
has a repeller J, depending continuously on A. We may take U open by Q stability.
Under these conditions ¢ =d1/d, where dq, d, are entire holomorphic in u and real

analytic in A € U.

3. COROLLARY. The function A~ P is real analytic and A - p is real analytic in the
sense that A — p () is analytic for real analytic Y : VR, If ¢, <0 on J, the function
A —>tis analytic, where t is defined by P(t¢,) =0.

The analyticity of A= e (and thus A — P) results from the implicit function theorem
applied to the function (A, u)—1/{. We consider now two applications of the
analyticity of A+~ P, where A is replaced by (f,A), t€R.

If ¢:V >R is real analytic, we see that (¢, A)—>P(¢, +t¢) is real analytic, and
therefore also

A »—»(—;’;P(@ )0 =p ().

This proves the real analyticity of A = p as announced.
Similarly (¢, A)— P(t¢,) is real analytic. We also have the variational principlett

P(t,) = max {h (o) + to (¢, ) : o invariant probability measure}

where h is the measure-theoretic entropy. Therefore if ¢, <0 on 7, the function
t+—> P(1¢,) has derivative <0 and goes from positive to negative values.tt Its unique
zero is a real analytic function of A by the implicit function theorem.

t See Ruelle [10] or [12], Mayer [8). For related {-functions see Chen & Manning [4).

$ One could also deduce this from the fact that the periodic points of f depend analytically on the
parameters, and that one has control over their positions when the parameters become complex (scc
lemma 1 in [11]). Thercfore the coefficients of { depend holomorphically on the parameters, and the
same is true of {.

tt In its general form, this is duc to Walters [16), see also Misiurcwicz [9], Bowen [1), Ruclle (12}

33 The existence of the Markov partition gives an explicit upper bound on h.
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4. PROPOSITION. Let J be a repeller for a map f:V—>M. We assume that f is
conformal with respect to some continuous Riemann metric, and of class C'™* (e >0).
If we write

¢ (x) =—log || Tf (x)
the Hausdorff dimension t of J is defined by Bowen's formula P(t¢) = 0. Furthermore

the t-Hausdorff measure v on J is equivalent to the Gibbs measure p corresponding
10 to.

In the formulation of this proposition we have allowed f to be C'** rather than
real analytic as in our earlier definitions. Apart from this, the proposition is due
to Bowen [2] (who worked with groups of fractional linear transformations of the
Riemann sphere). For the convenience of the reader, appendix 1 reproduces a
proof of proposition 4. See Sullivan [15] for an analogous determination of t.
Actually the results of Bowen and Sullivan allow the map f to be discontinuous,
as we shall indicate below.

5. COROLLARY. Let J, be a repeller for a real analytic conformal map f,, depending
real analytically on X. (Thus (A, x)— fix is real analytic U X V— M and the linear
maps Df, are of the form :scalar X isometry.) Then the Hausdorff dimension of J,
is a real analytic function of A.

This follows from proposition 4 and corollary 3.

6. COROLLARY. If the Julia set J of a rational function f is hyperbolic, the Hausdorff
dimension of J depends real analytically on f.

We let f=P/Q where P, Q are polynomials of fixed degrees, so that f can be
parametrized by a family of coefficients varying over R™. Hyperbolicity means that
condition (a) in the definition of a repeller is satisfied. Conditions (#) and (c) in
the definition of a repeller are satisfied for general Julia sets (see Brolin [3, theorems
4.2 and 4.3]). It follows therefore that the Hausdorff dimension of J depends
analytically on f.

The polynomial map z >z 9, with g =2, has the unit circle

{zeC:|z|=1}
as hyperbolic Julia set. Corollary 6 applies therefore to the maps

z>z942A

for small complex A. A formal calculation (see appendix 2) gives

2
t=1 +-|-é—|—-+highcr order terms in A.
4logq
The case q =2 has been particularly studied (see Brolin [3] and references quoted
there, and Mandelbrot [7] which also contains beautiful pictures of the correspond-
ing J,). A computer calculation of ¢ as a function of A (real) for z—>z?+A was
performed by L. Garnett (unpublished) and prompted Sullivan’s conjecture that
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A —t is analytic.t Sullivan {15] proved that ¢t >1 when A # 0 (and |A| is sufficiently
small).

7. Generalization

As mentioned above, Bowen originally established the formula P(t¢$) =0 for the
Hausdorff dimension of a repeller J in the context of groups of fractional linear
transformations of the Riemann sphere. (The Hausdorff dimension results were
extended by Sullivan to more general groups of conformal maps [14].) In Bowen's
study, J is the quasi-circle associated with a quasi-Fuchsian group G, and there is
a Markov partition {S,} of J such that f is a different fractional linear transformation
on each S,, and thus discontinuous. Arguments similar to those given above show
in this case that the Hausdorff dimension of the quasi-circle depends real analytically
on G or, equivalently, on pairs of points in Teichmiiller space.

