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MODIFICATION OF BALAYAGE SPACES BY
TRANSITIONS WITH APPLICATION
TO COUPLING OF PDE’S

WOLFHARD HANSEN

Abstract. Modifications of balayage spaces are studied which, in probabilistic
terms, correspond to killing and transitions (creation of mass combined with
jumps). This is achieved by a modification of harmonic kernels for sufficiently
small open sets. Applications to coupling of elliptic and parabolic partial dif-
ferential equations of second order are discussed.

§1. Introduction

Balayage spaces provide a potential theory which is as rich as that
of harmonic spaces, the only difference being that harmonic measures for
open sets may live on the entire complement instead of being concentrated
on the boundary (see [BH86]). While harmonic spaces are designed for a
unified discussion of solutions to large classes of linear elliptic and parabolic
partial differential equations of second order, the notion of a balayage space
covers, in addition, Riesz potentials, Markov chains on discrete spaces, and
integro-differential equations.

In this paper we shall study modifications of balayage spaces which,
in probabilistic terms, correspond to killing and transitions (creation of
mass combined with jumps). This will be achieved by a modification of
harmonic kernels for sufficiently small open sets. Considering transitions
on direct sums we obtain coupling of balayage spaces.

For Markov processes, semigroups and resolvents such procedures have
been developed in a series of papers [Bou79a], [Bou79b], [Bou80], [Bou81],
[Bou82] and recently (apparently without knowledge of the work of
N. Bouleau) in [CZ96]. So it should come as no surprise that our application
to PDE’s leads to similar results. We would like to stress, however, that
our method yields an immediate solution to Dirichlet problems for coupled
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PDE’s since we may directly apply the general theory of balayage spaces,
whereas in [Bou81] and [CZ96] additional considerations are necessary.

To give a first idea of our approach let us look at a very simple example
where the transition merely consists in jumping back and forth between
two copies of an open set: Consider two global Kato measures p1, o > 0
on a Green domain D in R¢, d > 1, (i.e., we have a Green function Gp
on D and G = [Gp(-,y) p;(dy) is a bounded continuous real function
on D, j =1,2) and assume that |G ||« ||G5 [lo < 1. Let U be a regular
relatively compact open subset of D and fix continuous real functions 1,
w9 on the boundary OU. Suppose we want to solve the coupled Dirichlet

problem
(11) Ahl == —hg,ul on U, h1 = @1 On 8U,
(1.2) Ahg = —hius on U, hg = py on JU.

Note that e.g. the biharmonic problem
(1.3) A(AR) =0 onU, h=¢; ondU, —Ah=ypy ondU

is a special case (take py = A%, us = 0).

Let X be the topological sum of two copies X1, X9 of D, each equipped
with the harmonic structure given by the Laplacian and let m denote the
canonical mapping between these two copies (in Section 8 we shall do this
more formally). Let U; be the set U in X, j = 1,2. Taking ¢ on X, h on
U1 U Uy, ¢ on 0U; U U, such that

(1.4) M|Xj = Ky, h|Uj = hj ) 90|3Uj = ®j (=12
the equations (1.1) and (1.2) may be rewritten as a single equation
(1.5) Ah=—(hom)p onUyUUz, h=¢ ondU;UU,).

For j = 1,2, let Gy, denote the Green function on U; and define a ker-
nel K 5], by

Kf o= Gif' = [ Gu (- 200(:) due).
Then Ah = —(h o m)u if and only if

(1.6) A(h—EKf (hom) =0 onUj, j=12
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The idea is now the following: Given j € {1,2} and a regular subset V of X;,
let Hy denote the harmonic kernel of V' (i.e., Hy is a kernel on X such that,
for every continuous function ¢ on X, the function Hy ¢ is continuous on X,
harmonic on V, and equal to ¢ on X \ V) and define a new kernel Hy on X
by

(1.7) Hyp = Hyp + K{(po).

The family of all I;TV, V regular, V C X; or V C Xy, yields a balayage
space (X, W) (this requires some proof, see Example 7.3) and then there
are corresponding harmonic kernels Hy for every open subset U of X. In
particular, Uy U Us is regular with respect to (X, VNV) and then

h:= ﬁUluUQQO

is the solution of (1.5). Indeed, clearly h = ¢ on (U1 UUz). And, for every
J €{1,2}, we have Hy,uu, = Hy,; Hu,uu,, hence

h = Hy,h = Hyh + Ky (ho),

Since Hy;h is harmonic on Uj, this implies that A(h — K{jj (hom)) =0
on Uj, i.e., (1.6) holds.

This paper is organized as follows: First we shall briefly recall some
basic definitions for balayage spaces (Section 2) and discuss stability with
respect to increasing limits of harmonic kernels (necessary for Section 9).
Section 3 presents some fundamental properties of parabolic balayage spaces
(applied in Sections 7 and 8). In Section 4 we shall generalize definition
(1.7) to study a first modification of balayage spaces by transitions. A short
discussion of perturbed balayage spaces in Section 5 will allow us to com-
bine transitions with (positive or negative) perturbations (Section 6). In
Section 7 we consider the special case of coupling in direct sums of balayage
spaces, and in Section 8 we apply these results to coupling of partial dif-
ferential equations. The most general modification of balayage spaces will
be studied in Section 9 (which is independent of Sections 7 and 8). An
appendix on lifting of potentials and potential kernels finishes the paper.

§2. Balayage spaces

There are various ways of describing a balayage space: By its cone W
of positive hyperharmonic functions, by a family of harmonic kernels, by a
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corresponding semigroup, by an associated Hunt process (see [BH86, Theo-
rem IV.8.1] or the survey article [Han87]). For our purpose the description
using harmonic kernels is very appropriate.

We begin by introducing some notation: Let X be a locally compact
space with countable base. For every open set U in X, let B(U) denote
the set of all numerical Borel measurable functions on U. Further, C(U)
will denote the space of all real continuous functions on U and K(U) (Co(U)
resp.) the set of all functions in C(U) having compact support (vanishing at
infinity) with respect to U. Occasionally, functions on U will be identified
with functions on X which are zero on U€. Finally, given any set A of
functions let A, (AT resp.) denote the set of all functions in A which are
bounded (positive resp.)

Let U be a base of relatively compact open subsets of X and, for every
U €U, let Hy be a kernel on X such that Hy(z, -) = e, for every z € U¢
and Hy 1y = 0. It will be convenient to assume that I/ is stable with respect
to finite intersections (by [BH86, Remark VII.3.2.4] this is no restriction of
generality). Define

(2.1) W:={v|v:X —[0,00] Ls.c., Hyv < v for every U € U}
and, for every numerical function f > 0 on X, let
Ry :=inflve W:v > f}.

A function s € CT(X) is called strongly (W-)superharmonic if, for every
Ueld, Hys<sonU.
Then (Hy)yey is a family of (regular) harmonic kernels and (X, W) is
a balayage space provided the following holds (where U,V € U):
(H1) Given z € X, limy(,) Hup(z) = ¢(z) for all ¢ € K(X) or Ry, is
Ls.c. at z.
(Hé) HyHy =HyifVcU.
(Hs) For every f € By(X) with compact support, the function Hy f is
continuous on U.
(H}) For every ¢ € K(X), the function Hyp is continuous on U.
(H.) There exists a strongly superharmonic function s € C*(X).

Remarks 2.1. 1. Let f be a strictly positive continuous function on X

and define kernels HJ, on X by H[,(x, -) := (f/f(z))Hy(x, -). Obviously
(Hu)veu is a family of harmonic kernels if and only if (H{;)vey is a family
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of harmonic kernels, and the corresponding set W’ is related to YW by W' =
(1/f)W. If f = s, s being a strongly superharmonic function in C*(X), we
have 1 € W (even strongly W’-superharmonic). This implies that for the
proof of many results on general balayage spaces we may assume without
loss of generality that 1 € W.

2. It will be clear to the specialist how to proceed if we would not
assume having a base of regular sets, i.e., if instead of (H}) we would only
suppose that the following property (H4) holds: For every x € U there
exists a l.s.c. function w > 0 on U such that w(z) < oo, Hyw < w if
V C U, and limrw = oo for every non-regular ultrafilter 7 on U (see
[BHS86, p. 94]).

Moreover, properties (H1)—(H}) imply the following property (Hs): W
is linearly separating (i.e., for z,y € X, = # y, and A € Ry there exists
v € W such that v(z) # Av(y)) and there exists a strictly positive function
sp € WNC(X). Indeed, let s € CT(X) be strongly superharmonic. Then
of course s > 0 and s € W. Furthermore, Hys € W for every U € U:
Because of (H}) the function Hys is l.s.c. Given V' € U, we have to show
that Hy Hys < Hys. Since Hys < s and Hys < s, we obtain first that

HvHUS < Hvs <s= HUS on U°.

In addition, Hy Hys = Hys on V€. Since (UNV)¢ =U°UV®, we conclude
that
HyvHys = HynvHyvHys < HynvHys = Hys.

It is now easily seen that W is linearly separating: Fix x,y € X, = # y.
Choose U € U such that x € U, y ¢ U. For every A € Ry, s(x) # As(y) or
Hys(z) # As(y) = AHuys(y).

