
JFP 18 (5& 6): 565–566, 2008. c© 2008 Cambridge University Press

doi:10.1017/S0956796808006965 First published online 8 September 2008 Printed in the United Kingdom

565

Editorial

The Eleventh ACM SIGPLAN International Conference on Functional Program-

ming (ICFP 2006) took place on September 18–20, 2006 in Portland, Oregon. ICFP

2006 provides a forum for researchers and developers to hear about the latest work

on the design, implementation, principles, and uses of functional programming. The

conference covers the entire spectrum of work, from theory to practice, and beyond.

There were 74 submissions, of which the program committee selected 24 for presen-

tation at the conference. Following the conference, the program committee selected

eight papers for which the authors were invited to submit extended versions for this

special issue of JFP. The seven papers that appear in this volume were reviewed,

revised, and accepted following standard JFP procedures. These papers cover a wide

range of topics related to functional programming, including programming, program

verification, language design, language development, program transformation, and

program analysis. This range of topics reflects the variety of the work presented at

the ICFP conference.

The special issue opens with A Pattern for Almost Compositional Functions by

Björn Bringert and Aarne Ranta. This paper addresses a problem familiar to all

functional programmers, that of folding an operation over a complex set of data

structures, where specific operations are needed at only a few kinds of data objects.

They propose a collection of operators that abstract over this kind of programming,

and consider how they may be used in both Haskell and Java. The paper concludes

with a survey of previous approaches to this problem and an analysis of the

relationship between the proposed operators and this previous work.

The second paper is Modular Development of Certified Program Verifiers with

a Proof Assistant by Adam Chlipala. This paper provides a case study in the use

of the proof assistant Coq to develop correct programming language tools, in this

case a verifier for x86 binaries. Rather than simply defining an implementation of

a verifier and proving it correct, the paper proposes a collection of modules that

transforms a verifier that takes one set of issues into account into a verifier that

takes a richer set of issues into account, such as converting from a traditional type

system to a type system that understands machine code calling conventions. These

modules should be useful in constructing other verifiers, although more modules

may be needed for more complex features, such as first-class pointers. The complete

source code is available at the JFP web site.

The third paper is Transactional Events by Kevin Donnelly and Matthew Fluet.

Concurrency is becoming increasingly important to achieve adequate performance

for many applications, and thus it is essential to find language abstractions that allow

concurrent programming in an easy and safe way. Transactions prevent unwanted

interactions between threads via shared variables, while improving the degree of

concurrency as compared to solutions such as global locking. Events are a useful

device for structuring the communication between threads. This paper proposes a

https://doi.org/10.1017/S0956796808006965 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006965


566 Editorial

combination of these features, implemented as a library for Haskell. This approach

addresses some limitations in previous approaches to concurrency in functional

languages, such as the inability to implement a three-way rendezvous. The complete

source code associated with this work is available at the JFP website.

The fourth paper is Building Language Towers with Ziggurat by David Fisher

and Olin Shivers. This paper proposes a framework based on the use of Scheme

S-expressions, Scheme macros, and objects providing lazy delegation to allow the

implementation of new programming languages as extensions of more basic ones.

The use of objects with lazy delegation allows the extensions to be very fine-grained,

possibly introducing only a few new constructs at a time. In contrast to other

macro-based approaches, in Ziggurat, analysis rules can be associated with the

new constructs, allowing the generation of understandable feedback to the user. A

number of analyses, such as termination analysis and various kinds of type checking,

are presented.

The fifth paper is Algebraic Fusion of Functions with an Accumulating Parameter

and Its Improvement by Shin-ya Katsumata and Susumu Nishimura. It is well

known that most fusion techniques, i.e., techniques to eliminate intermediate data

structures in compositions of functions, do not apply well to functions that construct

their result in an accumulating parameter. The authors present a framework for

performing fusions involving such functions, and show that some other recently

proposed solutions to this problem are instances of this framework.

The sixth paper is Exploiting Reachability and Cardinality in Higher-Order Flow

Analysis by Matthew Might and Olin Shivers. The goal of this paper is to improve

the precision of abstract interpretation, in particular of flow analysis. The authors

consider two optimizations: abstract counting, which allows them to detect the case

when only one concrete value is associated with an abstract value, and abstract

garbage collection, which allows them to remove concrete values associated with a

particular abstraction. Abstract counting provides more informative results, allowing

optimizations such as inlining, when the analysis shows that only one function

definition can flow to a given call site. Abstract garbage collection provides significant

performance improvements. The analysis is proved sound, and implementation issues

are described.

The final paper is Hoare Type Theory, Polymorphism and Separation by

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. The authors present a type

system that combines dependent types, which provide the degree of precision that

is necessary to find bugs such as array bounds violations, with Hoare logic, which

enables reasoning about imperative programs. The type system allows reasoning

about both small footprint and large footprint specifications, where the logic

describes only the relevant part of the heap or the entire heap, respectively. The

paper provides typing rules and proves their soundness.

In conclusion, I would like to thank everyone who participated in the reviewing

process, both for ICFP 2006 and for this special issue. Their timely and constructive

feedback has contributed significantly to the quality of all of the ICFP 2006 papers.

Julia Lawall

Special Issue Editor

https://doi.org/10.1017/S0956796808006965 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006965

