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THE INTEGRABILITY OF RIEMANN SUMMABLE 
TRIGONOMETRIC SERIES 

BY 

P. S. BULLEN AND S. N. MUKHOPADHYAY 

ABSTRACT. It is shown that if a trigonometric series is (/?, 3), respec­
tively (/?, 4), summable then its (/?, 3) sum, respectively (/?, 4) sum, is 
James P3—, respectively PA—, integrable and that such series are Fourier 
series with respect to these integrals. 

1. Introduction. The problem of constructing an integral with respect to which 
the coefficients of a convergent trigonometric series can be represented in Fourier form 
has been solved in various ways. If convergence is replaced by (Cyk) summability 
or by Abel summability solutions to this problem have also been given; see [5, 7, 
10] and for a general survey see [1]. However, the problem remains open in the 
case of Riemann summable trigonometric series. Verblunsky, [11, 12], has shown that 
(/?, 3), (/?, 4), summable trigonometric series are Fourier series if their (/?, 3), (/?, 4), 
sums are equivalent to Denjoy-Perron integrable functions. The present paper improves 
these results of Verblunsky in the sense that it is shown that (/?, 3), respectively (/?, 4) 
summable trigonometric series are Fourier series with respect to the P3—, respectively 
P4—, integral of James [2, 3, 4, 7]; in particular the (/?, 3) and (/?, 4) sums of such 
series need not be Denjoy-Perron integrable. 

Suppose / is a real valued function defined in some neighbourhood of x. If there 
are real numbers a,, 1 ^ / ^ «, depending on x but not h such that 

n , i 

f(x + h) - f(x) = J2 a> ̂  + °^ <* — °>' 
i= l 

then an is called Peano derivative of / at x of order n and we write an — fn)ix). If 
there are real numbers 02r, 1 = r = m, depending on x but not on h such that 

/(»») + /(,-»)-VW _ £ fc * +o{h^ (_0)> 
r=\ 

then (32m is called the symmetric de la Vallée Poussin Derivative of / at x of order 2m 
and we write fcm = D2mfix). Similarly if there are real numbers /?2M-I> 0 ^ r ^ m, 
such that 

f(x + h)-f(x-h) A 62r+l , n(,2m+u ,. m 2 = Z . ^ + i ^ — i j j - + o(h ), (A - 0), 
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then /?2m+i is called the symmetric de la Vallée Poussin derivative of / at x of order 
2m+hp2m+l=D2m+lf(x). 

If D2mf(x) exists and if we define 

a <f JA (2 m + 2>! f(x + h) + f(x-h)-2f(x) ^ h2r
 2 J 

92m+2(f,x, h) = h2m+2 ^ — D f(x) 

then the upper and lower symmetric de la Vallée Poussin derivatives of / at x of order 
2m + 2 are defined by 

D m+ f{x) = limsup02m+2(./>,/O, 
A—»0 

D2m+2f(x) = liminf 02m+2(/,*,/O, 
/?—o 

respectively. If lim/j_+o/2#2m+2(./\*? )̂ = 0» then / is said to be (de la Vallée Poussin) 
smooth at x of order 2ra+2: see [8]. The quantities 62m+3(f,x, A), D z w +7(x), D2m+3fix) 
and smoothness of order 2m + 3 are defined analogously. 

For a given positive integer r let 

Arif;xy h) = £ ( - I ) ' Q / f* + i rh - ih\ ; 

the upper and lower symmetric Riemann derivatives of / at x of order r are defined 
to be 

*D /(*) - linkup , 

r^rrr x r • ç Ar(/,X,/Z) 

RD_rfix) = liminf , 
/i—»o hr 

respectively. If RD f(x) = RDr fix) the common value is called the symmetric Rie­
mann derivative of / at n of order r, written RDrfix). 

It can be shown that if Drfix) exists finitely then RDrfix) exists with the same 
value; see [6]. 