We finally note that (Hf) holds for every balayage space by [BHS86,
pp. 17, 118].

3. It will be useful to know that W as defined by (2.1) does not change
if we replace U by a smaller base U’ (see [BH86, Remark II1.6.13]).

As for harmonic spaces continuous potentials play an important role.
The convex cone P(X) of all continuous real potentials can be defined and
characterized in several ways:

P(X) = {p eWNC(X):  inf  Ryp= o}

K compact C X
={peWnl(X): % € Co(X) for some g € WNC(X)}
={peWnC(X):0<g<p geH"(X)=g=0}
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where HT(X) denotes the set of all positive harmonic functions on X, i.e.,
HY(X)={g€CT(X): Hyg = g for every U € U}.
Moreover, we have a Riesz decomposition
WNC(X)=H"(X)®PX).

A function f on X is called P-bounded if |f| < p for some p € P(X).
For every open subset V of X, the set *H™ (V) of all positive functions
which are hyperharmonic on V is defined by

wo L n ~slsc.onV, _

HEV) = {S €BT(X): Hys < s for every U € U with U C V}'
(see [BH86, p. 94]). Of course, *HT(X) = W and, by [BH86, Corollary
T11.4.5],

(2.2) *H+(Uw) ="M+ (Vh)
i€l i€l
for every family (V;);c; of open subsets of X. Note that Hy (BT (X)) C
*HT(U) for every U € U (consequence of (H)) and (Hs3)).
It is easily seen that we may restrict the balayage space (X, W) on any
open subset Y of X defining kernels

HY(z,-):=Hy(z, )y (xeUclU,UCY).

The corresponding cone Wy is *H*(Y)|y.

It is trivial that finite and countable direct sums of balayage spaces are
balayage spaces as well: Let (X;,W;), i € I C N, be balayage spaces. If
X =) ;c1 Xi denotes the topological sum of all X, i € I, and

W:ZWi ={v|v: X —0,00], v|x, € W, for every i € I}
i€l

(we identify v; € W; with a function on X taking v; = 0 on X \ X;), then
(X, W) is a balayage space. To see this it suffices to take U = (J;c; Ui
(U; being a base of regular sets for the balayage space (X;,;)) and to
extend the harmonic kernels Hy, U € U;, defining Hy(z, -) = ¢, for all
x € X \ X;. Of course, for every i € I, the restriction of (X, W) on X; is
(X, W;).

In Section 9 we shall need the following stability result with respect to
increasing limits which is of interest in itself:
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PROPOSITION 2.2. LetU be a base of relatively compact open sets in X
and, for everyn € N, let (H{})ueu be a family of (regular) harmonic kernels
on X. Suppose that, for every U € U, the sequence (H[})nen is increasing
to a kernel HiF. Then the following are equivalent:

(1) (HZ)veu is a family of harmonic kernels on U.

2) There exists s € CT(X) such that, for every U € U, the function H®s

( ) s Y s U
is continuous on X and HiPs < s on U.

Proof. (1) = (2): By general properties of a family of harmonic kernels
(see [BHS6]).

(2) = (1): For every n € NU {00}, define
W' ={v|v:X —[0,00], v Ls.c., Hjyv <w for every U € U}.

Then
W> = [\ W,
n=1

By assumption (2), the function s is strongly YW*°-superharmonic.
IfU,VelUdand V C U, then H{;Hf; = Hf; for every n € N, and hence

HPHE = HY.

Fix a sequence (¢,,) in KT (X) which is increasing to 1, fix U € U and
fe B;r(X) with compact support. Choose a € Ry such that f < as. Then,
for every n € N, the function H;f is continuous on U and the function
Hij(as — f) = sup,,, Hij(Ym(as — f)) is Ls.c. on U. So the increasing limits
H f and HiP(as — f) are Ls.c. on U. Knowing that their sum H®(as) =
aHPs is continuous on U we obtain continuity of H® f and H (as — f)
on U. Now suppose that f is even continuous, i.e., that f € X1 (X). Then
we have the corresponding continuity properties on X. In particular, we
see that HP f € K(X).

So we already know that (H{®)yey has the properties (H{), (H2), (H3),
and (H}).

It remains to show that (Hp) is satisfied. So fix x € X. Assume first
that, for every ¢ € K(X),

lim HLo(x) = o(x).
Jim Hpo(x) = o)
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Fix 1 € KT (X) and choose a € Ry, g € KT(X) such that @1 + p2 < as,
(o1 + @2)(x) = as(z). Then

liminf HP¢:(z) > lim Higi(z) = p(z), j=1,2
Vige) VSOJ( )_Vl{ac} VSOJ( ) ‘PJ( ) J

and, for every x € V € U,
HyPo1(x) + Hy pa(x) < Hy (as)(z) < as(z) = o1(z) + pa(x).
Therefore

lim H{ypi(x) =pi(x), j=1,2.
Viie} Vi) =ei(x), Jj

Finally, define
r=inf{v e W' s o(z) > 1}, 1o = inf{v € W :o(z) > 1},

and suppose that r; is Ls.c. at 2. Since W is contained in W', we have
11 < T'oo. Moreover, obviously 7o < s/s(z). Therefore

1 =liminfr(y) <liminfre(y) <liminfs(y)/s(z) =1 = roo(x),

Yy—x

i.e., roo is Ls.c. at x. H

Given a balayage space (X, W), a kernel Kx on X is called a potential
kernel provided

(2.3) Kx f e P(X)NH(X \ supp(f))

for f € By (X) with compact support.
For ¢ € BT (X) let M, denote the multiplication operator f — ¢f. It
follows immediately from the definition that Kx M, is a potential kernel
on X if Kx is a potential kernel on X and ¢ € BT (X) is locally bounded.

Moreover, for every potential kernel K x, a general minimum principle
implies that v > Kx f whenever v € W and f € B*(X) such that v > Ky f

on supp(f).
For every U € U, the equation

Kyp:=Kxp—HyKxp (p€K(X))
defines a kernel Ky on X such that

(2.4) Kx = Ky + HyKx
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and
(2.5) Kyf=Ky(luf) € Co(U)N*HT(U) for every f € By (X).
In particular, Ky may be regarded as a kernel on U. Furthermore,
(2.6) Ky=Ky+HyKy forallUV eld withV CU.
(All this follows immediately from (H)), (Hs), and (Hy).)

Remarks 2.3. 1. If we have a Green function G x for X, then Kx f =
Gﬁ;” for some measure p > 0 on X and Kyf = Gé“ where Gy (-,y) =
Gx(-,y) — HuGx(-,y) forye X, U clU.

2. For every p € P(X), there exists a unique potential kernel K% such
that K51 = p (see [BH86, p. 75]). It is called the potential kernel associated
with p.

3. Conversely, for every potential kernel K x, there exists p € P(X)
and a strictly positive function ¢ € C*(X) such that

Kx = K% M,,.

Indeed, fix a sequence (¢,,) in K1 (X) such that X = (J2,{¢, > 0}. Since
pn = Kx, € P(X), we may choose reals «,, > 0, n € N, such that

P = Zani/)n ceCt(X), p:= Zanpn € P(X).

n=1 n=1

Obviously, Kxt¢ = p and hence KxM, = K% by Remarks 2.3, 2. So
¢ := 1/1 has the desired properties.

4. If Kx is a potential kernel on X, then every Ky, U € U, is a
potential kernel on U. For the converse, i.e., for the construction of K x
from a compatible family of potential kernels (K )yey, see Section 10.

83. Parabolic balayage spaces

Extending the notion used in [HHS88] for harmonic spaces let us say
that the balayage space (X, W) is parabolic, if for every non-empty compact
subset C' of X there exists z € C such that liminf, ., Ri,(y) = 0. To get
equivalent properties we shall need the following result on compactness of
operators K% which is of independent interest:
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LEMMA 3.1. Suppose that there exists a strictly positive bounded func-
tion in W and let p € P(X) such that p is harmonic outside a compact
set C. Then K% is a compact operator on By(X).

Proof (cf. also [Han81, p. 504]). Let K := K% and let us fix w € W
such that 0 < w < 1. There exists @ > 0 such that p < cw on C and hence
p < aw on X. So pis bounded. We intend to show first that the subset
{Kf:feB(X),0< f<1}of Py(X) is equicontinuous. Fix x € X, ¢ > 0,
and let L be a compact neighborhood of x. By Dini’s theorem, there exists
an open neighborhood U of z in L such that K1y, <€ on L. For every
f € B(X) such that 0 < f <1,

Kf = f(o)Klgy + K(lg\(o f) + K(lpe f)

where K1, is continuous (it vanishes if {z} is semi-polar), 0 < K (11 (4} f)
< e on L, and the functions K (1yef) are equicontinuous on U, since they
are harmonic on U and bounded by p. So there exists a neighborhood V
of z in U such that, for every f € B(X) with 0 < f <1,

|[Kf—Kf(x)] <3 onV.

Fix a sequence (f,) in B(X) such that 0 < f,, <1 for every n € N. By our
preceding considerations, there exist a subsequence (g,) of (fy) such that
the sequence (K gy,,) is locally uniformly convergent on X. Fix § > 0. There
exists a natural ng such that, for all n,m > ny,

|Kgn — Kgm| < dw on C.

