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ON THE NUMBER AND DISTRIBUTION OF 
SIMULTANEOUS SOLUTIONS TO DIAGONAL 

CONGRUENCES 

K E N N E T H W. SPACKMAN 

1. Introduction. Two aspects, and their connections, of the problem 
of enumerating solutions to certain systems of congruences are explored 
in this paper. Although slightly more general cases are mentioned, the 
basic object of study is a system of diagonal equations 

anxidl + a12x2
d* + • . . + auxt

dt = 0 

(1) 

dnixf1 + an2x2
d2 + . . . + antxt

dt = 0, 

where d\, d2, . . . , dt are positive integers and the coefficient matrix [atj] 
has entries from Fv = GF(p), and for which solutions x = 
(xi, x2y . . . , xt) G Fv

l are sought. Speaking loosely, such a system 
usually has approximately pl~n solutions in the sense that the difference 
between pl~n and the correct value becomes small in comparison with 
p l~n as p becomes large. A parameter is introduced which measures the 
extent to which the matrix \ai3\ is non-singular over Fv. The effect of this 
parameter on the size of the error term (the difference between the 
number of solutions to (1) and pl~n) is the first aspect of the enumeration 
problem to be treated. The reader may wish to glance at Theorem 3.2 
for the precise formulation of the main result in this direction. Secondly, 
it is of interest to determine the finest possible partition of the set of 
elements of Fv

l having no zero component into (for example) hypercubes 
of the type 

H(a,b) = {x G Fv
l\ di ^ xt ^ at + b - 1; 

0 < at < at + b - 1 < p; i = 1, 2, . . . ,*} 

so that every such hypercube contains at least one solution to the given 
system (1). It happens that under modest restrictions there is an approx­
imate regularity of distribution of the solutions to (1) into such hyper­
cubes. The effect of the parametrized non-singularity of [a 0] , as well as 
of p, n and t, on this regularity of distribution is the subject of Theorem 
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422 KENNETH W. SPACKMAN 

4.3. Since a statement of this theorem without many preliminary con­
ventions would be too lengthy, the reader is invited to turn to Theorem 
4.3 for a first impression. 

The above-mentioned parameter /x of non-singularity serves to general­
ize a commonly used non-singularity condition: 

(i) every non-trivial solution to (1) in the algebraic closure of Fv 

is non-singular (the matrix 
\ dxj ) 

(x) has rank n for every solution x 

in the algebraic closure), or equivalently, 

(ii) every n X n submatrix of [a î ;] is non-singular, since each of these 
is equivalent to the condition 

(iii) M = 1. 

However, separate arguments are often required to treat the cases 
\x = 1 and jit > 1. Furthermore, the formulas which are derived to 
describe the behavior of solutions to (1) when /u > 1 unfortunately do 
not reduce to the formulas obtained for JLI = 1 upon simple substitution 
of 1 for jti. 

The results obtained herein generalize some of the work of J. H. H. 
Chalk [1] who confined his attention to the case n = 1. Moreover, the 
results of this paper demonstrate the effect of the nature of generalization 
(measured by n and n) on the behavior of solutions. As an application of 
the established regularity of distribution, an estimate is made for the size 
of small solutions to systems of diagonal congruences modulo a prime. 

We shall adopt the classical elementary approach to problems of this 
kind. This involves the expression of the number of solutions to a par­
ticular system of equations by an exact formula consisting of exponential 
(character) sums. That is the easy part; the work consists in selective 
manipulation and efficient estimation of the relevant sums. In the case 
at hand a famous inequality of Vinogradov together with a synthesis and 
extension of existing results including an estimate of Weil for a particular 
exponential sum, an estimate previously obtained by the author using 
elementary techniques, and some results of Chalk in the case of a single 
equation also obtained by classical methods form the structure of the 
methods employed. In fact, it was the paper of Chalk [1] which inspired 
the distribution aspect of this study. The idea of parametrizing the non-
singularity condition arose naturally in an effort to facilitate the estimate 
of certain error terms, normally occurring as sums themselves, by making 
each summand approximately the same size. The author first found the 
value M — 2 of the non-singularity parameter useful in his Ph.D. disser­
tation for a crude estimate for the total number of solutions to a system 
of diagonal equations, and owes the originality of that idea to his thesis 
director, Professor Wolfgang Schmidt. 
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We shall begin by providing some brief background information in 
§ 2. In § 3 is treated the problem of estimating the total number of solu­
tions to a system of diagonal equations and the dependence of the 
accuracy of this estimate on the non-singularity parameter already 
discussed. An example to show that the error term is in a certain sense 
best possible is included. The regularity of distribution of such solutions 
is established in § 4 along with some consequences concerning the size of 
small solutions. 

