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Paths of charges in general relativity
as geodesies of Einstein's

non-Riemannian geometry

R. R. Burman

The equation of motion of charged incoherent matter, and hence

of a test charge, in general relativity can be written as the

geodesic equation of an affine connection. Here, the connection

is chosen to satisfy a condition which has the form of one of

the basic geometrical principles of Einstein's unified field

theory. The symmetric part of the fundamental tensor of the

geometry is chosen to be the metric tensor of general

relativity; equations to be satisfied by the skew part,

involving the electromagnetic field, are obtained. An.

alternative condition on the affinity is also considered.

1. Introduction

In general relativity, matter can be described by an energy-momentum

tensor, or by singularities in the field with the empty space field

equations applicable outside the singularities [I]. With the former

description, it is easily shown that the equations of motion of incoherent

matter (dust) follow from the field equations; in the absence of

non-gravitational fields, the particles follow geodesies of the Riemannian

space of general relativity. In particular, this result applies to a

single test particle, as is seen by taking the density to be proportional

to a delta function [15; 16, p. 20]. Einstein, Infeld and Hoffmann

derived the equations of motion of gravitating particles in their total
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gravitational field by using the second description.

In general relativity, the equations of motion of a test charge in an

electromagnetic field can be written as the equations of geodesies in a

Finsler space or in a five dimensional Riemannian space [76, p. 05]. They

can also be expressed, by suitably choosing an affine connection, in the

form of the geodesic equations of that connection [4]; the affinity is the

sum of the usual Christoffel symbol and a third-rank tensor which depends

on the electromagnetic field. The affinity discussed by Droz-Vincent [4]

is not unique, there being a class of affinities having the same

geodesies, but was chosen so that the covariant derivative of the metric

tensor, taken with respect to the affinity, would vanish. In the present

paper, a different condition is imposed on the affinity; this condition,

which involves a non-symmetric second rank tensor generalizing the metric

tensor, arises as one of the basic principles of the non-symmetric unified

field theory developed by Einstein, Schrb'dinger and others [5, 7, 13, 14].

2. Basic theory

2.1 Equations of motion

In general relativity, the path of a charged incoherent fluid in the

presence of an electromagnetic field (<j> ] can be represented by (see the

Appendix)

(1) u u = -a<j) u ,
;v a

where (u ) is the U-velocity of the fluid and a is defined in the

Appendix. Also, a semi-colon denotes covariant differentiation with

respect to the usual Christoffel symbols, and the summation convention

applies. Equation (l) can be written as the geodesic equation of an affine

connection:

(2) «ViV = 0

where a dot denotes covariant differentiation with respect to the affinity

A which has components [4]
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The braces denote the usual Christoffel symbol formed from the metric

tensor [g } of the Riemannian space of general relativity.

The above connection is not unique, but has been chosen to give

g = 0 . If (y ) is a vector and \B V„ an anti-symmetric third
°yv.p v or [ a Bj

rank tensor, the quantities

(it) Da
V = A W + 6VV + 6VV + B V

form a connection with the same geodesies as A . If V = 0 and the

a
torsion vector of B vanishes, g = 0 holds with respect to D if

it does with respect to A [4]. The geodesies of A are unaffected by

its anti-symmetric part, but for g = 0 to hold, A must be

non-symmetric: a t-ensor B chosen to cancel the skew part of A would

have a non-zero torsion vector.

2.2 Einsteinian geometry

Let [g ) now be some non-symmetric tensor field and let a dot

denote covariant differentiation with respect to a non-symmetric affinity

F . Compare the equation g = 0 , which can be written

(5) g = g T a + g T a

a y v , p civ y p a u a v p

where a comma denotes partial differentiation, with

(6) g = g V a + g V a .
°pv,p "av p p Dpa p v

Equation (6) differs from (5) through the different order of the indices

V and p in the last term. Equation (6), a basic geometrical principle

of the unified field theory developed by Einstein and others, has been

studied in great detail by Hlavaty [§-/!]> also, other authors have

obtained solutions in various forms [Z, 6, 17, 18J.

Round and square brackets around indices denote the symmetric and
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skew-symmetric parts, taken, when there are more than two indices enclosed,

with respect to those immediately inside the brackets. Write h for

g, > and k for gr n . Let indices other than those of g be

raised and lowered by using h and hV , where the covariant components

hPV are defined by [S]

(7) hX\ = 6V .

u vThe contravariant components g of the fundamental tensor are defined by

/ o \ Xv UV -V
(8) V = W = 6

Consider an entity F with components written in the form

a6 a8

where the Christoffel symbols are defined in terms of (h ) , S is the

torsion tensor of F , given by

a 6 B aj '

while

It has been shown 111, p. 52] that if- (6) has a solution F , it must be of

the form described by (9), (10) and (ll). This theorem will be used in the

next section.