A function is said to be Riemann smooth, or just /^-smooth, at x of order r if 
lim/j-̂ o /j_r+1A r(/, JC, h) = 0. It can be shown if / is smooth at x of order r then it is 
/^-smooth at x of order r; see [6]. 

Consider the trigonometric series 

1 oo oo 

(1) - a0 + ̂ 2 (a" c o s nx + bn s i n ™) = ^2 c ^ ' say* 
n=\ n=0 

If for a given positive integer & the series 

1 \ -^ / , • x f sin nh\ 
(2) - a0 + > (<2„ cos nx + #„ sin nx) —-— 

2 ^—' \ nh J 

https://doi.org/10.4153/CMB-1990-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1990-045-2


1990] INTEGRABILITY 275 

is convergent for small \h\, (h^ 0), then the upper and lower limits of (2) as h —-» 0 
are called the upper and lower (/?, k) sums of (1). If these are equal then (1) is said to 
be (/?, k) summable and the common value is the (/?, k) sum of (1). It can be verified 
that if the series (1) is integrated term by term k times, and if the integrated series 
converges in some neighbourhood of x to the function <j> then Ak((f),x;h)/hk is just 
(2). Hence RD <t>(x), and RDk(j){x) are the upper and lower (R, k) sums of (1). 

A function g on [a, b] is said to be continuous in the generalized sense, or simply 
(CG), on [a, b], written g G (CG) (a, b) if [a, b] can be expressed as a countable union 
of closed sets on each of which g is continuous; equivalently every P C [a, b], P ^ </>, 
closed, contains a portion Q =]c,d[r\P ^ <j> and g \ Q is continuous. This property, 
also referred to as property R or Baire* — 1, has been used by many authors and is 
useful in the theory of trigonometric series; see [9, 11, 13]. 

The theory of the Pn-integral is rather technical and reference should be made to 
the basic papers [4, 5], as well as to [7]. It is sufficient to say this integral is defined in 
a Perron manner using major and minor functions in which the lower derivative of the 
major function is the lower symmetric de la Vallée Poussin derivative of order n, and 
the upper derivative of the minor function is the upper symmetric de la Vallée Poussin 
derivative of order n. The resulting Pn -integral will then integrate finite symmetric de 
la Vallée Poussin derivatives of order n\ more general functions can also be integrated 
see for instance [7, Theorem 5.1]. Further, certain classes of summable trigonometric 
series are Pn-Fourier series and a modified form of the classical Fourier formulae for 
the coefficients have been given; see [5, (4.5) and (4.6)] or [7, (8.4) and (8.5)]. 

2. Some Preliminary Lemmas. We shall need a few auxiliary lemmas. 

LEMMA 1. If an — o(n), bn = o(n) and the upper and lower (/?, 3), or "(/?,4), sums 
of (I) are finite at x then 

Ŷ v an c o s nx + bn sin nx 

n=\ 

converges. 

This is due to Verblunsky [11. Lemma 7; also 12]. 

LEMMA 2. Let an — o{n), bn — o(n) and put 

., x \—v an cos nx + bn sin nx 
(4) <t>(x) = ^ -4 

n = l 

IfRD <f)(xo) and RD44>(x()) are both finite then D2(f>(xo) exists and D (/>(xo) andD^(j){xo) 
are finite. 

PROOF. By Lemma 1 series (3) converges at xo and its coefficients are o(l/n); 
hence this series is (/?,2) summable at XQ [14, vol. I, p. 319 Theorem 2.4] and so 
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D <t>(xo) exists. We may suppose that xo — 0 = <t>(xo), <t>(x) = </>(—x), and (by adding 

— ̂ D2(j>(0){cosx — COS2JC} if necessary) that D 2^(0) = 0. Then the finiteness of 

RD4(f)(0) and RD_4(t)(0) imply that as x —• 0, <j>{x) = o(x2) and <f)(2x) - 4(j)(x) = 0(x4). 