2. Preliminaries. To prevent ambiguities and the necessity of cumber­
some parenthetical explanations later, this section has been included as a 
collection of miscellaneous information and notation. 

The cardinality of a finite set S shall be denoted |5| . For n-vectors x 
and y, x «y is the usual dot product Xiji + . . . + xnyn in the field where 
the xf and yt lie. For x > 0, log x shall always mean the natural loga­
rithm of x. Square brackets [ ] are used for two (always obviously dis­
tinguishable) concepts; the greatest integer function (e.g. [w] = 3) and 
a matrix ([atj] is the matrix whose entry in the ith row and jth column 
is a,ij). If c is a complex number, c always denotes the complex conjugate. 

A character of a finite abelian group G is a group homomorphism from G 
to the multiplicative group of complex numbers. The finiteness of G 
requires that 6(g) be a root of unity for any character 6 and any g Ç G. 
The characters of G form a group G, under the operation (6162) (g) = 
#i(g)02(g), which is isomorphic to G. Denote by 60 the identity element of 
G' (i.e., 60(g) = 1 for all g Ç G). 60 is called the principal character of G. 
Two very useful facts are the following: 

and (by duality) 

S eu) = {i( 

sec w 

\G\ ilg= 1 

it g *1. 

To a finite field are naturally associated two groups of characters. The 
group of characters of the additive group of Fq is denoted AFQ and the 
characters of the (cyclic) multiplicative group are denoted MFQ. Additive 
characters will always be denoted by \// (possibly subscripted) and multi­
plicative characters by %• We adopt the convention that x(0) = 0 for 
Xo ^ x € MFq and Xo(0) = 1. If ^0 ^ * G AFQ, then {^: X £ FQ} = 
AFQ, where ^\(x) = \p(\x). A multiplicative character is said to be of 
exponent d if and only if the order of % a s an element of the group MFQ 

divides d; that is, xd(%) = Xo(x) for all 0 9e- x G Fq. When d\(q — 1) 
there are precisely d multiplicative characters of exponent d given 
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explicitly by 

{x«: 0 ^ a < 1, da = 0 (mod 1)}, 

where if e is a generator of the multiplicative group of Fg then Xa(<0 = 
e2via. The subgroup of MFq consisting of characters of exponent d\(q — 1) 
will be denoted MdFq. If m is a positive integer and x is real, the abbrevia­
tion em(x) = exp(27rixw_1) wrill be useful. 

Gaussian sums, 

G(x, *) = Z xW^W, 

play a central role in the classical methods for estimating the number of 
solutions to equations in finite fields. The well-known observations that 

G(x, ^o) = 0 if x ^ Xo, 

G(xo, tfO = 0 if ^ ^ TAO, and 

\G(x, </0l = QU2 if x ^ xo and ^ ^ ^ 

are presumed to be familiar to the reader. A proof of the following 
essential fact can be found in [3]. 

Fact. If ^o 5* ^ G 4F f f, 0 5̂  a 6 /% and rf| (g - 1), then 

E *(*/) = E ^)G(x, *). 
V€Fq x€MdFq 

3. The number of unrestricted solutions. Let N denote the number 
of solutions x G Fq

l to the system (1) of equations. 

LEMMA 3.1. 

qnN = D E f t ffa^/1 + . . . + aitxt
dt). 

XÇFqt t£(AFq)n Z=l 

Proof. This is a routine initial step in the method of character sums 
and is a special case of Lemma 3.1 of [4]. 