Acknowledgements. 1 am indebted to A. Manning, P. Sad, and especially D. Sullivan
for discussions which were at the origin of this paper.

Appendix 1: Proof of proposition 4
The pressure (function P) and Gibbs state p occurring in proposition 4 translate
to similar concepts for the symbolic dynamical system associated with a Markov
partition of J. A Markov partition {S,} is a finite collection of closed non-empty
subsets of J such that S, =J and int S, is dense in S, (int denotes the interior
in J). Furthermore,

() intS,nintSg=F ifa #,

(i) each fS, is a union of sets Sg.

For a study of symbolic dynamics, the reader must be referred to Bowen [2] or
Ruelle [12].

Let {S.} be a Markov partition of J into small subsets. We call K the maximum
number of Sz which intersect any S,:

K =max card {S5:S, NS # D).

Let S, be a small open neighbourhood of S, in V, for each a, such that
S.nS;=@ whenever S,nS;=d.

We assume that for all a the diameter of S, is <A, and that S, contains the
8-neighbourhood of S, (0<8 <A). If &, &,..., & is an admissible sequence of
elements of the Markov partition, i.c. f§-12¢ forj=1,...,n, we define

E€oy. -y &) =Q e,

E.(§01°'°’§n)=ﬁf-’£[.

i=0

t The results of the calculation suggest ¢ = 1+ CJA|? and are compatible with 1 = 1+]A12/(4 log 2).
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Thesets E(&o, . . . , £,) Whichintersect a given E(£5, . .., £€5)are determined success-
ively as follows:

(a) choose &, such that £, n&¥ = @,
(b) & is uniquely determined for k=n-1,...,1, 0 by

[Aro2s]a[Arove]=o.

In particular the sets E(&, ..., &) which intersect E(£5, . .., £€¥) correspond pre-
cisely to the sets E(&o, . . . , &) which intersect E(£5, , . ., £F), and there are at most
K of those. We also see that, if A has been taken sufficiently small, there are
B€(0,1) and G>0 (8 and G independent of n, £, ..., &) such that

dist (£ €*)=GB" iféeE(ty,.... L&) and £* e E(£5,..., &%)  (AD)
(use part (a) of the definition of a repeller). In particular,

diam E(£,..., £X)=GB"

Let
Ffo ----- anéﬂ'—)-E.(§0’-”’§n)
be the inverse of the restriction of f" to E(é,..., &) If x eg:,, we have, since f is
conformal,
n-1 -1
log||Fé.....eo @)= kgo og I/ (Feun.... e N =— Eo log[[f'(Fe,.....ex)M
n-=1
= kZO ¢ (Fe.....e%) (A.2)

where we have denoted the tangent map by a dash. If

E.(go”"’gﬂ)nE.(gg""UE:)¢® and xegﬂ)x*eé':
we have thus, using (A.1),
n=1 C.G*

log|Fe.....e, 0N —log IFes.... . ex G = Ce & GB" ™y <{—g° 5 =D
(A.3)
where C, is the e-Holder norm of ¢. In particular, if x* € &,, the ball of radius
e " P8|IFes.....ex (¥
centred at
Fes,....exx
is entirely contained in
E@&S, ..., &0t

t We assume here for simplicity that ¢ <0.
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The Gibbs measure p corresponding to t¢ is determined (since P(t¢) =0) by the
fact that there is a constant vy such thatt

1
|10g p(E(é'Oy ey gn))_kz t¢(F€m sy E..x)|<'y (A-4)

=

where ¥y is independent of n, E(&o, . .., &), and x € &, Using (A.2) and (A.4) we
have, for each E(&o, ..., &), the following estimate of the ¢-Hausdorff measure v:

V(E(ﬁo, U gn)) < lim z (diam E.(fO’ ey §n+p))‘

P20 Epart .. Ensp

slim T  (2A¢°|Fl.....e0, FPON
p~>00 GNOI"°£u¢p
D n+p~1
=QAe”)'lim ¥ exp X 1¢(Fe....e00, %)
p—© en#l'-cen-bp k=0

= (2AeD)'e7p (E({:Oo ceoy gn))-

This shows that » is absolutely continuous with respect to p.
On the other hand v(E(éo, . . ., &) is the infimum of

a0

Y (diam U})’

j=1
for an open cover {U;} of E(&, . ., &) when diam U; - 0. For each j take
vi€E(o, ..., &)U,
and notice that E (&, ..., &) is covered by the balls
B,, (diam U).
For each j let n; be the smallest integer such that if

yi€E(£5, ..., &541)
then
e P5||Fgs,.... 65,0 (f"*ypll = diam U (A.5)

