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1. Our aim in this paper is to extend a known theorem about the convergence 
of subsequences of the partial sums of the Fourier series in one variable of class 
L2 to Fourier series in two variables of the same class, (1, p. 396). The theorem 
asserts that for each function / in Z,2, there is a sequence {mv\ of positive 
integers of upper density one such that 

Smv\X> ', J ) 

converges to / a lmos t everywhere, where sm(x;f) denotes the mth partial sum 
of the Fourier series of/. The sequence [mv\ depends on the function / but 
not on the point x (3, p. 264). The main tools of proof used were the theorem 
of Kolmogoroff asserting the almost everywhere convergence of lacunary 
subsequences of partial sums of L2 Fourier series and the theorem of Kolmo­
goroff and Seliverstoff (3, p. 253). These same tools are available in the 
two-dimensional case (2), but they do not seem to be adequate in themselves 
to obtain an extension. 

Our method of proof is the following. First we extend the one-dimensional 
theorem so that a single sequence {mv\ of upper density one will serve for 
a given sequence {/nj of functions, each fn belonging to L2. From this we 
may generalize to the two-dimensional case by considering first iterated limits 
of partial sums. 

2. The definition of upper density for a sequence {mv\ of positive integers 
strictly increasing to °° is as follows. Let a(n) be the number of terms of the 
sequence less than or equal to n. We say the sequence is of upper density /3 
if lim sup <r(n)/n = 0. 

THEOREM 1. Let {fn) be a sequence of functions, each of class L2. Then there 
is a sequence {pv} of upper density one such that 

sPp\
x'yJn) 

converges to fn almost everywhere for each n. 

Let {Xr} and {kr} be two sequences of integers each strictly increasing to 
co and such that kr+i > 2kr and r + 1 divides ^r. At a later stage we shall 
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impose a further restriction relating to the size of kr. Let mk = Xr*, kr < k < 2kr, 
and let 

+00 

E c(»)«te 
W = — 0 0 

denote the Fourier series of the function fn(x). For any function f(x) of L2 

with Fourier coefficients cm, we introduce the following notation: 
mjc+i 2kr—l 

(1) «* = 13 km |2, * = *r, *r + 1 • • • 2fer — 1;-Dr = 23 €*. 
|m |= ra&+l /c=£ r 

If a of the kr numbers ek are greater than /3Dr/kr, then 

(2) aliirr
<Dr or a < | -

Now let ek(n) and Dr(n) correspond to fn(x) as €fc and Z)r in (1) correspond 
to f(x). Fix r, and consider / i , /2 , . . . , / r . For each «, w = 1, 2, . . . , r, at 
least rkrl(r + 1) of the numbers ek (n) are less than (r + \)DT{n)/kT since 
by (2) the number greater does not exceed kr/(r + 1). There must be some 
k, say k(r), kr < &(r) < 2&r — 1, such that 

€*(r)(w) < •£ » w = 1, 2, . . . , r 

since among the rkT numbers ek(n), no more than rkr/{r + 1) of them exceed 
the above. Thus for k = k(r) 

™<k+i 

(3) £ |cm(w)|2log(M) < 2£r (log X,K(») < 2(r + 1) (log Xr)Z7r(n), 
|m|*-mjfe+l 

» = 1, 2, . . . , r. 

For fixed Xr and n, 
oo 

X) km M I2 

goes to 0 as k increases to oo. We may thus choose k — kT subject to the 
previous conditions and so large that 

2(r + 1) (log \r)DT{n) < 2r', n = 1, 2, . . . , r. 

From (3), 
mk+i 

E £ M»)l*Iog(M) < 2 E (r + 1) (log \,)Dr(n) < » 
k=k(r) | m | = w i + l r>rc 

r > n 

for all ». Now let {£„} take on the values m, m^ < m < m^+i, & = &(/)> 
r = 1 , 2 , . . . . It is easily seen that {pv\ is of upper density one and the 
almost everywhere convergence of each sequence 

SPp\%'i Jn) 

to fn follows as in our original proof (1, p. 396). 
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Remark. For convenience we suppose that 6(r + 1) divides kr. Among the 
rkr numbers ek(n), no more that rkr/S(r + 1) of them exceed 3(r + l)DT(n)/kT, 
for the same reasons as used above. Hence for more than one-half the indices 
k in the given range, 

< t ( n ) < 3 ( r + W ( n ) t M = 1 > 2 r 

a fact we shall use in the proof of Theorem 2. 