For each natural number /x, call an n X / matrix over Fq /d-weakly 
non-singular if and only if for each natural number ft satisfying 

M (ft ~ 1) + 1 S min{/, /x(w - 1) + 1} 

the matrix has the property that among any /x(ft — 1) + 1 column 
vectors there are at least ft /^-linearly independent ones. Notice that an 
n X / /x-weakly non-singular matrix for which t ^ \x{n — 1) may have 
rank smaller than n, and it may not. In the case that the coefficient 
matrix of system (1) has rank less than n, a new system having the same 
solutions as the original one could be formed by deleting one or more of 
the equations. Since one cannot reasonably expect to obtain sharp 
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estimates for N (in terms of n) in such a situation, we shall henceforth 
assume / to be large in comparison with n\ in particular, we suppose 
t > \i{n — 1). A /i-weakly non-singular matrix of dimensions satisfying 
/ > /x(» — 1) clearly has rank n and, furthermore, it is obvious that if 
X ̂  /x are natural numbers, then a X-weakly non-singular matrix is also 
pi-weakly non-singular. If t > \i{n — 1), a 1-weakly non-singular matrix 
is in some sense as non-singular as it can be; every n X n submatrix is 
non-singular. 

In the present context, three cases distinguish themselves: 

(i) n = 1, M = 1; 
(ii) n ^ 2, M = 1; 

(iii) M ^ 2. 

For each case suppose that n, t and \x are natural numbers with / > 
\x(n — 1) and that the n X t coefficient matrix of system (1) is JLX-weakly 
non-singular. For case (i), Weil [6] proved 

N = q1'1 + 0(qt/2) 

using methods involving character sums. For case (ii), the author [4] has 
proved 

N = ql~n + 0(ç(<-1)/2) 

using elementary methods in the spirit of the work of Weil and others. 
The third case is the subject of the following theorem. 

THEOREM 3.2. Let n} t and JU be natural numbers satisfying n ^ 2 and 
t > ju(w — 1). The number N of solutions to the system (1) whose coefficient 
matrix is ix-weakly non-singular over FQ satisfies 

\N - ql~n\ £ (di-1) . . . (dt - 1)(2< - l)ff«+<M-2X»-i)>/2B 

Proof. There is no loss of generality in assuming that each exponent dt 

is a divisor of q — 1, since the number of solutions in Fq to the equation 
xd = y for fixed y G Fq and d Ç N is precisely the same as the number of 
solutions to xh = y where h = GCD(d, q — 1). Moreover, if the estimate 
of the theorem holds with the greatest common divisors in the constant 
factor of the error term, it certainly holds with the original d's. 

If \f/ is any fixed non-principal additive character on FQ1 it follows from 
Lemma 3.1 and some remarks of § 2 that 

(2) q"N = E D ft Mrf*,!*!*1 + • • • + Uinxf) 

= £ IÎ £ *(£i(A)*/"), 
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where 
n 

Lj(X) = ^\taijt (1 Sj ût). 

For each ^-subset (0 ^ u ^ /) U of T = {1, 2, . . . , / } , set 

A,; = {X G Fq
n: X ̂  0 and L,(X) ^ 0 if and only if j £ £/}. 

Then by separating the summand of expression (2) for which X = 0 and 
associating the remaining terms according to the parameter u, 0 ^ u ^ /, 
which measures the number of indices j having L;(X) 9e 0, we obtain 

anN = q'+iq'-" E E I 1 I <M (̂A)*/0. 
u=0 UÇ.T \£kjj JÇJJ Xj£Fq 

\U\=u 

The idea is to subtract q* from both sides of this equation, divide through 
by qn, take absolute values and use the triangle inequality. We are there­
fore interested in the size and number of summands in the triple sum 
above. To determine their sizes we introduce Gaussian sums according 
to the preliminary remarks of the previous section. Namely, for a fixed 
w-subset [/, X G Av and j Ç U, 

£ *(Z,(X)«/ ') = E 3ôtfo(X))G(x„ *). 
XjZFq Xj£MdjFq 

The principal multiplicative character has exponent dj but contributes 
zero to this sum, so the right hand side is a sum of dj — 1 terms each of 
modulus q112. Hence 

\N ~ q'-n\ ^ iq'-"-" Z Z (* - 1) • • • (d( - l)qul\ 
\U\=u 

Now observe that if 0 ^ w < / — n(n — 1) (recall the hypothesis that 
/ > \x(n — 1)), Af/ is empty for all ^-subsets U. For otherwise there 
would exist X ^ 0 and at least \x{n — 1) + 1 zero column sums 
(Lj(\) = 0 for at least \i(n — 1) + 1 indices), contrary to the hypothesis 
that among these columns occur n linearly independent ones. Hence 
/ — u ^ [x{n — 1). Fix u. Then if k is the largest integer such that 
n(k — 1) + 1 ^ / — u, one has t — u ^ \xk so that among any t — u 
columns there are always at least (/ — u)/n linearly independent ones. 
It follows that for a fixed w-subset U, the number of X G A^ is at most 
qn-(t-u)/pt Finely since the number of ^-subsets U of T is the binomial 

coefficient I I, 

\N - ql~n\ ^ (d1 - 1) • • • (dt - 1) £ ql~n-' 
u=t—n{n—V) 

