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Abstract. We study an analog over an imaginary quadratic fi€ldof Serre’s conjecture for mod-
ular forms. Given a continuous irreducible representatioBal(Q/K) — GLo(F;) we ask ifp is
modular. We give three examples of representatipobtained by restriction of even representations
of GalQ/Q). These representations appear to be modular when viewed as representatidtis over
as shown by the computer calculations described at the end of the paper.
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1. Introduction

In his 1987 article ([8]) Serre conjectured that a continuous irreducible odd repres-
entationp: Gal(Q/Q) — GL,([F,) arises from a normalised cuspidal eigenfofm

in the sense that trage(Frob,) = a, and dejp(Frob,) = (p)p*~forall p 1 NI,
whereN, k, ¢ are respectively the level, weight and charactef dRepresentations
arising in this way are called modular.

He also asserts thatshould arise from a form of leve¥ (o), weightk(p) and
characters(p), where the triple(N (p), k(p), e(p)) is defined by Serre solely in
terms of the representatign

Let K be an imaginary quadratic field. We can define niatisp forms over
K. In view of Serre’s conjecture, one might ask whether a continuous irreducible
representation: Gal(Q/K) — GL,(F,) is modular.

This is an interesting question when one considers that a necessary condition
for a representatiop of Gal(Q/Q) to be modular is thap must be odd, but that
there is no odd/even distinction for representations of GaK).

One can also ask if a modular representationf Gal(Q/K) arises with the
level and weight obtained in a manner similar to that of Serre’s conjecture.

An interesting class of examples is provided by continuous representations
of Gal(Q/K) obtained by restriction of representationg of Gal(Q/Q). If pQ IS
odd then it is (conjecturally) modular and gg is modular by base change.df
is even then it is not modular but nothing is known about
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In this paper we give three examples of even Galois representationg tof
SL,(FF3). We calculate the space of cusp forms of weight 2 of suitable level over
the fieldsk = Q(+/—d), whered = 1, 2, 3, and 7 for one of the examples and
d = 1 and 3 for all three examples.

In all cases the representations appear to be modular when viewed as repres-
entations ovek . Moreover, the level and character of the corresponding cuspidal
eigenforms are the values expected in analogy to Serre’s conjecture.

2. Reducing to Weight 2

We use the modular symbols method to calculate cusp forms over an imaginary
gquadratic fieldK for a given level. This method can only calculate cusp forms of
weight 2.

For representations of Gg = Gal(Q/Q) it is a direct consequence of a the-
orem of A. Ash and G. Stevens thatfis modular then it arises with weight 2.
More precisely we have the following.

Let N(p) andk(p) denote, respectively, the level and weight assigneg to
by Serre (see [8] for the precise definition) and denote kilge mod! cyclotomic
character. The representatipnill always be assumed continuous and irreducible.

LEMMA 1. If p is modular arising fromSy,,(N(p)) then there is an integes
such thato ® x* arises fromS,. (N (p)) for somek’ satisfying2 < k¥’ <1 + 1.

Proof. It follows from Serre’s definition of the weight that there is always a
power x* such thatp’ = p ® x* has weight 2< k(p") <1+ 1. Now it suffices to
show thatp’ is modular of the same leval.

Let f € Sk, (N(p)) be the eigenform giving rise tp. Twisting p by x
corresponds to applying the operatbon f and sop’ is modular arising from
0% f.

The eigenforn®® f has some weight’, which is probably large, but singg is
modular andk(p’) < I + 1 then there is an eigenforghof weightk(p") and level
N(p) giving rise top’ with the same system of eigenvaluespdg . This follows
from Edixhoven’s theorem on the minimality of the weight (Theorem 4.5 of [4]).

Now using Theorem 3.5 of [1] we have that

LEMMA 2. If p is modular arising fromsS, (N (p)) then p also arises from
S2(N(p)I?).

Proof.Let N = N(p). There is an integez such thato’ = p ® x“ arises from
level N and weight satisfying Z k(p") < I+ 1. This implies thajp’ arises from
some eigenforng in S,(N1).

We can view the twist operator on modular forms as the twist of a modular form
by the charactey . This does not change the weight, but changes the level and the
character of the form (see [9, Prop. 3.64]).
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Twisting g by x~® we get an eigenforng ® x ¢ of level lcm(N, [?) = NI2.
This form corresponds to’' ® x =% = p. O

This lemma only guarantees that a modular representatiarses with weight 2
and levelN/2. The following proposition shows exactly whenarises with level
NI. We already know this to be the case whed 2(p) <1 + 1.

Let us fix some notation first. The notation is the same used in the article [1].
Let # denote the classical Hecke algebra, which acts on the sgacE; (N)) of
weightk modular forms over';(N).

Fork > 2 let Q. (I'.(N)) be the systems of eigenvalués # — [, occurring
in My (I'1(N)), the space of mod modular forms of weighk (see [1] for the
precise definition).

PROPOSITION 1A modular representatiop arises with weighf and levelN!
if and only if

<k(p)<I+1 or 2<k(pQ® x(detp)™) <1+1,

wherep is the restriction ofo to the inertia group af.

Proof. Let g be an integer such that det= x$** and let us normalizg such
that 1< ¢ <1 — 1. We have that(p) = g + 2 mod( — 1).