3. We first extend the notion of upper density for single sequences of 
positive integers to double sequences. Let P be a set of ordered pairs of 
positive integers (p, q)y and let a(m, n) be the number of pairs (p, q) from P 
such that p < m and q < n. If f3 is the largest number for which there are 
sequences {mk} and {nk} of positive integers each strictly increasing to °° as 
k goes to oo such that limk^œa(mk, nk)/mknk = /3 we say that the set P has 
upper density /3. It is easily seen that a largest number must exist. We may 
state our generalized theorem. Part (i) relates to iterated limits and is used 
in the proof of part (ii). Let sPtq(x, y,f) denote the pqth partial sum of the 
Fourier series of an integrable function f(x, y) and let 12 be the square in the 
xy plane with (0, 0) and (27r, 2T) as opposite vertices. 

THEOREM 2. Let fix, y) belong to L2(Q). 

(i) There exist sequences {p^}, {qv} of positive integers, each separately of 
upper density one, such that almost everywhere 

lim Hmsv<Zj;(x,;y;jO = lim l i m ^ , ^ ( x j ; / ) =f(x,y). 

(ii) There exists a double sequence P' of positive integers of upper density one 
such that almost everywhere 

lim sPttt(x,ytf) =f(x,y). 

In the double limit of part (ii), p and g go to °o independently except that 
the pair (p, q) must belong to P. Let cmtn denote the Fourier (exponential) 
coefficient of/(x, y). Since for each n, 

-fco 

2 \Cm.n\2 < °°, 
m=—œ 

the series 
+oo 

vm,n[ Z imx 

is the Fourier series of a function fn(x) in L2(0, 2ic). We have 
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so that 

Jl27T 

f(x,y)e-invdy. 
0 

By Theorem 1, there is a sequence {p^} of upper density one such that for 
almost every x and every n = 0, ± 1, . . . 

lim X) cm,ne
mx =fn(x). 

Hence, for every fixed q, every y, and almost every x 

(4) l i m V , ( * , ; y ; / ) = £ fn(x)einv. 

By Parseval's equality 

2 i r £ | /w(*) |2= f T\f(x,y)\2dy 
n=-œ *J 0 

which is finite for almost every x. Hence, for almost every x, each member 
of the family, indexed by x, of series 

(5) Z f»(.x)e-
n=—co 

is the Fourier series of an L2 function of the variable y, that is, f(x, y). The 
numbers fn (x) are then the Fourier coefficients. 

Let {ar} be a sequence of numbers, 0 < aT < 2ir, such that ^ r = i « r < °°-
Let {Xr} and {kr} be two sequences of positive integers, each strictly increasing 
to oo and such that kr+i > 2kr. A further restriction is needed on {kT\. For 
fixed Xr, choose kr so large that 

J
ê27r r>— r— 1 

\fn(x)\2dx<^r-^L, k>kr 
0 

|n|>A r&«/0 lOg A r 

This is possible since the left side of (6) equals 
+0O 

vm,n\ 2ir 2^ 2^/ \cm 
\n\>\r

k m=—oo 

Let nk = Xr*, kT < k < 2kr, and let 
nk +i 2kr—1 

22 l/«(^)|2 = €*0*O> & = kr, kr + 1, . . . , 2kr - 1; 22 €A(x) = £>r(x). 

We set 

dx 

and 

/»2x 

/ » 2 T 2#r—1 

Z)r = I Dr(x) dx = 22 €*-
v 0 fc=A;r 
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Since there are kr terms ek, it follows that for at least one k, say &(r), 

kr < k(r) < 2kr — 1, ek(r) < DT/kr. 