Fix n,m > ng. Having Kg, < dw + Kg,, on C and knowing that Kg, is
harmonic outside C', we conclude that Kg, < dw + Kg,, on X. Similarly,
Kgpy <ow+ Kg, on X. Thus

|Kgn — Kgm| <ow<¢ on X.
i

Remark 3.2. If follows easily that for every potential kernel K x and
for every U € U (even for every relatively compact open U in X) the kernel
Ky is a compact operator on By(U).

THEOREM 3.3. Suppose that there exists a strictly positive bounded
function in W and let p € P(X) be strongly superharmonic. Then the
following statements are equivalent:
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(1) (X, W) is parabolic.

(2) For every q € P(X) and for every non-empty compact subset C of X,
there exists v € C' such that K%1¢(z) = 0.

(2") For every non-empty compact subset C' of X, there exists x € C' such
that K% 1c(x) = 0.

(3) For every q € Py(X) such that K% is a compact operator on By(X),
the operator I — Kg( is invertible.

(3") For every compact subset C of X and for every a > 0, the operator
I — aK% M, on By(X) is invertible.

Proof. (1) = (2): Fix ¢ € P(X) and a non-empty compact subset C
of X. There exists o > 0 such that g < 1 on C and hence aK;’(lC < Ry,.
By (1), there exists « € C such that liminf,_., Ri,(y) = 0 and therefore

aK{le(z) = z%1_r)1:1E aK§1o(y) < lizf!n_)i;lf Rio(y) =0

whence K%1¢c(z) = 0.

(2) = (2): Trivial.

(2") = (1): Suppose that there is a non-empty compact subset C' of X
such that liminf, ., Ri,(y) > 0 for every + € C. Then there exists a
compact neighborhood C’ of C such that Ry, > 0 on C’. Define ¢’ :=
K% 1¢s. Since p is strongly superharmonic, we know that ¢’ > 0 on the
interior of C’ whence 3¢ > 1 on C for some 3 > 0. This implies that
B¢ > Ri.. In particular, ¢’ > 0 on C".

(2) = (3): Fix g € Py(X) such that K := K% is a compact operator on
By(X). Assume that I — K is not invertible. Then there exists a function
f € By(X) \ {0} such that f = Kf, and we may assume without loss of
generality that [f| < 1 and {f > 0} # (). Since the kernel K is a compact
operator on By(X), there exist a real ¢ > 0 and a compact subset C of
{f > e} such that

K1{0<f<5} < 1/2 and Kl{fzs}\C < 8/2.
By (2), there exists € C such that K1¢(z) = 0 and therefore
e < flz) = Kf(x) < K(fl{ps0y)(2) < eKljocey () + Klipoepolz) <e.

This contradiction shows that I — K is invertible.

(3) = (3'): Trivial, since, for every compact subset C of X, KX M, is
the operator K% for ¢ := K% 1¢c € Pp(X) (see Remarks 2.3, 2) and K% is
compact by Lemma 3.1.
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(3") = (2): Suppose that there exists a non-empty compact subset C
of X such that K%1c > 0 on C. Then there exists a real v > 0 such
that yK%1c > 1 on C. Defining ¢ := vK%1¢ we already noted before
that K% = yK% M. In particular, K%1 =¢ > 1 on C and K%1ce = 0.
Therefore (K%)"1 > 1 on C' whence Y 2 ((K%)"1 = co on C. Thus the
following lemma implies that (3") does not hold. [

LEmMMA 3.4. Let K be a bounded kernel on X and v > 0 such that
I —aK is invertible for every 0 < a <. Then (I —yK)™' =3"2° (vK)™.

Proof. Let
B :=sup{a € [0,7] : (I —aK)™'f >0 for every f € B} (X)}.

By continuity, (I — B3K)~!f >0 for every f € B} (X). So

oo

(I—BK)™ =) (BK)"

n=0

by [HH88, Lemma 1.3]. If § < «, then by continuity again, there exists
B < ' < such that

oo

(I-BFK)" =) (BK)

n=0

and therefore (I — 3'K)~1f > 0 for every f € B, (X). This contradicts the
definition of 8. Thus 8 = v and the proof is finished. 0

84. First modification by transitions

In the following (X, W) will always denote a balayage space associated
with a family (Hy)yey of regular harmonic kernels and Kx a potential
kernel for (X,W). Moreover, we fix a kernel 7" on X and assume that, for
some sequence (W,,) of open sets increasing to X,

(4.1) Tan < 00, Kx(lwnlen) S C(X) (TL € N)
Such a kernel T' will be called an admissible transition kernel.

Remarks 4.1. 1. If the sets W, are relatively compact and the func-
tions T'1yy, are bounded on W, then (4.1) is already a consequence of (2.3).
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So every kernel T on X such that Ty is locally bounded for every ¢ € K(X)
is an admissible transition kernel.

2. It is easily seen that (4.1) implies that, for all U € U,
(4.2) Ky(Tf) e Co(U) f € By(X) with compact support.

Indeed, choosing n € N such that U C W,, and supp(f) C W, the lower
semi-continuity of the functions K x (1w, Tf%), Kx (1w, T(||fllcclw, — fF))
and the continuity of the sum || f||oo Kx (1w, T (1w, )) implies that the func-
tions Kx (1w, T f*) are continuous. Thus by (2.6)
Ky(Tf)=Kx(Tf) - HuKx(Tf)
= Kx(lwan) - HUKx(lwan) S Co(U)

(the harmonicity of Kx(lw:Tf) on W, implies that HyKx(lw:Tf) =
Kx(weT'f)).

3. Using lifting of potentials (see Remarks 2.3, 4) it can be shown that,
conversely, (4.2) implies (4.1).

Let UT be the set of all U € U such that T is a transition from U to
the complement of U, i.e.,

Ut ={U cu : 1yT1y = 0}.
In this section we shall assume that
(4.3) UT is a base of X

(in Section 9 we shall deal with the general case by approximation). We
define
Kr .= KyT, HE:=Hy+KF (Ueu”)

(cf. definition (1.7)) and
WT = {v|v:X —[0,00] Ls.c., Hrv < v for every U € UT}.

By Remarks 2.1, 3,
wTr cw.

Let us check that most of the axioms of a family of harmonic kernels
are satisfied by (H{;)yeyr without any further assumption: Fix U,V € U7,
V CcU. Then

(4.4) Kily = KyTly = Ky(1yT1y) =0,
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hence (taking V = U)
HE1y = Hyly = 0.

Let f € By(X) with compact support. Then
(4.5) Hlf=Hyf=f onU®

showing that H}(z, ) = e, for every x € U¢. Since K} f € Co(U), we
obtain by (Hs) that HL f is continuous on U. And if f € K(X), then
H[ f € K(X) by (H}). Thus the family (H/,)ye,r satisfies (Hs) and (H}).

Moreover, by (4.4) and (4.5), KLHL f = K& (lyeHE f) = KE(lpe f) =
KLf, ie.,

(4.6) KLHE = KL.
Since Hy Hy = Hy by (Haz), we obtain by (4.6) and (2.6) that

HYH{; = Hy(Hy + K{;) + K{ Hj; = Hy Hy + Hy Ky + K,
= Hy + K& = HE.

So (HE)yeyr satisfies (Ha) as well.
Given z € U and ¢ € KT (X), we obtain by (2.6) that limy |, Klp(z)
= 0, since limy | () Hy Ky (T¢)(z) = Ky(Ty)(x). Hence

lim H{ = if  lim H = .
Hm, ve(@) = p(x) i i, ve(z) = o(z)

Moreover, defining

ri= Ry, rl = RlT{m} = inf{v e WT : v(z) > 1}
we have 7T > r, since WT' ¢ W. Hence liminf,_, rT (y) > liminf,_, r(y)
=1,if ris Ls.c. at z. And then 7 is Ls.c. at = provided there exists v € WT
with v(z) < oo (since then v/v(z) > T, 1> rT(z)).

Thus we have the following result:

THEOREM 4.2. IfUT is a base of X, the following properties are equiv-
alent:
(1) (X, WT) is a balayage space (i.e., (HE)yeyr is a family of harmonic
kernels on X).
(2) There exists a strongly W' -superharmonic function s € C*(X).
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Remark 4.3. Let T’ be a kernel on X such that 77 < T, U7 is a base
of X, and (X, WT) is a balayage space. Then T" is admissible and every W7 -
strongly superharmonic function is obviously W -strongly superharmonic.
So Theorem 4.2 implies that (X, WT/) is a balayage space as well.

COROLLARY 4.4. Suppose that U is a base of X and that there exist
s €W and u € BT (X) such that

vi=s+Kxuel(X), Tv<u
and, for every U € UT,
{Hys < s} U{Ky(u—Tv) >0} =U.
Then (X, W7T) is a balayage space and v is strongly W7 -superharmonic.
Proof. Tt suffices to note that, for every U € U7,
v— HEv=v— Hyv — Ky(Tv) = s — Hys + Ky(u —Tv) >0 on U.
0

Remarks 4.5. 1. For a version not assuming that 47 is a base see
Theorem 9.2.