Let @ denote the system of eigenvalues corresponding ¥henp arises with
weight 2 and leveN! when® € Q,(I'1(N1), x#). By Theorem 3.5 of [1] we have
that

® € Q(1(ND), x8) & © € Q(T1(N)) or & € Q41 (T1(N)®

wherek = g + 2.

But ® € Q,(I'1(N)) implies that eithek = [ +1 andk(p) = 2 ork(p) = k, by
the minimality of the weight. Hence this happens if and only €2 (p) <!+ 1.

If & € Q1 ¢(T1(N))® then® is the gth-twist of a system of eigenvalues in
Q,H <(I'1(N)). Since twistingd corresponds to tensoringby y, it follows that

P € Q1 o(TiN)® & p® x ¢ oceurs in Qg (T1(N)).
This is equivalent, by the minimality of the weight,20p ® x %) =1+ 1 — g,

which is equivalent ta (s ® x(detp)™) =14+ 1—g.Since 1< g <1 —11it
follows that this is equivalent to  k(p ® x (detp)™!) <1+ 1. a

3. Modular Symbols for I'1(N)

Let K be an imaginary quadratic field and Iétbe an ideal in9g. Let

'(N) = {(i 2) € GL2(Uk) | c e N, d=emodN, forsomee € O
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The space of weight 2 cusp forms ovérfor I'1 (N) is equivalent to the homology
spaceH (' (N)\(#3 U K U 00), C) which can be effectively calculated using
modular symbols. For a description of cusp forms of weight 2 dvesee [2],
Chapter 3.

The modular symbols method was developed in the seventies by Manin, Birch,
Swinnerton—-Dyer and others. It is described for the rational case in [6]. Grune-
wald, Mennicke and others extended the method to calculate the homology of the
spaceH:; (I'o(N)\(J3 U K U 00), C) whenK = Q(v—-1), Q(+v/=2) or Q(~/-3)
and N a prime ideal of degree 1. John Cremona (in [2]) and [3]) extended these
calculations for arbitrary ideals in all five Euclideans: = Q(v/—d), where
d=1,23,7and 11.

We are interested in calculating méausp forms of weight 2 fof;(~N) and
a given character df'y(N)\I'g(N). These cannot be defined as corresponding to
cuspidal harmonic differentials as in characteristic 0 because not all classes lift to
characteristic 0 (see comments on section 8). We define here thegusg forms
of weight 2 as the homology classes in the homology spac¢&*, F;), whereX*
is the manifold with cuspE1(N)\(#H3 U K U o).

In order to do the calculations in this thesis | have rewritten Cremona’s program
to work withT"1(N) and arbitrary character and to work over a finite field.

3.1. THE MODULAR SYMBOLS METHOD

In this section we will recall the modular symbols algorithm fgy(). This is
described in [6] for cusp forms ové€)y and in [2] and [3] for cusp forms oveX.

Let K be one of the class number one fieldéy/—d), withd = 1,2, 3,7 or
11. LetOk denote its ring of integers.

LetI' ¢ PGLy(Ok) be a subgroup of finite index. Lét = I'\ #¢; and denote
by X* its compactification obtained by adjoining the cugfys= I'\ (#3U K Uoo).

We want to calculate the homology grodh (X*, IF;). The algorithm is basically
the same as the algorithm to calculate the homology with rational coefficients.

The set of all geodesic paths between cusps form the one-skeleton of a tes-
sellation of X* by a hyperbolic polyhedra (see [2]). Therefore the homology
Hi(X*, 80X, F)) is generated by such paths. Denote {by 8} the class in the
homology of the path between the two cusp$3. By abuse of notation we use
the same symbol to denote a path and its class in the homology.

Given anyy € PGLy(Ok) denote by(y) the path{y (0), y (c0)}r-. We call these
the distinguished classes. Not all paths 8} are of this form. But any clads, 8}
is a sum of distinguished classes and therefore the homology is generated by the
distinguished classes. This is proved in [6] in the rational case. The proofkover
is very similar (see [5]). The proof also tells us how to convert arbitrary classes to
sums of distinguished classes.
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The polyhedra of the tessellation &f* obtained by geodesic paths between
cusps are all transforms of a basic polyhedByra Dirichlet fundamental domain
for PGL(Ok).

The subgroup of PGI(Ok) identifying in pairs the faces aB form a group
G p. The precise shape @ and the groupG » obviously depends on the fiek
and it has been determined for a number of fields (see [10]).

There are several relations which hold for all path$. These relations come
from two different considerations: the indeterminacy in the notafionand the
cycles along the faces @, i.e. by moding out by boundaries of 2-cells.

If a matrix M identifies{0, oo} to {0, oo} we must havéy) = (y M) since these
two denote the same path. Analogouslwfidentifies{0, co} to {oco, 0} we must
have(y) = —(y M).

But

(i 2):{0,00}:{0,00}:>b:0 and ¢=0.

Fix some fundamental unitof O . The matrices satisfying the equation above are
0 . .
generated bx(é 1 )- Letus denote this matrix by.
On the other hand

(i 2):{0,00}:{00,0}:>a:0 and d=0.

These matrices are generated(ﬁsﬂ/ é) which we will call S.
Thus the first set of relations is

)+ S =0, (y)—J)=0.

