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A SIMPLE PROOF OF JACOBI'S FOUR-SQUARE
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Abstract

A celebrated result, due to Jacobi, says that the number of representations of the positive integer n
as a sum of four squares is equal to eight times the sum of the divisors of n which are not divisible by
4. We give a new and simple proof of this result which depends only on Jacobi's triple product
identity.

1980 Mathematics subject classification (Amer. Math. Soc): 10 J 05.

1.

The following theorem, due to Jacobi, is well known (see, for example Hardy
and Wright (1960) Theorem 386).

Let r(n) denote the number of representations of the positive integer n as a
sum of four squares of integers (positive, negative or zero), with order taken into
account. Thus, for example, r(l) = 8 since

1 = (± I)2 + 02 + 02 + 02 = 02 + (± I)2 + 02 + 02

= 02 + 02 + (± l ) 2 + 02 = 02 + 02 + 02 + (± I)2.

Then

(1.1) K») = » 2 d.
d\nA\d
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62 M. D. Hirschhorn [2]

It is easily verified that (1.1) is equivalent to the ^-series identity

( 00 \4 „„/*

-00 / 4|n
 i ~ 1

My object is to give a proof of (1.2) which requires only Jacobi's triple product
identity

(1.3) II (1 + a -y - 'X l + o^- 'Kl - qln) = I a"/,
n> 1 -00

a simple proof of which can be found in Hirschhorn (1976).

2.

We start by proving the identity

II (1 + aq2"-l)(l + a -y - 'X l +
n>\

f II (1 + abq4r-2)(l + a-

(2.1) X (1 + ab'lq4"-2)(l + a " V ~ 2 )

+ (a + b + a'1 + b~l) qH (I + abq4n)

X (1 + a-'b-V){\ + ab-Y")(l + a"V")) II 0 -

Thus, (1.3) gives

II (1 + a<?2"-')(» + fl-V""')(i + V " ' ) ( i + ft-'^-'Xi - q2nf
n > 1

00

= 2 2 aVq*+*.
n = -oo r + s = n
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We now consider the two cases n = 1m, n = 1m + 1. In the first, set r = m + t,
s = m — t, and in the second, r = m + t + I, s = m — t, and the sum becomes

00 00

m,/ —-oo m,( —-oo

= £ ambmq2m2 1 a'b-'q212 + aq £ a t V + 2 " 2 a'b-'q2ll+2'
m**—oo

which by (1.3) again,

= f II (1
v n > l

4nfX n (1 - q4n

n>\

+ (a + b + a'1 + b~x)q II (l + abq4n)

X n (1 - <74")2,

as required.

3.

We now apply a straightforward but somewhat tedious limiting process to
(2.1) to derive the identity

I I O - q"f - 1 1 ( 1 + qln~lf(\ - q2n)\\
n > l n > l V

X -2 II 0 + 92")2(1 - q2")
n>\
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In (2.1), put -aq for a, -aq for b, then q for q2, and we obtain

(3.2) = ( II (1 + «V")0 + a-*q*>-2)(l + q2^)2

-2a"1 II (1 + a2?2"-1)!! + flV-'Xl + ?2")2) X II (1 -
n>1 / n>1

which, by (1.3), equals

n> 1

-2a"1

n> 1

That is,

(1 - a"1)2 H O - aq"f{\ - a'Yfil ~ q"f

(3.3) = II (1 + <72"-')2(l - q2n)l(l + a"2) + 2 f-'+V2" + «

-2 n 0 + <72")20 - qln){a~l + 2 ^ V " " 1 + «-2-1)
« > i v. n > i

If in (3.3) we set a = 1, and subtract the resulting identity from (3.3), we obtain

(1 - a"1)2 II (1 - aqnf{\ - a-V)20 - q"f
n> 1

= n (i + ^2—i)2(i - ^ )

(3.4) X f- (1 - a~2) + 2 q"1+n[{a2n - 1) - (1 - a"2""2)])

-2 II 0 + ^2")2(i - q2n)

f - ( l - O + 2 qn\(a2-1 - 1) - (1 - a"2""X
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(5) Proof of Jacobi's four-square theorem 65

If a ¥^ 1 and we divide by (1 — a"1), we obtain

(1 - a'1) H O - aq")\l - a - V f t l - q"f

= n (i + 9
2"- i)2(i - <72n)

X ( - ( 1 + 0 - ' ) + 2 ^ " [ ( a 2 " + Q 2 "- 1 + • • • + « )

(3.5) _ ( i + a - i + . .

-2 II 0 + ?2")2(1 - fl2")

- ( I + a"' + •

If in (3.5) we let a —> 1, subtract the resulting identity from (3.5), and divide by
(1 — a~l), we obtain the identity, invariant under a <-> a'1,

X I 1 + 2 ?"2+n[a2" + 2a2""1 + • • • +2na

(3-6) + (2M + 1) + 2/icr1 + • • • +O"2"] |

-2 n (1 + <?2n)20 - ?2")

x ( 2 q"2[a2"~l + 2a2"-2 + • • • + (2n - l)a

+ 2n + (2n - l )a" ' + • • • +<r2n"

If in (3.6) we let a -» 1, we obtain (3.1), as required.
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4.

It is now an easy matter to complete the proof of (1.2). We can write (3.1)

1 1 ( 1 - qnf = j II (1 + q2"'1)2^ - q2") 2 (In +
n>\ n> 1 -oo

n>\

i.no

2nf(l - q^Uq^
\ °q

2nf

q2nf(l - ^
\ °q n>\

- q2nf

„> i 1 + 9*" n>i

It follows that
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Now,

A l W + * " ) = »>i (1 - q2n) = n>l (1 - q2")

= II (1 - q2n~x)\\ - q2")
00

- 0 0

so (4.2) is

(4.3) fl(-i)V)4 = i + 8 2 T T ¥ -
Putting -q for q, we obtain

(4-4)

which is (1.2), as required.
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