2. If Kx = K% for some strongly superharmonic p € P(X), then
TKxu < u implies that taking s = 0 we have Ky(u —Tv) >0 on U € U.

3. For some applications (see e.g. Corollary 7.9) it will be useful to
keep in mind that, given any strictly positive locally bounded function
¢ € B(X), we may replace the potential kernel K x by the potential kernel
f — Kx(¢f) and the transition kernel T' by the transition kernel f
(T'f)/e without changing (X, WT).

COROLLARY 4.6. Suppose that UT is a base of X, Kx is associated
with p € P(X), and that for some s € WNC(X) the function v :=p+ s
is strongly superharmonic and Tv < 1. Then (X, WT) is a balayage space
and v is strongly W' -superharmonic.

Proof. Fix U € U and = € U. By assumption, Hyv(z) < v(z). Sup-
pose that Hys(z) = s(x). Then Hyp(z) < p(z), i.e., Kyl(x) > 0. Since
1 —Tv > 0, this implies that Ky (1 — Twv)(x) > 0. So the statement follows
from Corollary 4.4. b
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If (X,WT) is a balayage space, then, for every U € U7, Hg is the
kernel solving the Dirichlet problem for U with respect to (X, W7T). We
may, however, solve the Dirichlet problem with respect to (X, W7) for any
U € U (if we wanted to we could even solve it for any open set U in X,
see [BH86, VII.2]). This leads to the larger family (H})yey where H{: for
arbitrary U € U can be characterized in the following way:

PROPOSITION 4.7. Suppose that (X, WT) is a balayage space. Then,
for every U € U, the harmonic kernel Hg for U with respect to (X, WT)
has the following property:

For every ¢ € KT(X), the function H?}gp is the unique function h in
K+ (X) such that

h— KEh = Hye.

Proof. 1. Fix ¢ € KT(X) and define h := H{;¢. Then h € K*(X)
and hence KL h € Co(U). So

g:=h—-KiheK(X), g=¢ onU°"
For every V € UT with V C U,
h= H{h = Hyh+ K{h,

hence
g=h—KLh— HyKEh = Hy(h — KE5h)

is harmonic on V. Thus ¢ is harmonic on U, g = Hyp.
2. Now let h be any function in K1 (X) such that

h — KEh = Hye.
Then h = ¢ on U¢ and, for every V € U with V C U,
HIh=Hyh+ KLh = HyHyp + Hy KEh + Kbh = Hyp + KEh = h.
Thus h = Hp. U

Remark 4.8.  Assuming that (X, W) is a balayage space we may show
in the same way that, for every ¢ € K(X), Hl ¢ is the unique function
h € K(X) such that KZ|h| € Co(U) and h — Kh = Hy.
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PROPOSITION 4.9. Let v be a positive numerical function on X. Then
v € WT if and only if there exists a function w € W such that v = K;";v—i—w.
In particular, the fine topologies for (X, W) and (X, WT) coincide.

Proof. Suppose first that w € W and v = K;";v—kw. Then v is L.s.c. Fix
U eUT and z € U. We have to show that HFv(x) < v(z). To that end we
may assume that v(z) < oo and hence Hy K kv(z) < K¥v(z) < v(z) < 0.
Then

Hiv(z) = Hyv(z) + Kfv(z) = Hyv(z) — HyK¥v(z) + KXo(z)

= Hyw(z) + K¥v(z) < w(z) + KXv(z) = v(z).

Thus v € WT.

Suppose now conversely that v € WT. Then v € W, so v is finely

continuous. Let us choose an increasing sequence (W,,) of relatively compact
open sets satisfying (4.1). Defining

on = 1w, T (1w, inf(v,n)) (n € N)
we then have Kxp, € P(X) for every n € N and
Kxopn T K)T(v, Kyen T ng
for every U € UT. Define
wy, =v—Kxp, (neN).
For every U € U7,
Hyw, + Kxon = Hyv + Ky, < Hyv + ng = Hgv <w,

i.e., Hyw, < w,. Since w, is Ls.c. and w, > —Kxyn,, we therefore obtain
that w, € W. The sequence (w,,) is decreasing and the function w defined
by
w(z) = f-liminf inf w, (y), =€ X,
Y—T n
is contained in W. Since the functions v and K)T(v are finely continuous
and obviously
v=Kkv+ i%f Wy,

we finally obtain that v = K%v + w. 0
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85. Perturbation of balayage spaces

In order to get further possibilities for transitions let us briefly discuss
perturbation of (X, W). To that end we fix a real function k& € B(X) such
that, for every U € U,

KU|/<Z| € Co(U)

Such a function will be called a Kato function (with respect to Kx). Let
us note that, given U € U, the kernels

KyMys : f— Ky(k*f)
are the potential kernels associated with Ky /k® (see Remarks 2.3, 2).

LEMMA 5.1. For every U € U, the mapping I + Ky M+ is a bijection
on By(X). For every bounded s € *H™(U),

0<(I+KyMg)'s<s onX, (I+KyMg)ts>0 on{s>0}.

Proof.  Obviously, (I + KyM+)f = fon U¢, (I + KyMy+)f = (I +
KyM+)(1yf) on U, and the claim follows as for harmonic spaces (see
[BHHS7, p. 104], or [HM90, p. 558)). 0

In particular, for every U € U, the operator
Ly = (I + KyMg+) 'Ky M, -

on By(X) defines a kernel on X. Obviously, Ly lives on U, i.e., Lyly =0
on U¢ and Lylye = 0. As for harmonic spaces we obtain (see [HM90)]):

LEMMA 5.2. For every U € U, the following statements are equiva-
lent:

(1) The operator I — Ly is invertible on By(X) and (I — Ly)~'f >0 for
every f € B (X).
(2) Y02 o L1 is bounded on U.

If (2) holds, then U is called k-bounded and

o
(I + KuMy) ™" =Y L (I + Ky M) ™"

n=1
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THEOREM 5.3. ((I + KyM;+) 'Hy)
nels on X.

vey ' a family of harmonic ker-

More generally:

THEOREM 5.4. Suppose that there exist s € W and u € BT (X) such
that
vi=s+KxuelC(X), 0<u+kv,

and, for every U € U, {Hys < s} U{Ky(u+ kv) > 0} = U. Then every
U €U is k-bounded and defining

(5.1) Hy = (I+ KyMy)~"'Hy (U €l)
and
(5.2) Wi={w|w:X —[0,00] Ls.c., Hyw <w for every U € U}

the family (fNIU)Ueu is a family of harmonic kernels on X, the pair (X, W)
is a balayage space, and v is strongly WW-superharmonic.

Proof. For the moment fix U € U and define
f:=1yv— Lyv = 1yv — Ly(1yv).

By induction 1yv = 22;01 LY f + L (1yv) for every m € N and therefore

(5.3) S LEf < 1pv.
n=0

To prove that inf f(U) > 0 we note that

(I + KUMkJr)f =1lypv+ KyM+v — KyM-v
=1lyv+ KU(kU) =1ys+ HyKxu+ KU(U + ]ﬂ))

is a bounded function in *H*(U) and strictly positive on U. So we conclude
by Lemma 5.1 that f > 0 on U. Moreover, Lyv € Cy(U) and inf v(U) > 0.
Therefore inf f(U) > 0, and (5.3) shows that U is k-bounded. We define a
kernel ﬁU by

o0
(5.4)  Hy:=(I+KyMy) 'Hy =Y L{(I + KyM+) ' Hy.

n=0
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and observe that
(I + KyMy)(v— Hyv) = v+ Ky (kv) — Hyv = (s — Hys) + Ky (u+ ko) =: t

is a bounded function in *H*(U) which is strictly positive on U. Applying
Lemma 5.1 once more we obtain that

v—Hyv= I+ KyMy)~'t > (I+ KyMg)""t>0.

In particular, (Hy)yey satisfies (HY).

Obviously, Hyly =0 and Hy(z, -) = e, for all U € U and z € UC. If
f € By(X) with compact support, then Hy f € By(X), hence Ky (kHy f) €
Co(U). So the equality

Hyf + Ky(kHy f) = Hy f

immediately implies that (ﬁU)Ueu satisfies (H3) and (H})). Applied to
functions in K(X) we have for all U,V e Y with V C U
(I + KvM;)Hy = Hy + (Ky — Hy Ky) My Hy
= Hy — HyKyMyHy = Hy(Hy — KyMHy) = Hy Hy,
i.e.,
Hy = (I + Ky M) 'HyHy = Hy Hy.

So (Hy)yey satisfies (H}).

To show that (H;) holds let us fix z € X and assume first that
limy () Hup(x) = p(z) for every ¢ € K(X). Let W be a neighborhood
of . Then, for every U € U with U C W,

Ky (|k|Hov) < Ky ([klo) < sup(u(W) Ky k|

and limy |,y [ Kulk|[|oc = 0. So we conclude that, for every ¢ € K(X),

lim H, r) = lim H, x) = p(x).
Jim, vp(r) S vp(z) = o(z)

By [BHS86, Proposition II1.2.7], it remains to consider the case where x is
(W-)finely isolated. Let

7= inf{w € W w(x) > 1}.
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By Choquet’s lemma, there exist w,, € VNV, such that w,(x) > 1 for every
n € N and

—

= inf w,,.