The second set of relations come from moding out the sét pby the bound-
aries of 2-cells, which correspond to the facesBofEach face ofB determine
a relation. For example the triangle with vertices at 0, 1 ands a face ofB
for all the fields considered. The edges of this triangle consigy @), y (1)} for

_ _ _ 72 _ (1 -1 i
y =1,y = Landy = L% whereL = (1 o ) It follows that the relation

(y) + (yL) + (y L?) holds for all symbols. In general, since the edges Bfare
the transforms of0, oo} by the groupG p, then we can determine all such relations
by calculating the orbits ofi p on the edges oB.

Let G = PGLy(Ok). Let C(I") be thelF;-vector space with basis the symbols
(y) for eachy in [G : T']. The natural right coset action 6f extends by linearity
to an action of the group ringG on C(T").

Let R, be the left ideal ofZG generated by + S, I — J andI + L + L. Then
the symbolgy) generating the homology are in the kernel of the actiomgf\We
are going to consider the ide& generated by the union ¢, and the rest of the
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relations coming from the faces &. The exact definition ofR depends on the
field.

In order to determineRr one has to describe the grody for each field. For
a description ofRr for the fields considered here see [3]. In the particular case of

K = Q(+/—1) andK = Q(~/—3) we haveRr = R,.

Let Cusp(I') be the free abelian group on the cuspsliofWe have a map
9:C(I") — Cusp(I") defined bya: (y) +— [y(o0)] — [y (0)], where[«] denote
the equivalence class of the cusp

Now let B(T') = C(I")R. Then it is easy to check th&t(I") is in the kernel of
9. Denote byZ(I") the kernel ofo and by H (I") the quotient grouZ (I')/ B(T").
The algorithm to calculate the homology comes from the following theorem.

THEOREM 1. The groupH (') is isomorphic toH,(X*, F;), the isomorphism
being given by

Y ) Y v (0). ¥ (o)

3.2. MODULAR SYMBOLS FORT1(N)
We first need to identify the cosets Bf(N) in PGLy(Ok).

LEMMA 3. Lety, = (f{f ’;,;j) € PGLy(O) for i = 1, 2. Theny, andy» are in the

same left coset df1(N) in GL,(Ok) if and only if there is & € @g congruent
modN to a unitin®} and such that; = sc; mod N, di = sd, modN.

Proof Let (’: Z) € T'1(N) such that(’r’ Z)yz = y1. Thens is congruent

modN to somes € O and we have; = c;s mod N, di = dps mod N.
Conversely, assum® = cou mod N, d; = du mod N for someu = ¢ mod

N, e € Ok. Let p, g be a solution to the systepu, + gc2 = a1, pba+qds = bs.

This has a solution, sincg is invertible. Now letx, y be a solution to the system

coNx +a;Ny = ¢1 — ucp, doNx + byNy = dy — ud,.

Then taker = yN ands = u + xN. The matrix(’r’ ‘3{) is in I'y(N) and takes
Y210 y1. O

Now consider cosets dfy(N) in T'o(N). Clearly the map fronT"1(N)\I'o(N) to
(Ok/N)* /0% defined by(‘j Z) > d is an isomorphism. Foranye (Ox/N)*/

O% denote byy, the matrixy, = ((1) %).

The set of ally, with « running throughl @ /N)* /O is a set of coset repres-
entatives fol"1(N) in To(N).
The matrixy, acts on modular symbols fét (N) by {«, 8} — {ua, uB}.
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Since the homology groufi1 (T'1(N)\#s, F)) is generated by patHg, 8} this
action ofy, extends to the homology by linearity. dfis in the homology denote
by y,.8 the action ofy, oné.

Now lete be a charactes: I'1(N)\T'o(N) — F.

Denote byR, the ideal ofZI'1(N) generated by the relations — ¢(u)I, for
allu € (Ox/N)* /O%.

A cusp form of weight 2 forT'1(N) with charactere will be defined as the
coinvariant space oHl(Fl(N)\.}f;‘,fFl) by the character relations. In terms of
modular symbols this corresponds to the spd¢EL(N)), = R\ H (I'1(N)). This
is the maximal quotient space &f(I"'y(N)) wherey, — e(u)I acts trivially for all
u € (Og/N)* /O%.

The Hecke operatorg, for o not dividing N are defined as

Teifa, B} > )

x modrw

a+x B+x
T

: —} + e(m){ma, 7B},
b4

for somen generatingp.
As with the method fof"o(V) we calculate the action of the Hecke operattys
on a modular symbolgy) by first applying the operator to the p&th(0), y (c0)}
and then converting the paths back to modular symbols using continued fractions.

3.3. CALCULATING THE SPACE H(I'1(N))e

We could calculate the spacH (I'y(N)), by first calculating the full space
H(T'1(N)) and then moding out by the character relatid®)s In practice however
the number of modular symbols fér; (V) quickly becomes astronomical and so
we must use a different approach.

It is more practical from a computational point of view to first factor out the
spaceC (I'1(N)) by the character relation®,. This way we can map the space of
all T'1(N) symbols to the space 0% (N) symbols, which is much smaller.

One difficulty then is that the boundary mapC(I'1(N)) — Cusp(I'1(N)) is
not well defined on the quotiemR,\C (I'1(N)), i.e,, the idealR, is not necessarily
contained in the kernel @f.

Let Z(T"), andC(I"), denote the quotient by the character relationg @) and
C(I') respectively. LeB(T), = RC(I'),.

Denote by Cusgl'), the quotient of CusfI’) by the relationges () [c]—[y.c]),
where[c] denote thd™ equivalence class of the cusfisU co.

