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Abstract

We prove that the moduli spaces of n-pointedm-stable curves introduced in our previous
paper have projective coarse moduli. We use the resulting spaces to run an analogue of
Hassett’s log minimal model program for M1,n.
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1. Introduction

In [Has05], Hassett proposed the problem of studying log canonical models of Mg. For any
α ∈Q ∩ [0, 1] such that KMg

+ α∆ is big, Hassett defined

Mg(α) := Proj⊕m>0 H
0(Mg, m(KMg

+ α∆)),

where the sum ranges over sufficiently divisible m, and asked whether the spaces Mg(α) admit a
modular interpretation. In this paper, we consider an analogous problem for M1,n. For any s ∈Q,
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D. I. Smyth

we define

D(s) := sλ+ ψ −∆,
R(s) :=⊕m>0 H

0(M1,n, mD(s)),
M

s
1,n := ProjR(s),

where λ, ψ, and ∆ are certain tautological divisor classes onM1,n (these will be defined in § 3),
and the sum defining R(s) is taken over m sufficiently divisible. We will show that the section
ring R(s) is finitely generated and that the associated birational model M s

1,n admits a modular
interpretation for all s ∈Q such that D(s) is big. In fact, the birational models arising in this
construction are precisely the moduli spaces of m-stable curves introduced in [Smy11].

Recall that an n-pointed curve (C, {pi}ni=1) of arithmetic genus one is m-stable if it satisfies
the following three conditions:

(1) C has only nodes and elliptic l-fold points, l 6m, as singularities;
(2) if E ⊂ C is any connected subcurve of arithmetic genus one, then

|E ∩ C\E|+ |{pi ∈ E}|>m;

(3) H0(C, Ω∨C(−Σ)) = 0. Equivalently:
(a) if C is nodal, then every rational component of C̃ has at least three distinguished

points;
(b) if C has a (unique) elliptic m-fold point p, and B̃1, . . . , B̃m denote the components of

the normalization whose images contain p, then:
(b1) B̃1, . . . , B̃m each have >2 distinguished points;
(b2) at least one of B̃1, . . . , B̃m has >3 distinguished points;
(b3) every other component of C̃ has >3 distinguished points.

In [Smy11, Theorem 3.8], we proved that the moduli stack of n-pointed m-stable curves is an
irreducible, proper, Deligne–Mumford stack over Spec Z[1/6] for all m< n. In this paper, we work
over a fixed algebraically closed field k of characteristic zero. Henceforth, M1,n(m) will denote
the moduli stack of m-stable curves over k, M1,n(m) the corresponding coarse moduli space, and
M1,n(m)∗ the normalization of the coarse moduli space. Our main result (Corollary 4.14) is the
following.

Main result. Given s ∈Q and m, n ∈ N satisfying m< n, we have:

(1) D(s) is big if and only if s ∈ (12− n,∞);

(2) M
s
1,n =


M1,n if and only if s ∈ (11,∞),
M1,n(1) if and only if s ∈ (10, 11],
M1,n(m)∗ if and only if s ∈ (11−m, 12−m) and m ∈ {2, . . . , n− 2},
M1,n(n− 1)∗ if and only if s ∈ (12− n, 13− n].

Remarks. (1) Note that we do not give a modular interpretation of the model M s
1,n for the

transitional values s= 10, 9, . . . , 14− n. At these values, the model M s
1,n may be viewed as

the intermediate small contraction associated to the flip M1,n(m− 1)∗ 99KM1,n(m)∗.

(2) We will show that M1,n(m) is a smooth stack if and only if m6 5 (Corollaries 2.2
and 4.17). In particular, M1,n(m) =M1,n(m)∗ for m6 5. We do not know whether M1,n(m) =
M1,n(m)∗ for m> 6.
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Modular compactifications

Figure 1. Comparison of log minimal model program for Mg and M1,n.

Our main result gives a complete Mori chamber decomposition of the two-dimensional slice
of the effective cone of M1,n spanned by λ and ψ −∆ (Figure 1). Now let us explain how this
result is connected to the log minimal model program for Mg. Recall that the canonical divisor
of Mg is given by KMg

= 13λ− 2∆ ∈ Pic(Mg), so KMg
+ α∆ is numerically proportional to a

uniquely defined divisor of the form sλ−∆, where s is the slope of the divisor. We may define

D(s) := sλ−∆,
R(s) :=⊕m>0 H

0(Mg, mD(s)),

M
s
g := ProjR(s).

We have Mg(α) =M
s
g for s= 13/(2− α), so describing the birational models Mg(α) is equivalent

to describing the models M s
g. In this notation, results of Hassett and Hyeon [HH06, HH09] give

the following theorem.