=v

Of course we may assume without loss of generality that w,+1 < w, <
v/v(x) for every n € N. Define

sy = wy + Ky(kTw,) (n €N).
Then s, is 1.s.c. and, for every V € U with V C U,

Hys, = ﬁvwn + Kv(kﬁvwn) + HvKU(k+wn)
< w, + Ky (kTwy,) + Hy Ky (kT w,) = sn,

ie., s, € *H*(U). Defining s := inf s, we hence know that ' = 5§ (see
[BHS6, p. 58]). Let w = inf w,,. Then s = w+ Ky (kTw) and the continuity
of Ky (k™Tw) implies that

of + Ky(ktw) =8 = = o+ Ky (kTw),

i.e., W' = w. Since z is finely isolated, we conclude that

F(z) = w(z) = v (z) = fliminf w(y) = w(z) = 1 = #(z).

Yy—x

Thus 7 is L.s.c. at . This finishes the proof of Theorem 5.4. 0

Theorem 5.3 is a special case: If £ > 0, then we may take u = 0 and
any strongly superharmonic s € C*(X). But of course we may as well take
the preceding proof and omit its first part noting that, by Lemma 5.1, the
operators (I + KyMy) " Hy, U € U, yield kernels Hy and that W C W if
k> 0.

Moreover we shall need the following:

PROPOSITION 5.5. If every U € U is k-bounded and (fNIU)Ueu is a
family of harmonic kernels on X, then there exists a (unique) potential
kernel Kx on X with respect to VW such that

Ky — HyKyx = I+ KUMk)_lKU for every U € U.
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Proof. Define
Ky =+ KyMy) 'Ky (U €lU).

IfU,V e d with V C U, we have I + Ky My, = I + KyM;, — Hy Ky M,
hence

(I -+ K\/Mk)(f(iv + ﬁvk(] - [?U)
=Ky +HyKy — (KU — HVKUMkKU)
=Ky — Ky + Hy(I+ KyMy)Ky = Ky — Ky + Hy Ky =0,

ie.,
(5.5) Ky = Ky — HyKy.

By Remarks 2.3, 4, it therefore suffices to show that every I?U is a potential
kernel on U with respect to W.

Sofix U €U and f € By (U). If V € U with V C U, then (5.5) implies
that I;TVI?Uf < I?Uf with equality if f =0on V. If 0 < h < I?Uf such
that % is harmonic on U with respect to (Hy )yey, then g := h + Ky (kh)
is harmonic on U and 0 < g < Ky f, hence g =0, h = 0. 0

§6. Perturbation and transitions in balayage spaces

We shall now combine assumptions of Section 4 and Section 5: Let us
assume that k is a Kato function on X (with respect to Kx) and that T
is an admissible transition kernel on the balayage space (X, W). In this
section we shall still assume that 7 is a base of X (we shall get rid of this
assumption in Section 9).

For every k-bounded U € UT we define a kernel H 5 by

(6.1) HE = (I + KyMy) ' (Hy + KyT).

We shall simply say that (H Dyeyr is a family of harmonic kernels if every

U € UT is k-bounded and (H{,)yeyr is a family of harmonic kernels, and
then we define

62) WT':={v|v:X —[0,00] Ls.c., Hfv < for every U € U},

The following result generalizes Corollary 4.4:
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THEOREM 6.1.  Suppose that there exist s € W and u € BT (X) such
that

vi=s+Kxuel(X), Tv<u+ kv,

and, for every U € U,
{Hys < s} U{Ky(u+kv—Tv) >0} =U.

Then every U € U is k-bounded, (_ﬁgj)UeuT is a family of harmonic kernels
on X, (X, WT) is a balayage space, and v is strongly W' -superharmonic.

Proof. By Theorem 5.4, every U € U is k-bounded and Hy := (I +
KyMy)~'Hy, U € U, defines a family of harmonic kernels on X. By
Proposition 5.5, there exists a potential kernel Kx with respect to (fIU)Ueu
such that, for every U € U,

Ky :=Kx — HyKx = (I + KyM) 'Ky.
Fix U € U and let
fi=v—Hfv=v—(I+KyM) "(Hyv+ Ky(Tv)).
Then

t:= (I -+ KUMk)f =v+ KU(k"U) — Hyv — KU(T’U)
=s— Hys+ Ky(u+ kv —Tv)

is a positive superharmonic function on U, hence f > 0. By assumption
t > 0 and therefore f > 0. The proof is finished by an application of
Theorem 4.2. []

COROLLARY 6.2. Assume that, for every U € U, the function Kyl is
strictly positive on U. Then the following holds:

(1) If 1 € W and k > T1, then the assumptions of Theorem 6.1 are

satisfied and 1 is strongly W' -superharmonic.
(2) If u € BY(X) such that ¢ == Kxu € C(X) and Tq < u + kq, then

the assumptions of Theorem 6.1 are satisfied and q is strongly W' -
superharmonic.
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PROPOSITION 6.3. Suppose that (ﬁg)UeuT is a family of harmonic
kernels. Then, for every U € U, the harmonic kernel ﬁg for U with respect
to (X, VNVT) has the following property: For every ¢ € KT (X), the function
Hl ' is the unique function h € K+ (X) such that

h+ KU(k'h - Th) = HU(p.

Proof (see the proof of Proposition 4.7). 1. Fix ¢ € K*(X) and define
h:= HEl¢. Then h € KT(X), hence Kyy(kh — Th) € Co(U). So

g:=h+ Ky(kh —Th) e K(X), g=¢ onU°"
For every V € UT with V C U,
h=H{h=(I+ KyM) " (Hye + Ky (Ty))
and therefore

= Hyyp + Ky (Typ) + Hy Ky (kh) — Ky(Th) = Hy (¢ + Ky (kh — Th))
is harmonic on V' (note that ¢ = h on U¢ implies that T = T'h on V, since
1yT1y = 0). Thus g is harmonic on U, g = Hye.

2. Now let h be any function in X (X) such that

h+ Ky(kh —Th) = Hyep.
Then h = ¢ on U¢ and, for every V € U with V C U,

(I + Ky My)H{h = Hyh + Kibh = Hy Hyg — Hy Ky (kh — Th) + Kb h
= Hyp+ KU(Th) — HvKU(th) =h+ Kv(k:h),

i.e., HCh = h. Thus h = HE . i

§7. Coupling in direct sums of balayage spaces

In this section we shall first consider general transitions between spaces
forming a direct sum and then study the important case of direct sums
with the same underlying topological space Y and transition between cor-
responding points in the copies of Y.

Let I ={1,2,...,n},n € N;or I = N and let (X, W) be the direct sum
of balayage spaces (X;, W;), ¢ € I (see Section 2). Let K x be the potential
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kernel associated with a potential p € P(X) and fix an admissible kernel T'
on X satisfying

(7.1) T(x,X;) =0 foreveryieclandz e X;.

Clearly UT =Uf = Uicr Ui is a base of X. Sometimes a very coarse consid-
eration of the transitions may already lead to the conclusion that (X, W7T)
is a balayage space: Let so € WNC(X) be strongly superharmonic and let
us define kernels P and P’ on I by

P 7)) = Ik T p)lle = sup / p(2) T, d),
Bli, (1) = 1x,T(1x, (50 + ))lloo

for 4,5 € I where of course P(i,{i}) = 0 by (7.1). Then Corollary 4.4 leads
to the following result:

_ THEOREM 7.1. If there exists a positive real function t on I such that
Pt < t, then (X, W) is a balayage space.

Remark 7.2. 1t is sufficient to know that Pt < t if I is finite and
if, moreover, there exists a strictly positive w € W, such that Tw is
bounded. Indeed, then there exists € > 0 such that Pt+en||/Tw| s ||t|lcc <t
(n being the number of elements in ), we may choose a strongly W-
superharmonic function sp € W N C(X) with so < ew, and obtain that
Pt < Pt + en||Tw||oo|t]|co < t.

Proof of Theorem 7.1. We define functions s and u on X by
s(z) :=t(i)so(x), wu(x):=t() (iel,zeX;)

and take v := s+ Kxu. Then v € C(X), s is strongly superharmonic, and,
for every i € I and x € X;,

To(z) = > ()T (1x,(s0 +p) (@) < Y_t(H)P(i, {5})
jel Jjel
= Pt(i) < t(i) = u(x).

The proof is completed by Corollary 4.4. b
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ExAMPLE 7.3. Let us consider the example given in the introduction.
There we have I = {1,2} and T'(z, -) = €y(s), hence P(i,{j}) = (1 -
6i)[|G'5 ||l so that by assumption P(1,{2})P(2,{1}) < 1. If P(1,{2}) >0,
then Pt < t if we take ¢(1) = 1 and P(2,{1}) < t(2) < P(1,{2})~'.
Similarly, if P(2,{1}) > 0. The case P(1,{2}) = P(2,{1}) = 0 (which is
of no interest, since we have no transition at all) can be dealt with taking
t = 1. Thus (X, WT) is a balayage space by Theorem 7.1 and Remark 7.2.