The space we want i&#(I'), = (Z(I')/B(T)), = Z({T)./im(B(I")), where
im(B(TI")) denotes the image of the ideB(I") in C(T'),.

Now consider the following exact sequence0K, — C(I'), Y Cusp(I'),.

In my program | am really calculating the spakg/B(I").. Note thatZ(T'"),
maps to the kerneX, which induces a magI")./Im (B([)) - K./B(T'),. The
two spaces above are the one we want (on the left) and the one we are actually
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calculating (on the right). Now we have to work out the difference between these
two spaces.

Consider the short exact sequencexXOker - Z(I'), — K. — coker— 0
which induces

0 — ker/kernIm (B(T)) — Z(T)./Im (B(I"))
— K./B(I'), — coker/Im (B(I')), — 0.

So the two spaces we are considering differ by some kernel and some cokernel
which we ought to calculate now.

Consider the exact sequence9 Z(I') - C(I') — EJs/p(F) — 0, where

61\5[:(1") C Cusp(T) is defined as the cokernel @f(I") — C(I"). This sequence
induces

0— Z(')* - C(I)* — Cusg)* - Z(I'), - C(I'), — CusT), — 0

where the upperscriptindicates the invariant space by the character relations. But
we also have an exact sequence

0
N
K,
N o
Z(T)e— C(I), — Cuspl’), — 0
~ }
Cusp(I'),

and so we hav@ﬁé\pﬁ“)s - ZMI), — K, —> Cﬁé\p(/l“)g which shows that

Cas\pﬁ‘)e — ker
coker— Cusp(T'),.

That indicates that the ker and coker are only supported on the cusps. There-
fore they should correspond to Eisenstein series and we can ignore them in our
calculations.

4. Galois Representations Given by Polynomials

Let P be an irreducible polynomial i@[X]. Let E be the splitting field ofP
and assume thak; = Gal(E/Q) is isomorphic to either PSI(F,) or PGLy(F,),
whereq is a power of a prime. We actually have the following possible cases:
PSL(IF3) = A4, PGLa(IF3) = S4, PSLe(Fs) = As, PGLy(IFs5) = S5, PSLp(Fg) =

Ag and PSL(IF;) C A7.
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Embedding PSK(F,) and PGL(F,) with ¢ = p® into PGLy(F,) we have a
homomorphisnG; — PGLy(F,), which induces a continuous representation

p:GalQ/Q) — Gr — PGLy(F)).

We will be constructing Galois representation intogtaﬁ‘_,,) by lifting projective
representationg given by polynomials. Therefore it is important to know when
this representation has a liftingto GLZ(I_F,,), i.e., when there is @ such that the
following diagram is commutative:

p: GallQ/Q) — PGLy(F,)

Ry

GLo(F,)

Furthermore, we need to know when this lifting is an even representation.

The obstruction to lifting the representatignto SLZ(IE_?,,) is given in terms
of the Witt invariantw,(Qr) of the quadratic formrQ: E — Q given byx —
trace: o (x?) (see Serre’s article [7]).

In this section we prove that the projective representagican always be lifted
to GLZ(I_F,,) and it lifts to anevenrepresentation if and only if all the roots Bfare
real numbers. This result will be crucial in our choice of polynomials to test Serre’s
conjecture over an imaginary quadratic fig&ld

Let ¢: Gal(Q/Q) — S, denote the homomorphism giving the action of the
absolute Galois group on the set of roots Bf The mape induces a map on
cohomologye*: H%(S,) — H?(Gq), whereH*(Gg) = H*(Gq, Z/2Z).

A complete description of the grougg*(S,) and H*(A,), k = 1, 2, is given
by (see Serre’s paper [7], Sect. 1.5):

0 ifn=1,

1 —
H(5) = (Z)27) ifn > 2,

0 ifn=1,
H2(S,) =4 (Z/27) ifn=23,
(Z.)27) ® (Z.)27) if n > 4,

0 ifn#4,
(Z)27) ® (Z)2Z) if n = 4,

Hl(An) =

H?(A,) = (Z)2Z) ifn > 4.

The nonzero element df'(S,), n > 2 is the signature, of S,,.
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Lets, be the element off2(S,) corresponding to the central extension
1> {+1} > S, > S, > 1

wheres, is an extension af,, characterized by the property that all elements,of
whose image ir§,, are transpositions (respectively, product of transpositions) have
order 2 (respectively, have order 4).

The cup product, - ¢, is distinct froms,,. If n = 2, 3 theng, - ¢, is the only
nonzero element af2(S,,) (thuss, = 0), while ifn > 3 thens, is always nonzero
and{e, - &,, s,} form a basis of?(S,).

We have that the image of by Res:H?(S,) — H?(A,) is the only nonzero
element ofH?(A,,), forn > 4.

Bothe*s,, andw,(Qr) are elements ()HZ(GQ) and we have following formula,
which is the main result of [Tlw2(Qf) = e*s, + (2)(dE).

Note that(dr) = (dp), whered is the field discriminant andp is the discrim-
inant of P, sinced,, = a?dg, for somea € K*.

To use Serre’s calculation of the Witt invariant we need to know which element
in H2(A,) (respectivelyH?(S,)) corresponds to the central extension inzﬂ_l,,)
of A, (respectivelysS,) embedded in P&l(lf?p).

Let us analyze the situation in the 6 possible cases.

(1) S3=PGL(F2).
In this case the center is trivial, so PEEF>) = GLy(IF>).