Hence 

• ( * ) 
^ - 40 —r = o 2« / ^ \ 2W+1 / \ 42«+2 

or equivalently 

(5) ^{f)-4^{^)=°{^} 
Substituting n = 0 , 1 , 2 , . . . in (5) and adding gives 

-<-••(£)-t°(£> 0(0-

Since (j)(x) — o(x2) as x —• 0, we get by letting n —> oo that </>(0 = <9(Y4) and so 

D V ( 0 ) and D4</>(0) are both finite. D 

LEMMA 3. Let an — o(ri), bn — o(n) and put 

bn cos nx — an sin nx 
(6) V00 = 1 ] 

«=1 

If RD X/J(XO) and RD3IIJ(XQ) are both finite then Dl^(xo) exists and D^(xu) and 

D3/0(^o) and D^^(xo) are finite. 

PROOF. By Lemma 1 series (3) converges at XQ and so Dlip(xo) exists [14 vol. I, 

p. 322 Theorem 2.18]. We may suppose that xo = 0 = D1I/J(XO), t/>(jt) = — V>(— x) 

and so by the finiteness of RD t/>(0) we have, as x —* 0, that t/;(x) = 6>(x) and 

V^(3JC) - 3xp(x) = 0(x3). Hence 

3W / \ 3W+1 / \ 3 3 n + 3 

or equivalently 

,3 

317 / \ 3 / î + 1 / \ 32«+3 

Substituting n — 0 , 1 , 2 , . . . in (7) and adding gives 

*"*(£) "Ê*^)-\ .V ' • l I 

i=0 
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Since \/j(x) = o(x) as x —+ 0, we get by letting n —> oo that 

m = o(t3) 

and so D > (0) and D V(0) are finite. D 

LEMMA 4. //* 

oo 

(8) lim (1 — r) V^ (a„ cos «x + Z?„ sin nx) rn — 0 

then 

(9) rlim 2 

- > 1 -
n=\ 

an cos «x + bn sin «x „ 
^ A" 

• • 1 -

exists. If further (8) holds for all x then the function defined by (9) is (CG). 

This is a result of Verblunsky [13, Lemma 21] in the present notation. 

LEMMA 5. If an — o(n), bn = o{n) and (8) holds and if 4> is defined by (4) then 
D2(f){x) exists. If further <f> is R-smooth at x of order 4 then <j> is smooth at x of order 
4. 

PROOF. By Lemma 4 series (3) is A-summable at x and so since its coefficients are 
o(l/n) it converges [14 vol. I, p. 81 Theorem 1.38]. Hence (3) is (/?, 2) summable at 
x and so D2(f>(x) exists. 

As in Lemma 2 we may suppose that x = 0 = <j>(x) — D2(f)(x), and <j>(x) — </>(—x); 
since <\> is /^-smooth at 0 of order 4 <j>(x) — o(x2) and (j)(2x) — 4</>(x) = o(x3), as 
x —> 0. Proceeding as in Lemma 2 this gives 

and so as in Lemma 2 letting « —» oo we get 

<K0 = oC3), 

Which shows 0 to be smooth at 0 of order 4. • 

LEMMA 6. Under the hypotheses of Lemma 5, if ip is given by (6) then Dx\l)(x) 
exists. If further \jj is R-smooth at x of order 3 then ifr is smooth at x of order 3. 

PROOF. The proof is similar to that of Lemma 5. In fact since series (3) converges 
at x with coefficients o(l/n), Dl\jj(x) exists. The rest follows the proof of Lemma 

https://doi.org/10.4153/CMB-1990-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1990-045-2


278 P. S. BULLEN AND S. N. MUKHOPADHYAY [September 

5, replacing Lemma 2 by Lemma 3, <j> by t/> a nd with simple modifications in the 
arguments. • 

3. The Main Results. We now state and prove the main results. 

THEOREM 1. Hypotheses: an = o(n), bn — o(n), the upper and lower (#,4) sums 
of (I) are finite except on a countable set E, at all points of E (8) holds, and at all 
points of E, <j>, given by (4), is R-smooth of order 4. 