Thus efc(r)(x) < Dr/arkT for x outside a set J5r whose measure, |jEr|, does not 
exceed ar. Since 

oo 

Z) OLr < °°, 

for almost every x 
€*(r)(#) < Dr/arkr 

for all sufficiently large r. For such an x and all sufficiently large r with 
k = Jfe(r) 

(7) "Z |/.(*) |2 log (|n|)< (log X?'K(*) < ? ^ - ^ . 
| n |=n*+l « r 

Since Z>r does not exceed the left side of (6), the left side of (7) does not 
exceed 2~r. Thus for almost every x 

nk+l 

E E |/*(*)|2iog(|w|)< -
*=*(r) ln|=njfc+l 

r> l 

since, except for a finite number of r values the terms satisfy (7) and so do 
not exceed 2~r. This is sufficient to show as in our previous arguments (1, 
p. 396) that for almost every x, the {qv} partial sums of the series (5) con­
verge tof(x, y) for almost every y where the sequence {qv} takes on the values 
w, Wjb(r) < w < Wjfc(r)+i, r = 1 , 2 , . . . . The sequence {qv} is also of upper density 
one. This, together with (4), gives the second equality of part (i) of the 
theorem. 

Our first step in proving the first equality of part (i) is to show that the 
sequences [p^} and {qv} already chosen in the proof of the second equality 
may be made the same. The sequence {p^} was chosen by the technique of 
Theorem 1 so as to insure the almost everywhere convergence of each sequence 

Z imx 

to fn(x). The sequence {Xr} used in the proof of Theorem 1 may be taken to 
be the same as the sequence {\T} already used in the proof of Theorem 2. 
Moreover the two {kr} sequences may be taken the same since, in each case, 
kr was chosen large relative to a condition involving Xr. By the remark 
following Theorem 1, for more than one-half the indices k, kr < k < 2kr — 1, 

e * W < - L ± ! - - 1 ' n = l , 2 , 

As in our proof of the present theorem, for more than one-half the indices k, 

JI2T 

ek(x) dx < 3 Dr/kr. 
0 
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Hence, there is at least one index, say k(r), for which both conditions are 
satisfied. Now the {p^} and the \qv) are chosen from the same blocks of 
integers, that is, n such that Ar* < n < Ar*

+1, k = k(r), r = 1, 2, . . . . 
It is easy to see that the same sequences {p^}, {qv} can be chosen for any 

two functions of L2(ti), in particular for our f(x, y) and for g(x, y) = f(y, x). 
Since sPtQ(x, y; g) = sQfP(y, x;f) we may apply the second equality of part (i) 
to the sequence 

to obtain that almost everywhere 

g(x,y) = lim \im sPll,q9(x, y, g) = lim lim sQv,Pfi(y, x;f) = f(y,x). 

Since the [py] take on the same values as the {<?„} the first equality of part (i) 
of Theorem 2 is proved. 

Now part (ii) follows easily. The difference 

n=— qv 

is smaller in absolute value than 1/s for (x, y) outside the set Es when qv 

takes on values in the rth block, that is, nk < qv < nk+i, k = k(r). We may 
choose r = rs so large that 

Ê \E.\ < ». 

Also the difference 

is smaller in absolute value than 1/s for (x, y) outside the set Fs, for g„ in 
the rth block and p^ in the Rth block, that is, nk < p < Wfc+i> & = &(i£). Again 
we may choose R = Rs so large that 

Z 1̂ .1 < œ-

Hence, for (x, y) outside both Es and F s , 

\s (x y f) -f(X V)\<- U* < P" < M*+1' k = k(Ts) 

Almost every point (x, y) is outside all Es and 7*̂  for 5 sufficiently large. Now 
let P , the double sequence of positive integers, consist of the union of all Ps 

for all s where Ps is defined as all (p, q) such that p belongs to the Rsth block 
and q to the rsth block. For the double sequence P 

nk(R)+i nk(T)+i \ KR/ \ Ar/ 
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which approaches one as s increases to œ so that P is of upper density one. 
Part (ii) follows from this. 
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