= (d1 - 1) • • • {dt - l)^"-1"" ± (j)g' 

> -
(t-u)/n u/2 
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But since /i è 2, (2 - M)/2/X ^ 0, so for each u under consideration, 

qU(2-n)l2u < g(*-M(n-l))(2-/i)/2M # 

Hence 

|AT - ql-n\ g (dl - 1) • • • (d , ~ l)g^M-l)/Mg(r-M(n-l))(2-,)/2, 

X E ( 1 ^ (ii " 1) • ' ' (dt - 1)(2' - l),<«-<^><»-1»/*. 

It is often convenient to suppress the details of the constant error 
factor in the above formula for N; one simply writes 

The exponent in the error term is best possible without any further 
hypothesis as the following example shows. 

Example. Let ^ > 2 be even, n ^ 1, t = n\x, and &\ — d2 = . . . 
= dt = 2. Define the matrix [a^] of coefficients over GF(p), p = 1 
(mod 4), by 

= ( l if ( i - l ) / i + U j g i/x 
13 (0 otherwise 

for 1 ^ i ^ n and 1 ^ j ^ t. The coefficient matrix looks as follows, 

"l 1 . . . 1 0" 

M 1 1 . . . 1 

0 ^ ^ 

That is, we ask for the number N of ^-tuples over GF(p) making n 
diagonal quadratic forms, each in n variables, each variable appearing in 
exactly one form, simultaneously zero. A pigeonhole argument shows 
that the matrix [a^] is /x-weakly non-singular. Further, it is not difficult 
to show by the method of Gaussian sums (or by other means; e.g., see 
[3, p. 145-147]) that the number of solutions to the equation 

Xi2 + x2
2 + . . . + x»2 = 0 

is, for ix even and p = 1 (mod 4), exactly 

pv-l _|_ pu 12 _ pn/2-lm 

Hence the number of solutions to the system (1) under these circum­
stances is 

N = (p*-1 + p»'2 - p»l2-l)n. 
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Since M > 2, 

TV = pnn-n _|_ np(n-i){p-i)+n/2 

+ (terms involving p to a lower exponent) 

+ (terms involving p t o a lower exponent). 
Therefore in this example, 

jy _ pt-n ^ np{t+{fJL-2)(n-i))/2 

as p —» oo through primes congruent to 1 modulo 4. 

Under the same hypotheses on ju, w, / and the matrix [a^] as were made 
in Theorem 3.2, the non-homogeneous system 

anXirfl + . . . + flnx^ = 6i 

(3) . . 

(having, say, Ni solutions) may now be treated in a routine way outlined 
as follows. If no assumptions whatsoever are made on the elements 
bij . . . , bn (so that the homogeneous case is included), then inspection of 
the system 

anXidl + . . . + altxt
dt - brx^-1 = 0 

(4) ! '. 

aniX!dl + . . . + antxt
dt - bnxt+iq-1 = 0 

(having M solutions, let's say) yields the relation 

M = N + (q - 1)NL 

But application of the present method to system (4) also produces 

M = q1^-71 -f- 0(<7(M-2+Oz-2)(«-l))/2)e 

The details are omitted because they so closely resemble those of the 
homogeneous case, but the idea is to consider separately the cases when 
U contains the column index t + 1 and when it does not. The arguments 
of the proof of Theorem 3.2 are then amended appropriately to give the 
stated result. Together with 

TV = qt-n _|_ 0(g(H-(M-2)(n-l))/2) 

the previous two equations imply that 

N1 = qf-n + 0 ( Ç ( H " ( M - 2 ) ( / * ~ 1 ) ) / 2 ) . 
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If, on the other hand, it happens that the augmented matrix 

~an . . . alt bi' 

jxn\ . . . ant bn 

is also jit-weakly non-singular, then by consideration of the system 

anyidl + . . . + altyt
dt - biyt+l

d = 0 

anly^ + • . • + and?1 ~ Kyt+id = 0 

(having M solutions), where d = LCM[di, d2, . . . , dt], for which 

M = N + (q - 1)NU 

we have by Theorem 3.2, 

M = ql+l~n + 0(g(«+l+(M-2)(«-D)/2)# 

Since also 

we conclude that 

iVi = ql~n + 0(g ( i-1+(^-2)(n-1) ) / 2). 