(2) As = PSLy(F3), As = PSLy(Fs) and Ag = PSLy(Fo).
Let (n, p) denote one of the pai@, 3), (5, 5) or (6, 9). Consider the embed-
ding of A, in PSLy(F ),

Denote bya, the element inH?(A,) corresponding to the central extension
of A, — PSLy(F,) contained in Sk(F,). We have two possibilitiesz, is
trivial or a,, =[(s,), as this is the only nonzero elementf(A,) for n > 4.

If a, = 0 then the sequence

0 — {£1} - SLy(F,) — PSL(F,) — 0

is split in A, and soA, embeds into SMI_F,,). The only elements of order
2in SLy(F,) for p # 2 are+I, which project to identity in PS)(F,). So
elements with order 2 i, map to identity, contradiction with the fact that
A, = PSL(F),). It follows thata, = Regs,).
(3) PGLy(F3) = S, and PGly(Fs) = Ss.

Let (n, p) be one of the pair&4, 3) or (5, 5). Consider the embedding 6f in
PSLZ(IF‘,,). Letl, denote the element iH2(S,) corresponding to the central ex-
tension ofS,, in SLZ(I_FI,). There are four possibilities féf: 0, ¢, - €,, s,, s, +
&, - £, @S these are the elements/#(S,) for n > 4.

The first two possibilities have trivial restriction #2(A,,). It follows that
the extension corresponding to them is trivial 4 which cannot be the case
here, as we have already seen.
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The extension of, corresponding te, is such that transpositions 8 lift
with order 2 by the description of, given before. But elements of order 2 in
SLZ(I_FP) project to identity and so that would imply that transpositions,jn
map to identity in PSigﬂ_Fp) contradiction withS, = PGLy(F ).

Therefore we must have that the elementHA(S,) corresponding to this
extension is, + &, - &,.

LEMMA 4. Let p be the Galois representation BSLZ(I_F,,) corresponding to a
polynomial P in the manner described above. In each of the cases where the Galois
group of P is A4, Sa, As, Ss or Ag, Wherep = 3,3,5,5 or 9, respectively, the
obstruction to liftingp to SLZ(I_F,,) isobsp) = wa(QF) + (—2)(dg) whereE is
the splitting field ofP, w,(QF) is the Witt invariant andiy; is the discriminant
of E.

Proof. It follows from the calculations we did above that in each of these cases
the obstruction to liftingo is obgp) = e*(s, + ¢, - &,). Note that this is also true
in the A, case since the termy - ¢, is trivial in H2(A,,).

Bute*(s,) = w2(Qk) — (2)(dg). SO

obg(p) = e*(s,) +e*(ey) - e () = w2(QE) — (2)(dE) + (de)(dE)
= w2(Qp) + 2 dg) + (=D (dr) = w2(Qp) + (=2 (dE). a

Now the main theorem:

THEOREM 2.Let p > 2 be a prime integer and lep be a representation
p:GallQ/Q) — PGLx(F,) induced by the Galois group of the splitting fieftl
of a monic irreducible polynomialP € Z[X]. Then p lifts to a represen-
tation p: Gal(Q/Q) — GL,(F,) and this liting is even if and only i£ is totally
real.

Proof. Given any charactey: Gal(Q/Q) — I_F; denote by(p, x) the homo-
morphism

(P, x):GallQ/Q) — {£1)\GLo(F,) = PGLy(F,) x F,

defined by(p, x)(g) = (0(g), x(8))-
Now consider the exact sequence

1— {+1} - GLo(F,) > PGLy(F,) x F; — 1

whereo (g) = (7 (g), det(g)). We want to lift (o, x) to a representatiop to
GL,(FF) in the sequence above.
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If we can lift p to some representation of Gg then clearlyp = projp and
the map(p, detp) lifts to p. Conversely, if there is a charactersuch that the map
(p, x) lifts to some representatign of Gg:

GalQ/Q) L PGLy(F,) x

GLy(F,)

then p is a lifting for p with determinanty. So the question is if we can find a
charactery such that(p, x) lifts.
Now recall that the obstruction to lifting this map is a cohomology class

obs((p, x)) € H*(Gg, Z/2Z) = Bra(Gg).

Denote by ob&) the obstruction to liftings: Go — PSLy(F,) to SLy(F,)
and denoted by ol§g) the obstruction to finding a square root fpri.e. finding
a character such thaty = ¢2. This is the lifting problem corresponding to the

diagram
Go
¢>_¢ N\ X B
1->{£l} > F, — F; > 1
X > X

We have that obgp, x)) = obSp) + obx).

It now suffices to prove that there always exigt auch that ob&) = —obgx).

Recall thatH?*(Gg, Z/27) — @qHZ(GQq, 7./27) and that the 2-torsion of
the Brauer group of),, ¢ # oo, is isomorphic taZ/27Z. Denote by obg(p) the
component of ob®) in HZ(G@q, 7./27). Denote byS(p) the finite set of primes
g such that ohs(p) # 0.

Let G&b denote the maximal abelian quotient@#. This is the quotient o&g
by the closure ofaba=b~1 | a, b € Gg}. Since the charactey is a homomorph-
ism theny is trivial on this set. Thug factors througm&b.

By class field theory one ha[%%b = [1, Z;, for all primesg. Therefore we have
X = ]_[q Xq, Wherey,: 7> — .