Let

(12) K = a + g + g

Hlavaty [&, Theorem 2.3] showed that the tensor 5 satisfies
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(13) 25 = K - hU r k ™ ,

f/ being given by (11).

It was shown 111, p. 58] that the requirements for the existence and

uniqueness of a solution of (6) do not impose any restriction in the form

of an equation on the components g . A necessary condition for (5) to

have a solution is that [77, p. H8] g/h and k/h must be constant,

where g, h and k are the determinants of (g ) , (h ) and (k ) .

Thus, the condition (6) produces a more flexible theory than (5).

3. The new affinity

Since the geodesies of an affinity are unaffected by a transformation

of the form (U), it is of interest to attempt to find an affinity D ,

related by such a transformation to A , which will satisfy a condition of

the type (6).

The symmetric part of (g ) , namely {h. ) , is chosen to be the

Riemannian metric tensor of general relativity, so the Christoffel symbols

in (3) and (9) are the same. To retain the same geodesies, the symmetric

part of the new affinity must differ from that of A by only the terms

involving (v.) in (U). Thus, D can be written in the form (9) with

and with some suitable skew-symmetric tensor chosen for |£ | . Taking

(15) " TT <P „£
ctp 2 dp

where [LV) is some vector, (ll) and (1*0 give

If V is put equal to zero, (l6) is satisfied if
p
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If detffc ) t 0 , (17) implies that

(18)

where (FV] is defined by

With V = 0 and L given by (18), equations (lU) and (15) become

(20) V — CL§ I u v

and

So

This has the same symmetric part as A ; only the torsion is different,

and that does not affect the geodesies. The torsion vector of D is

given by

(23) D = £ > T = £ T = -f<f> F M .
x a Ca TH ax 2 at a
The skew-symmetric part of (g ) has not yet been specified.

Maxwell's equations are

UTT — a
= — pu

and

( 25) d> + (!) + d) = 0 ,
Uiv,p vpp,v vvp,y '

p being the proper charge density. Equation (2*0 can be used to

eliminate u from (21), (22) and (23).
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4. The skew part of the fundamental tensor

Substituting (20) and (21) into (13) results in

(26) k + k + k = 2aU ur + <j>r u \k " - a<{> k °u .
vy;aj iov;y aiy;v [ va Cy Eya vj u3 up v a

An al ternat ive condition can be obtained as follows.

Equation (6) can be writ ten [S, Theorem 2.1a]

(27)- g = 2g S a .
ayv.p ya pv

From the expression for a covariant derivative with respect to an affinity

expressed in the form (9), it follows that

(28) g = g - g iua + S a) - g iua + S a
°yv.p yv;p aav[ yp yp J sva{ vp vp

Hence, since h = 0 ,
yv;p

(29) g = k - 2U, . - 25/ » + 2fer |ya _ + 5Hyv.p yv;p (vy)p (ypv) Cva[ yjp y]

Substituting (29) into (27) and separating the resul t into i t s symmetric

and skew-symmetric parts gives

(30) U, v = - k, S sa

(vy)p (ya pv)

and

(31) k + 2kr Ua -, = 2S .
yv;p Cva yDp pLvyD

Cyclically interchanging the indices u, v and p in (31) and summing

the three equations:

(32) k + k + k = - 2 ( 5 + 5 + 5 )

yv,p vp,y py,v v yvp vpy pyvy

which was obtained by Hlavaty [S, Theorem 1.h; 11, p. 6l].

The theorem connecting V and 5 , namely (ll), can be written

(33) V = 2S , ak > ;
vyp v(y p)a

taking the symmetric part with respect to u and v gives (30).

Substituting (20) and (21) into (31) gives
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(31*) k + akr \<t> "M + <t> au + ai> k °u ,
yv;p Cva[ v3 P P y]J rpCv yD a

while substituting (21) into (32) gives

C _ _ _ •»
(35) /c + f e + f e = a <(> fc + <J> fc + <|> fc a u .

yv,p py,v vp,y [ yv p Tpy v vp u j a
Equation {2h) can be used to eliminate u from (35).

a
Comparison with Maxwell's equations shows that (k ) is not to be

y v
identified with the electromagnetic field tensor (<(> ) .