(We may assume that diam U; is small, and therefore
n;>n, E6=E&0, ..., & =¢n
the further ¢« depend on j.) By assumption
e P8|Fis.....ex, (fMypll>diam U

Therefore, the set E(£o, . . ., &) is covered by the E(£%, ..., &%) and, using (A.5)
and (A.2) we see that

[+ o] [ o] n
121 (diam U))' = e~ 2’6" IZl exp ¢ kao S (Fet,....e50 " y1)

n,~1

© ]
=e 7" "s" ;Zx expt L ¢Fer.....enf"v)

t See Bowen [2] or Ruclle [6).
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where E is an upper bound to |¢(x)|. We recall that each E(£%, .. ., £&¥) intersects
at most K sets E(£o, . . ., &,). Redistributing the contribution of the index j among
those, and using (A.2) and (A.3) we find

n, -1

Y (diam Up))'=K"'e™P"Fs Texpt T d(Fen....ex%1)
I=1 A k=0
where the E(£5, ..., &) cover E(éo, . . ., £,). So, finally, using (A.4), we obtain
V(E(oy ..., &) =K e P Els e ™ p(E(éos . - . » &)

This shows that p is absolutely continuous with respect to v, completing the proof
of the proposition. O

Appendix 2: Hausdorff dimension of the Julia set J of the map f :z+—>z% ~p.
We shall formally show that the Hausdorff dimension of J is

p|?
4logq

t=1+ +terms of order>2 in p.

For small [p|, f has a fixed point « close to 1, so that

a+p=a? and a=1+-—£——+---.
q—1

Write y =exp 2iw/q. With £, =0, 1,...,q~1 we define
LErs s ea) =y +y 1 p+e - (pryTia) /e )M
=exp [0(81, veey 8,,)2i17+f(81, sy sn-l)]

where

Qety ..., en)=£'3+e"§1+' y '+£%,
q q q

U e en-x>+;ll-log A+p/L(ens . en)
1
r(El, s ey sn—l)+3p/{(€h s sy en)

1
r(eyye.., e,._l)-*-;]-p exp (—Q(ey,y ..., £q) " 2i7)

to first order in p. Therefore, if u =exp(—Q(ey, ..., £,)* 2i7w),

1 1 1 . 1 .., 1 1
r(e ’°"ven)zp[-ll+ ultr—=sut+-. ‘+—;ltq +—';'———-]
' q .‘? ‘13 q q q-1
[+ o] 1 qk
—quoq—gu .

Writing
&(z)=-log|f'(z)| = ~log q|z|*~*
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we have
d(L(ery...,eq))=~logqg—Re(q@—1)r(es, ..., En-1),
hence

Z ¢(C(517 sesy Gk))= —-n logq —Re (q _1) kzl "(81, ooy 8k-l)°
k=1 -
We have, to first order in p,
Re(q-1) Zl r(eq, ..., ex-1)=Re pd,(u)
k=

where

-n

1 = -
(pn(ll)‘:(1—'(1;)11'*'(1—55);(“-}-....;.(1_.(7'_',)1‘4 ‘+qq:11 .

To second order in p we have, using the induction formula,

1
Z r(eh'°-’8n)z;l- Z [r(eh'-"en—l)(l_pu)'*'pu—%pz“z

= Z r(eh-”vsn-l)
so that, for large n,

Z Z r(e,.. ,Ek—l)""‘-o(q")-

..... e, k=1

The Hausdorff dimension ¢t =1+ g of the Julia set J of z+—z7—p is determined by

L exp(+B) L ¢ . er))=0)

= 3 q‘"“ﬂn[l -Re(@-1) k}: r(ety ..., ex-1)+i(Re p(b,,(u))z]
n =]

~q™" +0(q™")pl+0@™")Ipl?
2 2
1 1
+q—n(l+ﬂ)l[ Ip| ((1——) +(1-—-{;§) +'~-+(1—q,,_ )7')+Ip'20(")].
We have used

Y (Repu™ )Repu®)=0 iflsr<ssn+l,

L2 TR 1

L Repu™ = g -(lpI’+ch’u"' '){ a"lpl’ it r<n,
! STSRANY 3 n.....t.. q ,pIZ lfl’=l: Ol’n+1,
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Thus, omitting negligible terms

2 2
0(1)=q""”(1 +M— n) =exp n(l—%l— - log q)

4
giving
lpl® pl?
=—-——+. LN = 1 + R
A 4logq or 1 4logq
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