4. The regularity of solution distribution. The estimates of §3 can 
be used to obtain asymptotic formulas for the distribution of simulta­
neous solutions to congruences modulo a prime and to deduce bounds 
for the size of small simultaneous solutions. For this purpose a theorem 
of [1], reproduced here for the convenience of the reader, is fundamental. 
Actually, Chalk's theorem is slightly more general than the following 
version. For the very short proof, consult [1]. 

Let m ^ 2 be an integer. Let C = C(m) denote the cube consisting of 
all integral /-tuples (xi, ) satisfying 0 ^ xt < m (i = 1, 2, . . . t). 

THEOREM. (Chalk). Let S be any subset of C and let <p(x) be a complex-
valued function defined on C which satisfies 

(5) £ <p(x)em(-x • y) ^ $ (0 j& y £ C) 

where $ is independent of y. Then 

(6) I v ( x ) = nr'\S\ £ *>(x) + em-^Em{S) 
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where |0| < 1 and where 

Em(S) = E 

It will shortly become apparent that with an appropriate choice for the 
function <p, Eq. (6) takes the form of an asymptotic formula for the 
number of solutions to a system of equations over GF(p). If S is of a 
certain type, then an estimate of Vinogradov provides information about 
Em(S). To complete an estimation of the size of the error term, informa­
tion concerning the size of <£ is required; in fact, this will be our main con­
cern and it will require the estimates derived in § 3. 

Our interest lies in systems of congruences 

/ i(x) = 0 (mod m) 

(7) . 

/n(x) = 0 (modm). 

Let S Q C = C{m) and let A = A(w) consist of all integral w-tuples 
X = (Xi, X2, . . . , \n) having 0 ^ \ t < m (i = 1, 2, . . . , n). Define 

*(X) = E n * m ( X , / < ( x ) ) = E ^ ( X - f ( x ) ) . 

The following lemma provides the link between Chalk's theorem and the 
number N(S) of x G 5 which are solutions to the system (7). 

LEMMA 4.1. If S is any subset of C, then 

2>(x) = mnN(S). 

Proof. Since among the points x G S, <p(x) = 0 unless x is a solution 
for (7) in which case <p(x) = | A| = mn, the result follows. 

Hence if condition (5) is satisfied with this choice of <p, then by Chalk's 
theorem 

mnN(S) = ra-<|S|rawiV(C) + Om-^E^S), 

or more simply, 

(8) N(S) = m-'lSlNiQ + dm-'-^E^S), 

where \6\ ^ 1. We shall make assumptions to ensure the second term on 
the right is ''small" so that, roughly, the ratio N(S)/N(C) will be 
approximately the same as the ratio |5 | / |C| ; certainly a desirable situa­
tion. It is perhaps worth noting that when 5 = C, Eq. (8) is a tautology 
since \C\ = ml and Em(C) = 0. Also Em(0) = 0 so Eq. (8) gives the 
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correct statement iV(0) = 0 when S = 0. Of course, in the special case 
of diagonal equations we have estimates for N(C) when m = p by § 3; 
in fact, we will need them to estimate N(S) too. 

To permit a good estimate for Em(S) when 5 is reasonably large 
(|5| > (log m) ') , wre assume S is an arbitrary, but fixed, box in C of the 
form 

(9) 5 = S(a, b) = {x £ C: 0 g a, ^ x, g a, + bt - 1 < w; 

* = 1,2, . . . , *}, 

where 6̂  > 1 for i = 1, 2, . . . , t. Then evidently |5| = &i&2 . . . 6f and a 
trivial estimate for Em(S) is 

£w(5) < &1&2 . . . btm
t. 