In terms of the local componengg, obs, (x) = O if and only if x, has a square
root. Thus we need a characteisuch thaty, has a square roas g ¢ S(p).

Forqg ¢ S(p), it suffices to takey to be trivial. Now we only need to prove that
for any primeq there is a charactex,:Z; — I_F; which does not have a square
root.
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We split the proof in three caseg:= 2,g # 2, co andg = oo.

(1) g # 2, 00.
ThenZ; = (14 qZ,) x (Z/qZ)*. It suffices to choose a charactgy trivial
in (14 gZ,) and such that

Xq lz/q2)+ dO€S not have a square root.

The set of charactefy: (Z/qZ)* — I_Fj,} is a cyclic group of order divisible by
2whenp > 2. Choose ag, |z,,z)* any odd power of the character generating
that group.
In this caseZ} = Z /27 x Z,. One takeg, such thaty,(—1) = —1.

() g = oo. )
X0 1S @ Charactel: {1, ¢} — F, wherec denotes complex conjugation in
G- There are only two such characters: the trivial character and the character
defined byy.(c) = —1, which does not have a square root.

Note that sinceS(p) is finite we only havey, nontrivial for a finite number of
primes so that the produgf, x, makes sense. This proves the first claim of the

theorem: that givep there always exist a characterGg — I_F;; such(p, x) lifts.

Assumep lifts to a representatiow. By definition p is even if and only if
detp(c) = 1. This is equivalent to ohsg(detp) = 0, which is equivalent to
obs.(p) = 0 since obg,(p) = obs,(detp).

The restriction ofp to the decomposition group ab is a homomorphism
poo: {1, ¢} = PSLy(F,), which lifts to SLo(F,) if and only if g (c) = 1, since if
Poo 1S @ lifting to SLy(F,), psc(c) must have order 2, but all elements of order 2
in SLo(F,), p # 2, project tol in PSLy(F,). It follows that defo(c) = 1 if and
only if p(c) = 1, which implies that acts trivially onE, the splitting field of the
polynomial P, or equivalently, thak is a totally real field. O

5. Examples

In this Section | describe the examples that have been worked out for testing Serre’s
conjecture for representationg: Gy = GallQ/K) — GL,(F)), whereK =
QW —d),d=1,2,3o0r7.

5.1. QUESTION

Let K be an imaginary quadratic field. L&ty = Gal(Q/K) and let/ be a prime
integer. Leto: Gx — GL,(F)) be a continuous irreducible representation.

Define the levelV (p) as the prime t@ part of the Artin conductor op.

For any prime. of Ok lying abovel we will multiply the levelN (p) by 12. We
raise the level in this fashion hoping to find the eigensystem corresponding to
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with weight 2. We are using the corresponding fact in the classical case as a guide
(see Lemma 2).
Let detp = e(p)x”, wherex” is some power of the motcyclotomic char-
acter ande(p) is a charactee(p): (Ox/N(p)Ok)*/O% — T and letN(p) =
N(p) [T, 2.
Then we ask

QUESTION 1. Is there a homology class Hl*(l“l(N(p), I_Fl)g(p) such thatv is
a common eigenvector for the Hecke operators and for all pgmeot dividing
N(p)l tracep(Frob,) = a,,, whereq,, is the eigenvalue of for the Hecke ope-
rator T,.

This question is an analog ovér of Serre’s conjecture. There are two main
differences: one that we reduce the problem to weight 2. The other difference is
that we define mo#icusp forms as homology classes with coefficients;imot as
mod! reduction of characteristic 0 forms.

It would be nice to work out the precise valuedf= 0, 1, 2 according to the
restriction ofp to the inertia group at, so that the homology class corresponding
to p would appear with leveN (o) [, A% (see the discussion in Section 2 of the
classical case).

The examples worked out in this paper for the fielgéy/—1), Q(~/—3),
Q(v/—2) and Q(+/—7) seem to give evidence towards a positive answer to the
guestion.

The examples are all avencontinuous irreducible representationsGg —
GL,(F,) with I > 2. These are guaranteed not to correspond to hiedbmorphic
cusp forms ovef). Then we consider the representatign Gx = Gal(Q/K) —
GL,(F,) obtained by restricting to G x and we try to check whether it corresponds
to a mod! cusp form overk, for the imaginary quadratic fields listed above.

Note thatodd continuous irreducible representations are (conjecturally) mo-
dular and so by base change there is a rhadsp form overk with the same
set of eigenvalues. Therefore testing whether the restricted represeniatiisn
modular would be nothing else then testing Serre’s conjecturéfiself, for
which there is already a large amount of evidence. Thus we have only considered
even representations

We have not considered representations inte (@), the reason being that in
IF, there is no even/odd distinction.

The representationg of Gg are obtained in the following way. Le® be a
monic irreducible polynomial with coefficients #aand letE be its splitting field
in Q. Let P have as Galois group one of the groups R8Y, with/ = 3,5,7,9
or PGLy(TF)), with p = 3 or 5.

We will be looking for polynomials with the following characteristics:

(1) All roots of P are real, so that the corresponding representatianeven.

(2) The splitting fieldE of P has small discriminant, so thatis ramified for a
small number of (preferably small) primes and thus have a small conductor.
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(3) The Galois group of is not too small. If GalE/Q) C S, is too small then
the corresponding representatipris not irreducible.

In order to find such suitable polynomials a search was conducted at the
tables of number fields archived at Bordeaux, available by anonymous ftp from
megrez.math.u — bordeaux.fr.