COROLLARY 7.4. Suppose that I = {1,...,n} and that T'(z,X;) =0
forallxz € X; and 1 < 5 <i < n. Moreover, assume that p > 0 and Tp is
bounded. Then (X, WT) is a balayage space.

Proof. In view of Theorem 7.1 and Remark 7.2 it suffices to note that
we may easily find a positive real function ¢ on [ satisfying Pt < t: Having
P(i,{j}) = 0for 1 < j <iand P(i,{j}) <ooforl <i<j<nwe
may take ¢(n) = 1 and choose #(i) > > 1, | P(i, {j})t(j) recursively for
i=n—1n—-2,...,1 0

Remark 7.5. Using the results of [Bou84] it can easily be seen that
(strong) biharmonic spaces as introduced by [Smy75], [Smy76] (or, more
generally, polyharmonic spaces) are a special case. They are balayage spaces
if interpreted in the right way.

Let us now suppose that all X;, ¢ € I, are copies of a space Y and
that we have transitions only between corresponding points in these copies:
Let W;, i € I, be convex cones of l.s.c. positive numerical functions on Y
such that every (Y,W,) is a balayage space. For every i € I, let p; be
a strongly superharmonic continuous real potential for (Y, W), K{/’f}i the
corresponding potential kernel and g;;, j € I, Kato functions with respect
to Kyy,, positive for j # i. We define

T((y,1), )= . 9iiWewy, ki) =—galy) (yeYiel).
JENi}

The potentials p; define a strongly superharmonic continuous real potential
p for the direct sum (X, W), the restriction of K% on the copy of ¥ cor-
responding to (Y, W;) is the kernel K{,’f}i, T is admissible, and k is a Kato
function with respect to Kx. Therefore Theorem 6.1 immediately leads to
the following result:
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THEOREM 7.6. If there exist functions u; € BY(Y)) such that Ky u; €
C(Y) and
Zgin%juj < Uy
Jjel

for every i € I, then (ﬁg)UeuT is a family of harmonic kernels.

COROLLARY 7.7. Assume that W; = W and p; = py for every i € I.
Then (Hg;)UeuT is a family of harmonic kernels if there exists a strictly
positive function v € BT (Y) and strictly positive reals b; such that K%lu €

C(Y) and, for alli € I,

(7.2) Zgijbj < bzu/K{,’élu
jel

Remark 7.8. Suppose that I = {1,...,n}, a;; := supg;;(Y) < oo for
all i, j and denote A := (a;;). Assume that u € BT(Y) is strictly positive
and o > 0 such that

aKyy u < .

Then (7.2) is satisfied if there exists b € R™, b > 0, such that
(7.3) Ab < ab.

(Note that a;; > 0 for ¢ # j. If, in addition, a;; > 0 for all 4, then (7.3)
holds if and only if the spectral radius of A is strictly less than «.)

COROLLARY 7.9. Assume that W; = Wi and p; = p1 for all i € I.
Then (HE)yeyr is a family of harmonic kernels if (Y, Wh) is parabolic and
the function v = max;cy Zje[ |9i5] is a Kato function with respect to K%l
having compact support.

Proof. 1t is no restriction of generality if we assume that there exists
a strictly positive bounded function in W (even that 1 € Wi, see Re-
marks 2.1, 1). Moreover, we may assume without loss of generality that
¥ < 1 and that K := K{,’&l is a compact operator on By(Y). Indeed,
using Lemma 3.1 we may find a strictly positive ¢ € Bp(Y) such that
fr Kl%l (o f) is a compact operator on By(Y). It now suffices to replace
p1 by K (o + ) and the functions g;; by gi;/ (o + ).

Then w := Y o0 (K"l € B (Y), Ku € Cy(Y), and, for all i € I,
Z].E]ginu < Ku = u—1 < u. By Theorem 7.6 we conclude that
(H Dveyr is a family of harmonic kernels. U
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Proposition 6.3 can be expressed as follows:

ProposITION 7.10. Let I = {1,...,n}. Suppose that (ﬁg)UeuT is a
family of harmonic kernels and that U is a relatively compact open subset
of Y which is W;-regqular for every 1 <i <mn.

Then, for any choice of functions p1,...,p, € K(Y), there exist unique
functions hq, ..., hy, € K(Y') such that, for every 1 <i <n,

h; — ZKI%J- (gijhj) is Wi-harmonic on U, h; = ¢; on U°.
jel

Moreover, the functions hy, ..., hy are positive, if the functions p1,...,¢n
are positive.

§8. Application to coupling of PDE’s

Let D be a domain in R?, d > 1,let n € N, and let L;, 1 < i < n,
be second order (elliptic or parabolic) linear partial differential operators
on D leading to harmonic spaces (D, Hp,). (For the definition of harmonic
spaces and various sufficient conditions for the differential operators the
reader might consult [Her62], [CCT72], [BH86|, [Kro88], [Her68], [Bon70]).
Moreover, we assume that, for every 1 < ¢ < n, we have a base of L;-regular
sets for D, a Green function G, for (D, H,), and a Radon measure p; > 0
on D such that G7' € Cy(D) and (Gr,)y’ > 0 on V for every (L;-regular)
open subset V of D.

We want to study the coupled system

=1

where g;; € B(D) such that g;; > 0 for i # j and Gi‘?'gmm € C(D) for every
compact subset A of D and all 4,5 € {1,...,n}.

This will be possible by introducing associated transitions on the direct
sum of the spaces (D, H,) (cf. the example given in the introduction). Our
formal procedure is as follows: For every 1 <i <mn, let

X, == D x {i}

and let m; denote the canonical projection from X; on D. Then the direct
sum (X, H) of the spaces (X;,Hr, om), 1 < i < n, is a harmonic space
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(with the subspace X = D x {1,2,...,n} of R x N). (If W; denotes the
convex cone of all positive hyperharmonic functions for (X;,Hp, o m;) and
W the convex cone of all positive hyperharmonic functions for (X, H), then
of course (X,W) is the direct sum of (X1, Wi),...,(Xn, Wy).)

We define a continuous bounded potential p, a kernel T and a function k
on X by

p(l‘,i) = Gﬁ(l’), T(<$7i)7 ) = Zgij(x) E(z,5)» k(w,z) - _gii(x)'
J#

Then T is admissible, k is a Kato function with respect to K %, and the
results of the preceding section can be applied.

Suppose for a moment that (H Dueyr is a family of harmonic kernels.
Fix a relatively compact subset U of D and functions ¢1, ..., ¢, € K(D).
For simplicity suppose that U is L;-regular for every 1 < i < n (it will be
clear for the specialist how to proceed if this does not hold). Then

U= JU x {i}
i=1
is a regular subset of X. Defining

o(x,i) == pi(z) (xeD,1<i<n)

we obtain a function ¢ € K(X). By Proposition 4.7, there is a unique
function h € (X)) such that

h+ Kg(kh —Th) = Hy.

Of course, h|; depends only on ¢|,7, since T(U) c U and Hgp depends
only on ¢|,~. Define

hi:=hom ' (1<i<n)
and fix 1 <i < n. Clearly, h; € K(D) and h; = ¢; on D\ U, since h = ¢
on X \U. Furthermore, L;((H) om; 1) =0on U, since Hgzp € H(U) and
hence (Hgyp) om; ' € Hp,(U). And

(K (kh = Th)) o m;t = (G, ) M=o e
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where, for every x € D, by definition of T" and k

n n

(kh — Th)om; "(z) = (kh — Th)(x,i) = > gij(x)h(z,5) =Y _ gij()h; ().

j=1 j=1

Thus

0= Li((Hgp) om; ') = Li[(h + Kg(kh — Th)) o m; '] = Lihi + Y _ gijhj;
j=1

and we obtain the following consequence of Proposition 7.10 (cf. [Bou81,
Proposition 11.5]):

PROPOSITION 8.1. Assume that (ﬁg)UeuT is a family of harmonic
kernels. Let U be a relatively compact open subset of D which is L;-reqular
for every 1 < i < mn and @1,...,0, € C(OU). Then there exist unique

functions hy, ..., h, € C(U) such that

n
Lih; + Zhjgij,ui =0 onU, hilov=9i (1<i<n).
=1

Further, if p1,..., @, are positive, then hi,..., h, are positive.

If the functions ¢; are bounded and measurable, but not necessarily
continuous and/or if the set U is not L;-regular, we still have a unique
generalized solution of the Dirichlet problem (see [BH86, Chapter VII]).

By Corollary 7.4, (H Dueyr is a family of harmonic kernels provided
gij = 0 for all 1 <i < j <n. A very special case is the situation where all
operators L; are equal and g;ju; = 0; 41 jA:

COROLLARY 8.2. Let D be a bounded domain in R%, d > 1, and let
L be a second order linear partial differential operator on D leading to a
harmonic space (D, H ) with Green function G, such that G} is continuous
and bounded. Let U be a relatively compact (L—)regular subset of D, n € N,
and p1,...,n € C(OU). Then there exists a unique function h € C(U) such
that Lh, L?h,...,L" 'h € C(U),
L"h=0 onU, xi_)mg(—L)"*lh(:E) = ;(2)

for every 1 <1i <n and for all z € U.