5. The energy-momentum tensors

Consider the tensor with components given by

(36) A „ = a<(> u.

- the symmetric part of this is U , as given by (20). Two further

tensors are now defined:

and

/-.O\ T — A H P̂  9 X J. P C

\ jO J ej — /i A = d u) (P U U. •

yv ot3y v ap y v

The electromagnetic energy-momentum tensor has components [76, p. 8]
( 3 9 ) <S = T—\<b d> + — 6 d>

y UTT I yet •+ y a '

which can be expressed, using (37), by [3]

(UO) 5 v = — ^ ^ f j v - 1 6VJ a
•• - - ' y "t y (

The components of the matter tensor can be expressed by

(1(1) Af = pw u = pcV / /
pv y v yv a

provided J does not vanish.

Equations (Uo) and (Ul) express the energy-momentum tensors in terms
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of tensors which can be thought of as geometrical quantities, closely

related to the affinity. Droz-Vincent [4] expressed M and S in
J * yv yv

terms of geometrical quantities by using both the affinity (3) and a "dual

affinity".

The invariant J is proportional to E2 - H2 , where E and H

are the electric and magnetic fields. The other electromagnetic invariant

can be expressed in terms of the tensor given by (36):

1 n AVVXAG\ = i a2
c

2n <f>pVp

2 yvap X 2 yvapT

= a2a2H <j>yv
yvr

where n is the permutation tensor and [*<b ) is the dual of
yvap * "• Y y v ;

(ij> ) . This invariant is proportional to E.H .

6. The condition g = 0

Droz-Vincent chose an affinity to satisfy the condition (5), namely

a = 0 . with [g } taken to be the Riemannian metric tensor of
"yv.p v'\ivJ

general relativity. This section deals with affinities which satisfy (5)

with [g ) a non-symmetric tensor field.

If the components of the new affinity are written in the form (9)>

then it has been shown by Hlavaty IS, Theorem 16.1] that

and that

(1+1*) 2S ak = - K - hUa r k .,
toy va aiyv vCu yUa

in which K is given by (12).

Let D now represent an affinity, related to the affinity A of

Section 2 by a transformation of the form (It), and so having the same

geodesies as A ; further, let D satisfy (5) for some non-symmetric

tensor field (g ) , and let (h ) be the metric tensor of general
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relativity.

The affinity D can be written in the form (9) with U given by

(lit) and with some suitable skew-symmetric tensor chosen for \S J* I .

I Q 6 J
Taking (15) for 5 a g

p , (lit) and (1»3) give

This is satisfied by V = 0 and L = - u \ then (lit) and (15) become
ot ot a

and

so that

This has the same symmetric part as A , and so has the same geodesies.

The torsion vector is given by

(U9) Da = ̂  = t *a/ •

and is thus proportional to the It-force per unit proper volume.

The tensor [k ) has not yet been specified. Since h g = ° >

substitution of (U6) and (iiT) into (UU) shows that (k ) must satisfy

(50) k + k + k + a$ uak + 2aU aur + Qr
 au }k , = 0 .

vy;u oiv;\i wy;v up va [ v Ceo Co) v; yUa

An al ternat ive condition can be obtained as follows.

Equation (29) gives g for an aff ini ty written in the form (9);

hence the symmetric and skew-symmetric parts of the equation g = 0

are

https://doi.org/10.1017/S0004972700046281 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046281


Paths in general relativity 79

and

52) k + 2kr \Ua _, + S _, a| = 0 .
yv;p Cval uHp

Cyclically interchanging the indices y, V and p in (52) and summing the

three equations:

(53) k + k +fe = _

yv ,p vp ,y py ,v [~va vp "voTpp "pa~yv

The theorem c o n n e c t i n g U and S , namely (*+3), can be w r i t t e n

(51*) U = - 25 , > ;

yvp y(vp)

taking the symmetric part with respect to y and v gives (51).