Theorem (Hassett–Hyeon). For s ∈ (10− ε,∞), where ε > 0 is a sufficiently small rational
number, the log canonical models M

s
g are given by:

M
s
g =


Mg if s ∈ (11,∞),
M

ps
g if s ∈ (10, 11],

M
qs
g if s ∈ (10− ε, 10),

where M
ps
g is the moduli space of pseudostable curves (in which elliptic tails are replaced by

cusps) and M
qs
g is the moduli space of quasistable curves (in which elliptic tails and bridges are

replaced by cusps and tacnodes).

Our results for M1,n are connected to the log minimal model program for Mg by the following
observation: for g� 0, we may define a closed immersion

i :M1,n ↪→Mg,

by gluing fixed tails of genus g1, . . . , gn (satisfying g1 + · · ·+ gn + 1 = g) onto the n marked
points. One easily checks that the restriction of the divisor sλ−∆ on Mg to the subvariety
i(M1,n) is simply sλ+ ψ −∆, i.e. i∗D(s) =D(s). Thus, our results track the effect of the Hassett–
Keel log minimal model program on M1,n, viewed as a subvariety of Mg. In our view, the fact that
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D. I. Smyth

every birational model M s
1,n admits a modular interpretation gives strong evidence that the

models M s
g should admit a modular interpretation. Furthermore, our results suggest that elliptic

m-fold points should arise in the moduli problem associated to M s
g at slope s= 12−m.

Finally, we should remark that our main result can also be formulated as running a log
minimal model program on M1,n provided one scales ∆irr rather than ∆. Here, ∆irr denotes the
irreducible component of the boundary whose generic point parameterizes an irreducible curve,
and we set ∆red := ∆\∆irr. Using the relations in Pic(M1,n) (Proposition 3.1), one easily checks
that

sλ+ ψ −∆≡KM1,n
+ α∆irr + ∆red if and only if α=

s− 1
12

.

Thus, our main result is equivalent to the statement

Proj⊕m>0 Γ(M1,n, m(KM1,n
+ α∆irr + ∆red))

=



M1,n if and only if α ∈ (5/6,∞),

M1,n(1) if and only if α ∈ (3/4, 5/6],

M1,n(m)∗ if and only if α ∈
(

10−m
12

,
11−m

12

)
,

M1,n(n− 1)∗ if and only if α ∈
(

11− n
12

,
12− n

12

]
.

Note that α becomes negative when m> 11, so that the birational models M1,n(m)∗ are only log
canonical models for m6 10. An amusing consequence of this result is that the normalization of
a versal deformation space for an elliptic m-fold point has log canonical singularities for m6 10.
As far as we know, there is no proof of this fact by means of pure deformation theory.

It is natural to ask whether the log canonical models Proj⊕m>0 Γ(M1,n, m(KM1,n
+ α∆))

can be given a modular interpretation. In forthcoming work, we will extend our main result by
considering

D(s, t) := sλ+ tψ −∆,
R(s, t) :=⊕m>0 H

0(M1,n, mD(s, t)),

M
s,t
1,n := ProjR(s, t).

We will show that each birational model M s,t
1,n is isomorphic to the normalization of one of

the moduli spaces of (m,A)-stable curves M1,A(m) introduced in [Smy11]. It is easy to see that
KM1,n

+ α∆ is numerically equivalent to a divisor of the form D(s, t), so we obtain an affirmative
answer to the preceding question.

1.1 Notation

Throughout this paper, we work over a fixed algebraically closed field k of characteristic zero. An
n-pointed curve (C, {pi}ni=1) is a reduced, connected, one-dimensional scheme of finite type over
k with n distinct smooth points p1, . . . , pn ∈ C. A family of n-pointed curves (f : C → T, {σi}ni=1)
is a flat, proper morphism C → T with n sections {σi}ni=1, whose geometric fibers are n-pointed
curves. We will frequently refer to definitions introduced in our earlier paper [Smy11].
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1.2 Outline of paper

In this section, we outline the contents of this paper. In § 2, we study the stratification ofM1,n(m)
by singularity type, i.e. the stratification

M1,n(m) =M1,n

∐
E0

∐
E1

∐
· · ·
∐
Em,

where E0 is the locus of singular curves with only nodal singularities, and El (l > 1) is the locus of
curves with an elliptic l-fold point. In § 2.1, we use deformation theory to analyze local properties
of M1,n(m) and of the individual strata El. In § 2.2, we study the ‘moduli of attaching data’ of
the elliptic m-fold point. We show that isomorphism classes of elliptic m-fold pointed curves
with given pointed normalization (C̃, {qi}mi=1) are naturally parameterized by (k∗)m−1. In § 2.3,
we construct a modular compactification (k∗)m−1 ⊂ Pm−1 by considering all isomorphism classes
of elliptic m-fold pointed curves whose normalization is obtained from the given (C̃, {qi}mi=1) by
sprouting semistable P1s along a proper subset of the {qi}mi=1. We show that this construction is
compatible with families, i.e. given a family of pointed normalizations (π : C̃ → T, {σi}mi=1), we
consider