When \S\ > (log m)l and w is sufficiently large, a better estimate is 
available by use of a famous inequality of Vinogradov (see [5]): 

m— 1 

E 
a+b-l 

< m log m — ôw. 

where 5 is an absolute constant. Chalk [1] used Vinogradov's inequality 
to obtain the bound 

Em(S) < (m \ogm)\ 

provided m ^ 60. Notice the uniformity of this bound in 61, b2, . . . , bt 

which may each be considerably larger than log m. 
Put 

F(y) = E^(xK(-x .y) . 

In order to apply Chalk's theorem, we require a bound for \F(y)\ which 
is uniform in 0 ^ y Ç C. Using the definition for <p(x) one obtains 

(̂y) = ZIX(A-f(x)K(-x.y). 

If we set 

Sx(y) = E ^ - f W - x - y ) , 
x€C 

then by noting that 50(y) = 0 if y 9^ 0, one sees that 

F(y) = E 5x(y). 
0?^X€A 

It is implicit that F(y) depends upon the integer m, the set of functions 
/ i , /2 , • • • ,fm and upon the set S. Henceforth, we shall assume that m — p 
is a rational prime, that 

ft(x) = aaxfi + . . . + aitxt
dt 
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where atj 6 GF(p) and dj\(p — 1) (i = 1, 2, . . . , n\ j = 1, 2, . . . , t), 
and that S is the box given by (9) with |5| > (log m) l. Should it become 
necessary or convenient to vary p while holding the dj fixed, then it shall 
be understood that p is to vary among primes p = 1 (mod LCM[di, 
d2, ...,dt]). Whenever F(y) is now written, these conventions are 
understood. 

LEMMA 4.2. Let n, t and /x be natural numbers satisfying t > n(n — 1). 
If the coefficient matrix [atj] is ^-weakly non-singular, dj ^ 2 (j = 
1,2, ... ,t), and if 0 9* y £ C = C(£), /fee» 

F(y) = 0(ptn+n) -if ix = 1, and, 
/r(y) = 0 (£ ( ^ ( n - 1 ) ) / 2 + 1 ) if n^2. 

The implied constants depend only on n, t, d\, d2, . . . , dt (and not on p, y, 
b , or jit). 

Proof. Put A = A(£) and for X G A put (just as in § 3) 

n 
LJM = E *iO>ij ( i = i, 2 , . . . , t). 

Then if 0 ^ y £ C, 

^(y) = E Sx(y) 

= E E l l ev(Lj(\)x3
dj ~ a^i) 

« p—1 

= E I l E ev(Lj(\)Xjdj - xtfj). 
O^XÇA j = l a;y=0 

Again as in § 3 for each subset U Ç T = {1, 2, . . . , t), set 

A, = {À G A: L,(X) ^ 0 (mod£) if and only if j £ U). 

Also for each choice of y and X and any subset V of T, define 

PviKy) = Et E epiLjMxj1' - *,?,). 

Then 

f(y) = É Z E iV(x. y)iWx, y). 
M=l UÇ,T XÇAjy 

|C/|=M 

First observe that the number of subsets U of T having cardinality u 

(1 ^ u ^ t) is the binomial coefficient I I. Next, notice that for a fixed 
\u) 

^-subset U, the number of X G A^ is at most pn-(t-u^/^j for we have seen 
that the assumptions that [ai:j] is /x-weakly non-singular and t > n(n — 1) 
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imply that among any t — u linear conditions (from the columns of the 
matrix [a^]) on X there must be at least (/ — u)n linearly independent 
ones. The product \PVQ\, y)| may be bounded above independently of y, 
if X G Ac/, by an estimate of Weil (for a proof of Weil's estimate, see 
[3, Corollary 2F, p. 45]); namely, if p is prime, g(X) = amXm + . . . 
+ a0 £ Z[X] with 0 < m < p and p ^ am, then 

2 7 - 1 

Hev{g{x)) ^ (m - l)p 1/2 

Specifically, since 2 ^ dj < p (recall ds\ (p — 1)) and since for a w-subset 
U Ç T and X 6 A^, L,(X) ^ 0 (mod £), 

|JVx.y)l ^ n (^ - i)/> 1/2^Pu/2tl (dj - i). 
;€£/ ; = 1 

For the remaining product we make the trivial estimate, 

\pT-u(\y)\ ^Pl~u. 