Conclusion: (1) is a P4-Fourier series. 

PROOF. Since (1) has finite upper and lower (7?,4) sums except on E, RD <j> and 
RD4(j) are finite except on E. Hence by [6, Theorem 1] <f>^ exists almost everywhere. 
If then 

fix) = </>(4)<» + - a0, if <£(4)(*) exists, 

= 0, elsewhere, 

then (1) is (/?,4) summable to / almost everywhere. 
4 . 

If x £ E then by Lemma 2 D (f>{x) and D_^>(x) are finite and so by [8. Corollary 
1] (8) holds. Hence, by hypothesis, (8) holds everywhere and so by Lemma 4, (3) is 
A-summable for all x. However the coefficients in (3) are o(l/n) and so the series 
converges. Hence, by Lemma 4, the sum of this series is (CG). 

Define G(x) to be the sum of (3) and ip(x) as in (6). Since, by hypotheses the 
coefficients in (3) are o(l/n) we have that D 1 ^ = G, [14 vol. I, p. 322 Theorem 
2.18]. Also, by [14 vol. I, p. 320 Theorem 2.8] ip is smooth and so Dlip = ^'; thus 
i// = G. By a similar argument <f>" exists everywhere and, being G, is (CG). 

Further if x G E, <\> is 7?-smooth at x of order 4 and (8) holds. Hence, by Lemma 
5, <j> is smooth at JC of order 4 if x G E. Thus <f> has the following properties: 

(i) <j> is continuous, 
(ii) </>" is (CG\ 
(iii) 0(4) exists almost everywhere, 

— 4 A 

(iv) D <j) and Z) </> are finite except on £, 
(v) <j> is smooth of order 4 at every point of E\ 

The same properties are satisfied by F + <f>, where F(x) = (l/2)aox4/4\ and so 
by [7, Theorem 5.1] D4(F + </>) is />4-integrable over (a,;x), 1 ^ / ^ 4, where 
a ^ ai S a2 = «3 = «4 ^ /?, [a, /3] being any closed interval. Moreover if 
ar ^ x < ar+i then 

rx 4 

( - l ) r / D\F + ^ / 4 r = (F + </>)(*) - V AU; a,)(F + </>)(<*,), 

where 

AU;*/) = 11 f ^ - ^ A_, V « i - <*/ 
7=1 
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Taking (ai,ai^oc^^a/C) = (—47r, —27r, 27r, 47r) and observing that D4(F + (f>) — 

(l/2)ao + <t>(4) =/» almost everywhere, we have that 

/ f(t)d4t = F(0) + # 0 ) - ^ A(0; a.OFCa,) - J T A(0; <*,•)#«,•) 

4 

= X ] ( - « i K l W ; «i, a2 ,0, cr3, or4) - V4(^(0); a i , «2,0, a3, a4)} 
/=i 

where V4(^;JCO,XI,JC2,JC3,X4) is the fourth divided difference of g at the points X(, 
0 =W =̂  4; if g is a constant the quantity is zero, while if g(x) = JC4 it is 1. Hence 

f° a0 1 4' f° 
(10) / f(t)dAt = — • — cxia2a3a4l or a0 = / 0 „ 2 o , , / /(0<*4* 

•/ta) 2 4! (2!)22J7T4 J(ai) 

We now obtain the expressions similar to (10) for an, bn, n =̂  1 and for this we 
consider the formal product of (1) with cosmjt, m a fixed positive integer. To do 
this multiply (1) by cosmjc and replace in each of the terms obtained the expressions 
sin/nc cos rat, cosmrcosrajt by sums of cosines and sines; on rearranging the terms 
we get a series 

1 oo oo 

(11) - wo + y_] (uncosnx + vn sinnx) — 2_] W,,(JC), say, 
n=\ «=0 

where u0 = am, un = l/2(an^m + an+m), vn = l/2(bn^m + bn+m), n^ 1, if we agree 
that CL-r = ar, b-r = —br. 