Once we find a suitable polynomi& we can calculate the Witt invariant &f
and so determine the bad primes for the problem of lifiind hen we can choose
a charactefy so that(p, x):Gg — PSLy(F)) x I_F;‘ lifts to an even representation
p: Gg — GLy(F,), of determinanty .

Note that this method do not give us a precise lift. The representatisrde-
termined only up to twisting by a charactesuch that? = 1. In particular, we will
not be able to tell the precise lift in GIIF,) of a given conjugacy class in PEIF))
or PGL(IF)): In general there will be two possible lifts for each conjugacy class in
PGLy(IF)), which we cannot tell apart without further calculations.

Now we need to produce a table of values of tradéroh,) for a number of
primesgp € Ok for which p is not ramified. For each such prirgewe can study
the ramification ofp, the prime ofQ lying below g, in the splitting field ofP and
from there easily guess the order of Frob

6. Examples

So far | have tested representations of @slK) arising from the 3 polynomials
P1, P, and P; listed below, for the fieldX = Q(+/—1) andK = Q(+/—3). The
representation coming from; was also tested for the field§ = Q(+/—2) and
K = Q(v/=7). More examples were tested wifh(~/—1) and Q(+/—3) simply
because the calculations involved are smaller (The relation ideal has less relations
and also these fields have more units).

In all cases the representations appear to be modular and of the level and char-
acter obtained as in Serre’s conjecture.

The three polynomials considered were the following:

Pi=x*—7x2—3x+1 disc= 3% x 612
Pp=x*—x3—-24x2 4+ x4+11 disc=3* x 7%
Py=x*—x3—7x°4+2x+9 disc= 163

where disc is the discriminant of the number field defined by the polynomial. All
three polynomials have Galois group R8Esg).

The conjugacy classes of the group,8ls) are given in Table I, along with
the order of each class and the dimension of the subspdeég wiich is fixed by
an element of that class. Note that | indicated with the same roman numerals the
classes of Si(F3) which project to the same class of PSEs).

In the three cases the calculation of the Witt invariant reveals that there is no
obstruction to lifting the associated representation and so all three representations
lift to SLo(IF3).
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Table I. Conjugacy classes of SIF3).

Conjugacy class Representative  Order Dimension of
fixed subspace df3.

10 )

11 1 2
0 1

12 10 2 0
0o -1

111 0 1 4 0
-1 0
1 1

i 3 1
0 1 )
-1 -1

2 6 0
0o -1 )
0 -1

V1 3 1
1 -1
0o 1

V2 6 0
-1 1

Now we have to consider the ramification at the ramified primes to tell what the
Serre conductor of the respective representations are. Let us analyze case by case.

(1) P,. The representation is ramified at 3 and 61 and so the conductor is a power
of 61. The ramification at 61 is tame and therefore the conductor is either 61
or 67°.

The image of the decomposition groig; of the prime 61 in PSL(F3) has
order 3, being generated by an element of one of the two conjugacy classes
whose elements have order 3. In either case the two possible lifts are a class
whose elements have order 6 which has no fixed subspace and a class whose
elements have order 3 and fixes a one-dimensional subspige dhe former
case implies 61 has power 2 in the conductor and the latter case that 61 has
power 1 in the conductor.

Despite the fact that we do not know the exact lift to,&l3) we can ensure
that there is a lift with power 1 of 61 in the conductor by a simple argument:
if the element generating the image B§, in PSLy(F3) lifts to an element of
order 6 then we twist the representation by the quadratic ramified character at
61. That will multiply the element generatings; by —1 which then lies in a
class with order 3.

The conductor in this case ¥ = 61.

(2) P,. The representation is ramified at the primes 3 and 79. The decomposition
group at 79 has order 3 and thus by an analogous argument to the previous case
we have a lifting to Sk(IF3) with conductorN = 79.
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(3) Ps;. The representation is ramified at 163 only. The decomposition group at
163 has order 3 and so there is a lifting with condud¥oe= 163.

Note that in choosing these polynomials we picked the ones with discriminant
p" or 3p" for some small primg and such that the ramification atwould ensure
that there is a lifting with conductav = p.

All these three representations lift to §F3) and therefore have determinant 1.
Therefore in all three cases the Serre charactgf fs= xs.

In Serre’s definition for the weight, the cases where a ioebresentatiornp
has weight 2 all have det, = x;.

In our 3 cases, det = 1, and so we would not expect to find the system of
eigenvalues corresponding to these representations with weight 2 andlete
conductor of the representation, except possibly @uay'—3), whereys is trivial.

In the case of the polynomiaP; we expect to find the system of eigenvalues
with weight 2 and level &, since the representation is unramified at 3, which
implies weight/ + 1.

For each representation we compiled a table with the values of Fauis) for
the unramified primegp. It turns out that with these mod 3 representations we can
only distinguish two possibilities for the trace of Frobenius.

If the image of Froh in PSLy(F3) has order 2 then it has only one possible lift
to SLy(IF3), which has trace 0. If Frophas order 3 then it can lift with order 3 or 6,
which have traces 1 or1. We cannot distinguish between the two cases without
fixing a precise lift. If Froly has order 1 then it again lifts with trace 1-ef.

Thus in practice the values of traéeob,) is a list of zeros and ones, which we
check against the eigenvalues for the eigenforms with coefficierts that were
found.