These observations permit one to wrrite for all y G C, 

\F(y)\ £ t (ï)pn-(t-u)'ifl V, - D)/»"^*-" 

= ( r i ( ^ - l ) ) Z (A^+«M-l)/,)<+((2-,)/2^ 

Two cases distinguish themselves according to the sign of the parameter 
(2 - M)/2/x. If /x = 1, (2 — /x)/2/x = 1/2 whence 

F(y) = 0(^ / 2+*), 

because w ^ /. If /x ^ 2, then (2 — /x)/2ju ^ 0 and so 

F(y) = 0(/?n+((M_1)//i)z+((2~/x)/2M)(i-M(w~1))) 

since u ^ t — n(n — 1). Simplification of the above exponent gives the 
result stated in the lemma. 

THEOREM 4.3. Let n, t, n, di, d2, . . . , dt be natural numbers with t > 
/x(w — 1) and dj ^ 2 (j = 1,2, . . . , t). If [dij] is \x-weakly non-singular 
over Fp, then the number N(S) of solutions to the system (1) which lie in the 
box S given by (9) satisfies 

N(S) = p~n\S\ + 0(pt/2(logp)f) if n = hand 

N(S) = p~n\S\ + O ^ ' + ^ - ^ ' - ^ ' H l o g ^ ) ' ) if n^2. 

Proof. The proof consists of the replacement of N{C) and $ in Eq. (8) 
by estimates obtained in Theorem 3.2 (or by Weil or Spackman in case 
IJL = 1) and Lemma 4.2, respectively, using the Chalk-Vinogradov bound 
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for EP(S). If M = 1» one obtains 

N(S) = p-'lSKp^ + 0(pt/2)) + Oip-^pt^iplogp)1) 

= p-»\s\ + o(\s\p-«*) + o(p«*(iogpy). 

Since |5| ^ p\ the second error term dominates the first for large p, so 
the first result follows. Next suppose /x ^ 2. Then 

N(S) = £-<|S|(^-* + 0(p<'+^-2><n-1»/2)) 
+ 0(p-l-n(p l o g p ) ^ ( ^ ( n - 1 ) ) / 2 + 1 ) 

Again the trivial bound \S\ ^ pl makes the second error term the domi­
nant one and the proof is complete. 

Remarks, (i) The same arguments go through for an inhomogeneous 
system of diagonal equations (3) since by the remarks concluding § 3, 
we have a no less accurate estimate for N(C) while neither the estimate 
for EP(S) nor |-F(y)| need be altered. Theorem 4.3 therefore generalizes 
a theorem of [1, Theorem 2] which treated the case n = 1 exclusively. 

(ii) Observe that when n = 1, the property that the 1 X t coefficient 
matrix is ju-weakly non-singular coincides for every /x with the property 
that each coefficient is non-zero modulo p. In this light, it is natural that 
the estimates of Theorem 4.3 should agree and be independent of /x 
when n = 1. 

(iii) Although in general the property "2-weakly non-singular" is 
weaker than the property "1-weakly non-singular," the (asymptotic) 
magnitude of the error terms in Theorem 4.3 coincide for all n in the cases 
M = 1 and /x = 2. It appears that any improvement should arise in the 
estimation of F(y) in the case /* = 1. 

(iv) Finally, observe that for fixed n and \x and for sufficiently large 
p and /, the estimates of Theorem 4.3 are genuine asymptotic formulas in 
that the "main term" dominates the "error term". The question in the 
case jix = 1 is one of existence of a box 5 Ç C with 

\s\ ^ dp'^iogpy, 

for if such an 5 exists then with a suitable choice for the constant Ci, 
p~n\S\ dominates the error term. But if t/2 + n < t (i.e., t > 2n), then 

c1p
t^+n(\ogp)t = o(p%) asp -> + oo, 

and the choice of such an 5* is possible. Similarly, if /x ^ 2 and t > 
ix(n — 1) + 2 (exactly the condition required to make the estimate for 
N(C) of Theorem 3.2 meaningful) then for any constant c2, 

C 2 £ < ' + ( M - 2 ) < n - l ) ) / 2 + n ( i o g £ ) t = o(pl) a s p - > + 00 . 
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In particular, if c2 is larger than the implied constant in the case n ^ 2 of 
Theorem 4.3, one may choose (for large enough p) a box S C C so that 
p~n\S\ dominates the error term provided t > i*(n — 1) + 2 ^ 2w. 