Substituting (1+6) and (1+7) into (52) gives
(55) k + akr U "u + $ au n + <)> n u

a) = 0 ,
yv;p Cva[ yH p p yH yUp J '

while substituting (1+7) into (53) gives

(56) k + k + k = a\k <f> + k $ + k <$> }ua .

yv,p vp,y py,v ( yaTvp vaTpy pa yvj

Comparison with Maxwell's equations shows that (k ) is not to be

identified with the electromagnetic field tensor (((> ) .
Another possibility is to retain A as the affinity, so that

and

these satisfy (1*3). Equations (kh), (52) and (53) become

( 5 9 ) k + k + k = 2a|<f>r
 afe , u + <\>r

 ak _ M + <j>r
 afe _ u ] ,

vy ;u a>v;y toy ;v [ Cy vJa a) Cv ioDa y Cy toDa vj

(60) k 2akr <(> .."M
yv;p Cya v3 p

and
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(61) k + k + k = 2a[kr $ "w + kr * "u + kr <j> "u ] .uv,p vp ,p pp,v [ Cpa vD p [vo p] p Cpa p D vj

If k i s assumed to be proportional to <J> , the right sides of
pv * pv

(59), (60) and (6l) vanish; in particular, (60) and (6l) then give

Maxwell's equations for charge-free regions.

7. Concluding remarks

In this paper, the equations of motion of charged incoherent matter,

and hence of test charges, in general relativity, have been expressed as

the geodesic equations of an affine connection, with the connection chosen

to satisfy a basic geometrical principle of Einstein's non-symmetric

unified field theory. The affinity is the sum of the usual Christoffel

symbol and parts which depend on the electromagnetic field. For a test

charge, the affinity depends on its charge to mass ratio and its

k-velocity: it is not an "external" property of space, independent of the

particle.

Hlavaty classified the space-time, or either of the tensors [g )

and {k } , as being of the first, second or third class according as

none, two or all four of the eigenvalues of \k vanish. For a given

fundamental tensor (g ] , (6) can have no solutions, a unique solution

or more than one solution. In the four dimensional case with (a ) real

and h having the signature ( + + + - ) , necessary and sufficient

conditions for the existence and uniqueness of a solution to (6) are [//,

72] G + 0 and G(G - 2) # 0 for the first and second classes,

respectively, where G represents the determinant of (g ) divided by

that of [h ) ; for the third class, there is always a unique solution.

Hlavaty [5-7 7] solved (6) to obtain T in tensorial form in terms of

the components g and their derivatives, for all three classes

including the degenerate cases. His solutions have not been used here,

but could be useful in further investigations of the topic of this paper.
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Appendix. The equations of motion

Consider a four dimensional Riemannian space with coordinates x

and interval ds given by ds2 = g dxVdx , [g ) being the metric

tensor. The contracted curvature tensor and the curvature scalar are

written [R J and R . Covariant differentiation is denoted by a

semi-colon. The field equations of general relativity are

(Al) RVV * (\ - ±R)gVV = - K{MVV + SVV)

where X is the cosmological constant and K is a constant, while [M )

and (S v) axe the energy-momentum tensors of matter and the

electromagnetic field, respectively. For incoherent matter (dust)

m = pu u , p being the proper density and [u J the 4-velocity

[cdx Ids) , a being the speed of light in empty space.

Since the divergence of the left side of the set (Al) vanishes,

(A2) -Svv =MVV =uv{puV) * puv u v .
;v ;v ^ J ;v ;v

u 9 I y I y

It follows from u u = a that \u u and hence u u vanish.

Also, the l+-force per unit proper volume - Syv_ is orthogonal to

[uV] . So on multiplying through by u and summing over y , (A2) leads

to (p"V). = 0 . Substituting this into (A2) gives

(A3) p«V. v = - S^.v

- the equation of motion of the matter. The components of the U-force

per unit proper volume can be written as p<j> u /a , p being the proper

charge density. So (A3) can be written as equation (l) of the main text,

with a = - p/pe .

Using the general expression for a covariant derivative and

M V = adxv/ds , (A3) takes the alternative form
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s ds

where the braces denote Christoffel symbols of the second kind.

In the case of no non-gravitational fields, Sen [J5; 16, p. 20]

obtained the equation of motion of a single test particle of unit mass from

that for dust by writing p(x) = S{x - x)/i/^g ; 6 is a four dimensional

delta function, x and x represent points in space-time and

g = d e t ^ J . His procedure can be generalized to the problem of a test

charge in an electromagnetic field as follows. Substitute

p(x) = m&(x - x)//^g and p{x) = q6(x - x)//-g into (A1*), m and q

being the mass and charge of the particle. Multiplying through by

integrating over all space-time and dropping the bars from x in the

resulting equation gives

( A 5 ) T l a Bids ds~

- the equation of motion of a test charge. Equation (A5) can also be

written in the form of equation (l) of the main text, with a now equal

to -q/mo .
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