Further, h,—Lh,L?,...,(—L)""h are positive, if ©1,...,pn are positive.
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We shall complete our application by giving further conditions implying
that (H[)yeyr is a family of harmonic kernels:

PROPOSITION 8.3. Suppose that there exists a strictly positive real
function s on D such that, for each 1 < i < n, one of the following condi-
tions is satisfied:

(1) 371 9i; <0 and s is strongly L;-superharmonic.
(2) >°5-19ij <0 and s is Li-superharmonic.

Then (ﬁgj)UeuT is a family of harmonic kernels.

Proof. Define s € W by s(z,i) = s(z) and fix 1 < ¢ < n. Then, for
every x € D,

(ks — Ts)(x,i) = —gii(x) — Zgz‘j(fr) > 0.
JFi

So (H D ueyr is a family of harmonic kernels by Theorem 6.1 (taking u = 0).

O

In [CZ96] it is assumed that, for every 1 < ¢ < n, the operator L, is
uniformly elliptic, pu; = A, Z?Zl gij <0, and 1 is L;-superharmonic.

Moreover, Theorem 7.6 implies the following result involving pu;-eigen-
functions for the operators L; (cf. [Bou81, pp. 348-350] and [Bou82]):

PROPOSITION 8.4. Suppose that there exist strictly positive Pr,(D)-
bounded functions u; € Cy(D) and strictly positive real numbers o, 3ij,
i,j €{1l,...,n}, such that

Liu; + ouip; = 0,

and

n
uj < Bgus, > Biygi/oy <1, Bi=1.

Jj=1

Then (ﬁg)UeuT is a family of harmonic kernels.

Remark 8.5. If there exists an L;-superharmonic function s; > 1 on D,
then every function u € Cy(D) is Pr,(D)-bounded.
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Proof of Proposition 8.4. For every 1 <i <mn,
o, Gp =y,
since u; — o;G7'"" is Pr,(D)-bounded and L;-harmonic on D. Therefore

n

Uity J J
E 9i;G7 = E gij—— < E Gij——u; < U
- J : Qg - Qg
7=1 7j=1 7=1

for every 1 < i < n. Thus (HJ)yeyr is a family of harmonic kernels by

Theorem 7.6. a

PROPOSITION 8.6. Suppose that Ly = --- = L, =: L. Then (ﬁg)UGL{T

is a family of harmonic kernels if one of the following conditions is satis-
fied:

(1) pp = -+ = pp =: pu and there exist « > 0, a strictly positive

Pr(D)-bounded function uw € Cy(D), and strictly positive real num-
bers by,...,b, such that

n
Lu+oaup =0 and Zgijbj < ab; for every 1 <i<mn.
j=1

(2) (D,Hp) is parabolic, the functions gi; have compact support and the

L-potentials G'gijw, i,j € {1,...,n}, are continuous.

Remark 8.7. Note that the harmonic space associated with the heat
equation or a similar parabolic equation is parabolic. Moreover, the last
property clearly holds if the functions g;; are bounded. Finally, to obtain
the conclusion of Proposition 8.1 we obviously may drop the assumption on
the compact support (replacing g;; by 1i7gi5)-

Proof of Proposition 8.6. By Proposition 8.4, (1) implies that (ﬁE)UeuT
is a family of harmonic kernels (take u; = bju and 3;; = b;/b;).

So suppose that (2) holds. Since of course g;;ju; = Gij(p1 + -+ + pin)
for some Borel functions g;; such that g;; > 0 for j # ¢ and |g;;| < |gs;| for
all 7, j, we may assume without loss of generality that py = --+ = p,. Thus

Corollary 7.9 implies that (HZ)yeyr is a family of harmonic kernels. [
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§9. Perturbation and general transitions

Let us go back to a general situation as considered in Section 6. So we
have a balayage space (X, W), a potential kernel Kx for (X, W), a Kato
function k and an admissible transition kernel T'. However, we shall no
longer assume that U7 is a base of X. So our result will be new even if
there is no perturbation at all, i.e., if kK = 0.

Let us suppose for the moment that at least T'(x,{z}) = 0 for every
x € X (we shall see that this is no restriction, since we may modify k).
Moreover, assume that there exists s € CT(X) such that, for every U € U,
HUs—i—Kgs <sonU.

Let p be a metric for X and define kernels T},,7) on X by

Tn(xv ) - 1B(ac,1/n)c T(JZ‘, ')a T’r/z(x7 ) - 1B(ac,1/n) T(JZ‘, ) (TL eENze X)

(where of course B(x,1/n) = {y € X : p(x,y) < 1/n}). Then, for every
n € N, the set U1r = {U el :1yT,1y = 0} is a base of X and we have
kernels

K" = KyT,, Hl»=Hy+Kl» (Ueu™).

Since obviously, for every V e Y™,
H‘@"s = Hys+ K‘@"s < Hys+ K‘?s <s onV,

the function s is strongly W7n-superharmonic and we conclude by Theo-
rem 4.2 that (H 5”)U€u:rn is a family of harmonic kernels and that (X, W)
is a balayage space. In particular, for every n € N and for every U € U, we
have a harmonic kernel H 5" solving the Dirichlet problem with respect to
(X, WTn) (see [BH86, Chapter VII]).

Clearly, U™+ C U™ and HE* < HJ™ for every U € UTn+1. We claim
that in fact

(9.1) H < Hg"“ for every U € U.
Indeed, fix U € U, ¢ € K1 (X), and define

t:= Hg"“go.
Then, for every V € UT+1 with V C U,

HInt < H" =t
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hence t is superharmonic on U with respect to (X, WT»). Moreover, t €
KT (X) and t = ¢ on U°. Therefore

Hirp <t
proving (9.1). In particular, the sequence (W) is decreasing and defining

H{ := sup Hgn
n
we have

WT = {v|v:X —[0,00] Ls.c., Hfv <w for every U € U} = ﬂ win,
neN

We now obtain the following extension of Theorem 4.2 (see also Re-
mark 9.3):

THEOREM 9.1. Let T' be an admissible kernel such that T'(x,{z}) =0
for every x € X. Suppose that there exists s € CT(X) such that, for every
Uel, Kgs 18 continuous on U and Hys + Kgs < s on U. Then the
following holds:

(1) (X, WT) is a balayage space and s is strongly W' -superharmonic.

(2) For every U € U and for every ¢ € K+ (X), the Dirichlet solution
ng is the unique function h € K*(X) such that h — th = Hyop.

(3) Ifv is any positive numerical function on X, then v € WT if and only
if there exists a function w € W such that

v=Kkv+w.

Proof. 1. Fix U € U. By Proposition 2.2 it suffices to show that H 58
is continuous on X and H 58 < son U. Let us note first that obviously
s € WNC(X) and hence Hys € C(X) and s — Hys € Co(X). Given n € N,
we have s € WT». So

hy, = H;‘;”s <s.

and, by Proposition 4.7,
hy = Hys + K hy,.
Letting n tend to infinity we obtain that

h:=HLs= lim h, = Hys+ KFh < s

n—oo
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and hence
h<Hys+Kls<s onU.

Moreover, Kh € C(U), since 0 < h < s and K/;s is continuous on U by
assumption. Since 0 < th < Kgs < s— Hys, we know that th tends to
zero at the boundary of U. Thus KL h € Co(U) and h = Hys+KLh € C(X).

2. Fix ¢ € KT(X). Since by Proposition 4.7
Hyjp — Ky Hiy'o = Hu,
we immediately obtain that
(9-2) Hiy — K{Hijp = Hyep.
Conversely, let h be any function in K+ (X) such that
(9.3) h— K&Fh = Hye.

Let C be the support of h. By (4.2), KF1¢ € Co(U). Given z € U, the
functions o
Klie =Kl1c —HyKfle, zeV,VcU

are uniformly decreasing to zero as V' decreases to {z}. So we may choose
V, € U such that x € V,,,V, C U and K{";lc < v for some real v < 1. Fix
V € U such that x € V C V, and define a positive operator N on B,(X) by
Nf:= KL (1cf). Then the operator I — N is invertible.

Applying Hy on both sides of (9.3) we obtain that

Hyh — HyK{h = HyHyp = Hyp = h — Kjh,
and therefore
Hyh=h—Kih+ HyKEh =h— KEh = (I — N)h.
On the other hand,
Hyh=HLh — KLHEh = (I — N)HEA

(using (9.2) for h instead of ¢ and V instead of U). Since I — N is invertible,
we conclude that
h = H{h.

By [BH86, Proposition II1.4.4], this shows that h is harmonic on U with
respect to (X, WT). Thus h = H}¢.
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3. Suppose that w € W such that v = K)T(v—l—w. Then, for every n € N,
v = K;‘I;”v —|—K;‘,;’,lv + w
where K)T{/‘v + w € W. Thus Proposition 4.9 implies that
o0
ve (Wi =wr.
n=1

Assume conversely that v € WT. Then, for every n € N, there exists a
function w,, € WTn such that

K;";”v + w, = v.