Since an — o(n) and bn — o(n) we also have that un = o(n) and vn = o(n). Denote 
by sn(x), respectively an(x), the partial sums, respectively the (C, 1) means, of (1) 
then sn(x) cosmx, respectively an(x) cosmx, are their partial sums, respectively (C, 1) 
means, of the series obtained by multiplying (1) by cosmx. Now let tn(x) respectively 
rn(x) be the partial sums, respectively (C, 1) means, of (11) then if n > m 

n+m 

\sn(x)cosmx - tn(x)\ =5 1/2 ^ (\at\ + \bi\) = o(n) 
i=n—m+l 

Hence 

\&n(x) cosmx — Tn(x)\ 
n+ 1 

n tt> (x) cosmx — tr{x) 
\n — r i 

r=0 

1 U 

—r y2 °^=°w-
n+ 1 *—' 

r=0 
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So the series 

(12) Yl (W»M 

— cos mxcn(x)) 

is (C, 1) summable to 0 for all x. Hence by [14 Vol. II p. 64 Theorem 2.20] the series 
is also (Rj 4) summable to 0. Since (1) has finite upper and lower (/?, 4) sums except 
on E and since 

(13) un cos nx + vn sin nx = [wn(x) — cn(x) cos mx] + [an cos nx + bn sin nx] cos mx 

it follows that (11) also has finite upper and lower (R,4) sums except in E. By the 
same argument the sum (f>(x) of the series X ^ i (w« cos nx + vn sin nx)/n4 is /^-smooth 
of order 4 at all points of E. Further, since (12) is (C, 1) summable to 0 for all x by 
[14 Vol. I, p. 80 Theorem 1.34] the series (12) is A-summable to zero for all x and so 

lim (1 — r) > (wn(x) — cn(x) cos mx)rn — 0 

for all x. Hence from (8) and (13) 

oo 

lim (1 — r) 2_] (un cosnx + vn sinnx)rn = 0, JC G E. 

Hence the hypotheses of Theorem 1 are satisfied by (11) and so from the first part 
of the proof and in particular (10), 

4\ f° 
)32V 4 , (14) u0 = ^ ^ J^ g(t)d4t 

where g is almost everywhere the (/?,4) sum of (11). Since the (/?,4) sum of (12) 
is everywhere 0 and the (/?,4) sum of (1) is almost everywhere f(x) we see that 
g(x) = f(x)cosmx almost everywhere. Since «o = tf/n> (14) gives 

(2!)W y te/ ( , ) c08Btf*r-

In a similar manner 
/•0 

)32V 4 ) 

4! r° 
" (2!)323^ J{ai) 

bm = T^K^TZI / f(0 sin mtd4t. D 

THEOREM 2. Hypotheses: an = o(l), bn — o(l), upper and lower (/?, 3) SMATW o/(l) 

are finite except on a countable set E, at all points of E (8) holds and at all points of 
Ey \j), given by (6), is R-smooth of order 3. 

Conclusion. (1) is a P3-Fourier series. 
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The proof is similar to that of Theorem 1. 

The results of this paper together with those in James [5] and Mukhopadhyay [7] 
solve the coefficient problem for (/?, £)-summable trigonometric series 1 ^ k ^ 4. The 
question of (/?, £)-summable series with k > 4 seems to be a difficult one; the basic 
results of Verblunsky [11, 12] depend critically on the particular numerical coefficients 
in Ak(f;x, h), k = 3,4, as do certain of our arguments. When k > 4 these coefficients 
no longer possess these properties and a completely new approach will be required. 
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