An immediate consequence of Theorem 4.3 is the existence of small 
solutions to (1) having non-zero components. 

COROLLARY 4.4. If [a^] is n-weakly non-singular over Fp, dj ^ 2, and 
t > \x(n — 1) + 2 ^ 2n, then there exists for sufficiently large p a solution 
x = (xi, x2, . . . , xt) for the system (1) having 

1 ^ xt S kpl/2+^n-1)+2)/2t\og p (1 ^ i ^ t), 

for some constant k depending only on du d2, . . . , dt, t, n. 

Proof. The condition n(n — 1) + 2 ^ 2n is equivalent to (/x — 2) X 
(n — 1) ^ 0. Chalk [1] has proved this result for n = 1, so we may 
assume ^ ^ 2. Choose 5 to be the box defined by (9) with at = 1 and 

J , = [ ^C+(M-2) (n - i ) ) / 2«+n /q o g ^ ] 

for each i ~ 1 , 2 , . . . , / , where & is a constant to be determined. Then 
\S\ ^ (fe^(«+(M-2)(n-l))/2*+n/qogp _ ±y 

è (fe - l)^(*+<M-2)(»-l))/2+n (log^)«. 

Choose & so large that (fe — 1) l is larger than the implied constant in the 
estimate for the case n ^ 2 of Theorem 4.3. Then by Theorem 4.3, 
N(S) > 0. That is, there exists a solution x = (xi, x2, . . . , xt) satisfying 

1 S Xt ^ 6< ^ ^ l / 2 + ( M ( n - l ) + 2 ) / 2 q o g ^ < p^ 

the last inequality holding for sufficiently large p since \x{n — 1) + 2 < /. 

The case \x = 1 is treated analogously. 

COROLLARY 4.5. If every n X n submatrix of [a^] is non-singular over 
FP, dj ^ 2 and t > 2n, then for sufficiently large p there exists a solution 
x = (xi, x2, . . . , xt) to the system (1) having 

1 ^ Xi ^ kp1/2+n/t\ogp ( U i g 0 , 

for some constant k depending only on di, d2, . . . , du /, n. 

Proof. Let 5 be of the form (9) with at — 1 and 

bi = [kp1/2+n/t\ogp]y 

for each i — 1 , 2 , . . . , / , where k is to be determined. Then 

|5| è (* - l ) ^ / 2 + " (log^) ' . 

Hence if & and p are sufficiently large, Theorem 4.3 guarantees the exis­
tence of a solution to (1) having 

1 ^ xt ^ bi S kp1/2+n/t\ogp < p. 

provided / > 2n. 
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Both Corollaries 4.4 and 4.5 generalize the result obtained by Chalk 
[1] for the case n = 1 regardless of the value of /x (recall Remark (ii) 
above). Furthermore, these two corollaries can be combined and re­
formulated in a weaker but slightly more elegant version as follows. 

COROLLARY 4.6. Fix natural numbers n and /i and let e > 0 be given. 
Let dj ^ 2 and suppose the n X t matrix [atj] is n-weakly non-singular 
over Fp. If p and t are sufficiently large then there exists a solution x = 
(Xi, X 2 j • • • j X1 ) for the system (1) having 

1 ^ xt S PU2+€ (1 S i Û t). 

Proof. Take t > 3e-l(fi(n - 1) + 2) so that in both Corollaries 4.4 
and 4.5 there exists a constant k such that at least one solution lies in the 
box 

1 ^ xt^ kpU2+*/3\ogp (1 ^ i ^ t) 

for sufficiently large p. (The conditions t > 2n and t > n(n — l ) + 2 
are satisfied in the respective cases /x = 1 and n ^ 2 since we may assume 
e ^ 1/2.) Now by taking £ so large that log p g pt,z and & ̂  p*/s, the 
result follows. 

The ideas of the present section can be readily extended to include 
systems of diagonal equations over arbitrary finite fields. In view of the 
fact that § 3 was carried out in this generality and that the derivation of 
the estimate for F(y) remains valid in any finite field GF(g) (as long as 
dj\(([ — 1)), the only possible obstacles might arise with an attempt to 
generalize the concept of a "box" or with the Chalk-Vinogradovestimate 
for Em(S). Chalk and Williams [2] have resolved these difficulties so that 
it becomes routine to verify the counterparts of these estimates in the 
more general case. 
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