Defining w € W by
w(x) = f-liminf inf wy, ()
Yy—T n

we finally get that K)T(v +w =w. 0

We now obtain the results of Theorem 6.1 and Proposition 6.3 not
assuming any more that U7 is a base of X.

THEOREM 9.2. Let T be an admissible transition kernel and let k be
a Kato function (with respect to Kx). Suppose that there exist s € W and

u € BT(X) such that
vi=s+ Kxuel(X), Tv<u+kv,
and, for every U e U, {Hys < s} U{Ky(u+kv—Tv) >0} =U.
Then, for every U € U and for every ¢ € KT(X), there exists a unique
function h = H},p € KT(X), such that
h+ Ky(kh —Th) = Hyep.

Moreover, (ﬁg)Ueu is a family of harmonic kernels on X for which v is
strongly superharmonic.

Remark 9.3. Note that taking £ = 0 we obtain the statements of The-
orem 9.1 without the assumption that T'(z,{z}) =0 for z € X.
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Proof of Theorem 9.2. Replacing T by the kernel =z +— T(z,-) —
T(z,{x})es, k by the function x +— k(z) — T'(x,{z}) we may assume that
T(xz,{z}) =0 for every z € X.

We now proceed as in the proof of Theorem 6.1: By Theorem 5.4, every
U € U is k-bounded and defining Hy, U €U, by (5.1) and w by (5.2) we
obtain a family (HU)Ueu of harmonic kernels and a balayage space (X, W)
such that v is strongly W- superharmonic. Moreover, by Proposition 5.5,

there exists a potential kernel K x such that, for every U € U,
(9.4) Ky = Kx — HyKx = (I + KyM;) ' Ky.
We claim that, for every U € U,
fNIUv—i—lN(g;v <v onU.
Indeed, defining f :=v — Hyv — I?gv we obtain that
(I+KyMy)f =v+Ky(kv)— Hyv— Ky(Tv) = s— Hys+ Ky(u+ kv —Tv)
is a strictly positive superharmonic function on U and hence f > 0 on U.
Clearly, Kxu € C(X) and hence Kyu € Cyo(U). Since |kv| < supv(U)|k|

on U, we know that Kyl|kv| € Co(U). Therefore the inequality 0 < T'v <
u + kv implies that Kv € Co(U) and hence Kv € Co(U).

Replacing (Hy)vey by (Ho)vew and (Ku)yeu by (Ku)ueu we get a
balayage space (X, W') such that v is strongly W”-superharmonic.
Moreover, for every ¢ € K1 (X), the function
ffggo = lim fNIg"gp
n—oo
is the unique function h € K*(X) such that
h— KEh = Hye.
By (5.1) and (9.4), the last equation is equivalent to

h+ Ky (kh — Th) = Hyep,

and the proof is finished. 0

https://doi.org/10.1017/5002776300000845X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000845X

114 W. HANSEN

§10. Appendix: Lifting of potentials in balayage spaces

In this section we shall construct a potential kernel corresponding to a
compatible family of potential kernels (K¢ )yey (see Remarks 2.3, 4). We
shall need the following lifting property:

THEOREM 10.1. Let U be an open subset of X and q a continuous real
potential on U which is harmonic outside a compact subset C' of U. Then
there exists a unique p € P(X) such that p is harmonic outside C' and p—q
is harmonic on U.

For harmonic spaces the proof is already fairly technical (see [Her62,
Theorem 13.2]), for balayage spaces it is even more delicate. For every
open subset V' of X let Sp,(V') denote the set of all P-bounded s € B(X)
such s is Ls.c. on V and Hys < s for every W € U with W C V. An
easy generalization of [BH86, Proposition I1.4.4] yields the following sheaf
property (cf. also (2.2)): For every family (V;);er of open subsets of X,

(10,0 Su( V) = Sl

i€l i€l

Proof of Theorem 10.1 (cf. [Alb95]). The uniqueness of p is easily es-
tablished. Indeed, if p and p’ have the desired properties, then p — p’ is
harmonic on U and harmonic outside C. Therefore p — p’ is harmonic
on X by (10.1) (applied to p — p’ and p’ — p). Since p — p’ is of course
P(X)-bounded, we conclude that p = p'.

To prove the existence let us define

F={pePX):p—qec S;Z(U)}.

We intend to show that there is a smallest element in F and that this
function inf F has the desired properties.

1. First we claim that the set F is non-empty: We choose an open
set V and a compact set L such that C C V C L C U. By a general
approximation property (see [BH86, 1.1.2]) there exist ¢q1,q2 € P(X) such
that

@—q>q onV, q =gy onlL"

Then
po = inf(q+q1,q2) € S;'b(U).

https://doi.org/10.1017/5002776300000845X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000845X

MODIFICATION OF BALAYAGE SPACES 115

Moreover, pg = g2 on L° and py < ¢o on X whence pg € S;](LC). Thus
po € S;Z(X) by (10.1). In fact, po € P(X), since py is continuous.

Clearly, po—q = q1 > 0 on V. Therefore pg —q > 0, since ¢ is harmonic
outside C'. Knowing that po — ¢ < ¢; on X we conclude by (10.1) that

po—q€SH(V)NSHU\C) =83(U).

Thus pg € F.

2. Obviously F is stable with respect to finite infima, since both P(X)
and S;;)(U) are.

3. Next we show that infF is harmonic outside C: Let us fix an
open neighborhood W of C in U. Clearly it suffices to show that inf F
is harmonic outside the closure of W. For the present fix p € F. Then
Kilw —qg= (p—q) — KX1lwe € Spp(W) and K51y — g € Spp(U \ C),
hence K% 1w — q € Sy(U) by (10.1). Since g € P(U), we obtain that
K% 1w — ¢ > 0. Therefore K5 1y € F, i.e.,

inf F = inf{ K% 1y : p € F}.

Since F is stable with respect to finite infima, the set of all K g’( 1w, p e F,
is decreasingly filtered and therefore contains a decreasing sequence (p,)
converging to inf 7. Since all functions K% 1y, p € F, are harmonic out-
side W, we conclude in particular that inf F is harmonic outside W as
well.

4. Moreover, inf F — ¢ is harmonic on U: Fix p € F, a compact
neighborhood L of C in U and an open neighborhood W of C such that W
is contained in the interior of L. Choose ¢ € C(X) such that 0 < ¢ < 1,
@ =1on L° and ¢ = 0 on W. Define

p = inf(Ryp + q,p)-

Then p’ = p on L€, so p’ is continuous on L¢. Further, the continuity of the
functions R, ¢, and p on U implies that p is continuous on U. Therefore
p’ is continuous on X.

Clearly, p' € S;](U). Moreover, p’ € S;](LC), since p’ = p on L¢ and
p’ < p. Therefore p’ € S;rb by (10.1) and even p’ € P(X), since p’ is
continuous. Since p —q € S;%(U), we obtain that p’ — ¢ = inf(R,p,p—q) €
Syy(U). Thus p’ € F.
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Further, R,, < Ri,.p = Hwp whence p’ —q < Hwp. So, for every
n € N and for every V € U with V C W, we obtain that

Pn—q 2 Hy(pn —q) = Hw(pn — q) = Hwpn — Hwq > p;, — g — Hwq.
Since obviously inf F = inf p,, = inf p/,, we conclude that
inf F —q¢> Hy(inf F — ¢q) > inf F — ¢ — Hyq.
Because of limy/ 1 Hy g = 0 this implies that
inf F — ¢ = Hy (inf F — )

for all V € U with V C U. Thus inf F — ¢ is harmonic on U.

Knowing that inf F — ¢ is harmonic on U and inf F is harmonic on C°
we see immediately that inf F is continuous on X. Thus inf F € P(X), and
the proof is finished. [

PROPOSITION 10.2. Let (Ky)vey be a compatible family of potential
kernels, i.e., for every U € U, we have a potential kernel Ky on U and
Ky = Ky + Hy Ky whenever U,V € U with V. C U. Then there exists a
unique potential kernel Kx on X such that Ky = Kx — HyKx for every
Uel.

Proof. Indeed, if f € B;r(X ) with compact support in some U € U,
then Kx f has to be the lifting of Ky f. So we have uniqueness of K x.

To prove its existence we may choose a locally finite covering of X by
a sequence (U,) in U and continuous functions ¢, > 0 on X with compact
support in Uy, n € N, such that > >° | ¢, = 1. For every n € N, let p,, be
the lifting of Ky, , on X so that

(10.2) Kg(” — HUang‘ = Ky,M,,,.
Define
[ee]
Kx =) K.
n=1

Clearly, Kx is a potential kernel on X. Fix U e Y, n € N, and [ € B;r(X)
with compact support in U. Then ¢, f has compact support in U, N U
and our compatibility assumption implies that Ky (e, f) is the lifting of
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Ky, nv(pnf) on U and Ky, (o f) is the lifting of Ky, ~v(onf) on U,. By
(10.2), K& f is the lifting of Ky (¢, f) on X. Therefore

K f— HyKY' f = Ky(enf)-

Taking the sum over all n € N we finally conclude that Kx — Hy Kx = Ky.
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