There is one more condition for a given eigenform to correspond to a represent-
ation p induced by a Galois group ové): it is that the eigenvalues of a prime
and its conjugate are the same. They must both correspond to the trace of Frobenius
of the same rational prime.

In all cases an eigenform was found such that the eigenvalues correspond to the
values of tracéFrob,) of the polynomial inducing the representation and such that
the eigenvalues of each prime and its conjugate are the same.

7. Tables

Tables Il and Ill contain the results for the three polynomials over the fields
Q(+/—1) andQ(+/3). Each table contains the following:

(1) The list of the first 18 primeg in Ok.
(2) The order of Fropin PSLy(IF3). This was calculated using PARI.

(3) The calculated eigenvalues of one weight 2 eigenform corresponding to the
system of eigenvalues of the representation corresponding to the poynomial.
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Table Il. Field K = Q(+/—1) and polynomialsP;, P» and Ps.

01 N =183 02 N =237 03 N = 489
© o(Froby) agp agp o(Froby) agp agp o(Froby) agp agp
1+ 3 1 -1 2 0 0 3 1 -1
241 3 1 -1 2 0 0 2 0 0
1+2i 1 -1 0 0 0 0
3+2i 3 1 1 3 -1 -1 2 0 0
243 1 -1 -1 0 0
441 3 1 -1 2 0 0 2 0 0
1+4i 1 -1 0 0 0 0
542 3 -1 1 3 1 -1 3 -1 1
2+5i -1 1 1 -1 -1 1
6+1i 2 0 0 3 1 2 0 0
1+6i 0 0 1 0 0
5+4i 2 0 0 3 -1 1 3 -1 1
4+ 50 0 0 -1 1 -1 1
7 3 -1 -1 3 -1 -1 3 -1 -1
7+ 2i 2 0 0 3 1 -1 2 0 0
24 7i 0 0 1 -1 0 0
6+ 5 * 3 -1 -1 2 0 0
5+ 6i -1 -1 0 0

The level of the eigenform is indicated at the top of the column. These eigen-
forms have charactegs, which is trivial in the cas&k = Q(+/—3).

The correspondence between the system of eigenvalues of the representation
and the eigenform is given by

0 if order of Frob, is 2,
A, =
v +1  if order of Froh, is 1 or 3

The tables in this paper contain the eigenvalues for the first 18 primes. | actu-
ally calculated and checked the correspondence of eigenvalues for more then 150
primes in each case. | also did the fief@6v/2) andQ(+/7) for the polynomialP;.

The results for each field are:

(1) FieldK = Q(v/-1).
In this casg(Ok /30x)* /O has order 2 and so there is one nontrivial char-
acter of level 3 going td.
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Table lIl. Field K = Q(+/—3). Notationw = (1 + +/—3)/2.

01 N =61 02 79+ 79w 03 163+ 163w
o o(Froby) ag(Fp) o(Froby) agp (Fp) o(Froby) ag (F3)
2 3 -1 2 1 3 -1
24w 3 -1 3 -1 3 1
1+ 2w -1 -1 1
3+w 3 1 3 -1 2 0
1+ 3w 1 -1 0
3+ 2w 3 1 3 1 3 1
2+ 3w 1 1 1
5 3 -1 1 1 1 1
5+w 3 1 2 0 2 0
1+ 5w 1 0 0
44 3w 2 0 3 1 2 0
3+ 4w 0 1 0
6+w 3 -1 2 0 3 -1
1+ 6w -1 0 -1
54 4w * 1 3 -1 2 0
4+ 5w 1 -1 0
7+ 2w 3 1 3 1 3 -1
2+ 7w 1 1 -1

In all 3 cases the eigenform corresponding to the representation was found
at level 3V, whereN is the Serre conductor of the representation and character

X3-

A pair of eigenforms was found for each system of eigenvalues. | do not
know why there is a pair for each representation and without fixing a precise
lift both eigenforms could correspond tp.

(2) K =QW-3).
The group(Ok /30x)* /O% has order 1 and so the charactgris trivial.

The representatiop,; appears with weight 2 and level 63; appears with
level 79+ 79(1 + /—3)/2 andps appear with level 163- 1631 + /—3)/2.
All with trivial character.

Note that 1+ (1 + +/—3)/2 is the prime ofQ(+/—3) lying above 3, which
is ramified in this field.

() K = Q(v/=2) andK = Q(v/—7).
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The group(Ok /30,)* /0% has order 2 fok = Q(+/—2) and has order 4 for
K = Q(+/—7) and so in both cases there is a nontrivial charagter

We tested forP; only. The representatiop, appears with level 183 and
characterys for both fields.

The primes marked in the tables withk @re the bad primes for the correspond-
ing level. Eigenvalues were not calculated for the bad primes.

8. Final Remarks

An interesting question is whether corresponding modular forms lift to character-
istic 0. With the programs used here we cannot calcutateX*, C) directly: the
round-off errors using complex coefficients made the calculations very difficult for
the levels considered. Nonetheless we can calcufat& ™, IF,,) for any primep.
| found that in the cases considered, for some valugstbkre are no eigenforms
in Hf (X*,F,) with the level and character corresponding to our examples. This
shows that the mod 3 eigenforms found do not lift to characteristic zero.

In the calculations above | am only computing traces of Frobenius elements up
to a sign. It would be nice to remove this ambiguity by fixing a lift of the projective
representation.
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