E := ⊕mi=1 σ
∗
iOC̃(−σi),

P := P(E)→ T,

and we construct a family of curves over P, whose fibers range over all isomorphism classes of
elliptic m-fold pointed curves whose normalization is obtained from a fiber (C̃t, {σi(t)}mi=1) by
sprouting semistable P1s along a proper subset of {σi(t)}mi=1. In § 2.4, we use this construction to
describe the strata El explicitly as projective bundles over products of moduli spaces of genus zero
stable curves. This explicit description will be a key tool for subsequent intersection-theoretic
calculations.

In § 3, we establish a framework for doing intersection theory on M1,n(m). The fact that
M1,n(m) may be non-normal for large m presents a technical difficulty, which we circumvent by
simply passing to the normalization M1,n(m)∗. In § 3.1, we show that M1,n(m)∗ is Q-factorial
and that PicQ(M1,n(m)∗) is naturally generated by tautological classes. In § 3.2, we explain how
to evaluate the degrees of tautological classes on one-parameter families of m-stable curves. The
usual heuristics for nodal curves are not sufficient, since families of m-stable curves exhibit novel
features not encountered with stable curves. For example, one can have non-isotrivial families of
m-stable curves whose pointed normalization is isotrivial. Furthermore, whereas the limit of a
node is always a node in a family of stable curves, non-disconnecting nodes degenerate to more
complicated singularities in families of m-stable curves. We explain techniques for computing
the degree of tautological classes on such families.

In § 4, we prove our main result. In § 4.1, we analyze the birational contraction φ :M1,n 99K
M1,n(m)∗, and show that

φ∗φ∗D(s)−D(s) > 0 for s6 12−m.

This implies that the section ring of D(s) on M1,n is identical to the section ring of φ∗D(s) in
M1,n(m)∗. Thus, to prove M s

1,n =M1,n(m)∗, it suffices to show that φ∗D(s) is ample. In § 4.2,
we use the intersection theory developed in § 3 to prove that φ∗D(s) has positive intersection on
every curve in M1,n(m)∗ for s ∈ (m, m+ 1). We then apply Kleiman’s criterion to conclude that
the divisor D(s) is ample. Section 4.3 is logically independent of the rest of the paper; we use a
discrepancy calculation to prove that the stacks M1,n(m) must be singular for m> 6.
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2. Geometry of M1,n(m)

2.1 Deformation theory
The deformation theory of stable curves implies that M1,n is a smooth Deligne–Mumford stack
with normal crossing boundary, and that M1,n has a locally closed stratification by topological
type. In this section, we investigate the corresponding properties for M1,n(m). We assume that
the reader is familiar with formal deformation theory (as in [Ser06]), and consider the following
deformation functors, from the category of Artinian k-algebras with residue field k to sets.

Def(C,{pi}ni=1) : A→{Flat deformations of C over A with n sections σ1, . . . , σn},
DefC : A→{Flat deformations of C over A},

Def(qi∈C) : A→{Flat deformations of Spec OC,qi over A}.

Lemma 2.1. Suppose that (C{pi}ni=1) is a pointed curve with reduced singular points
q1, . . . , qm ∈ C. The natural morphisms of deformation functors

Def(C,{pi}ni=1)→DefC →
m∏
i=1

Def(qi∈C)

are formally smooth of relative dimensions n and h1(C, Ω∨C), respectively.

Proof. Since the marked points p1, . . . , pn are smooth,

Def(C,{pi}ni=1)→DefC

is clearly formally smooth of relative dimension n. The fact that

DefC →
m∏
i=1

Def(qi∈C)

is formally smooth of relative dimension h1(C, Ω∨C) is contained in [DM69, Proposition 1.5] under
the assumption that C has local complete intersection singularities, but elliptic m-fold points
are not local complete intersections for m> 5. Thus, we must use the cotangent complex.

By [GLS07, C.4.8 and C.5.1], there exist a sequence of sheaves {T iC : i> 0}, a sequence of
finite-dimensional k-vector spaces {T iC : i> 0}, and a spectral sequence Ep,q2 =Hp(T qC )→ T p+qC

with the following properties:

(1) the sheaves {T iC : i> 1} are supported on the singular locus of C;
(2) T 0

C = Hom(ΩC , OC);
(3) T 1

C = DefC(k[ε]/(ε2));
(4) T 2

C is an obstruction theory for DefC ;
(5) H0(C, (T 1

C )q) = Def(q∈C)(k[ε]/(ε2));
(6) H0(C, (T 2

C )q) is an obstruction theory for Def(q∈C).

Since C is a curve and T 1
C is supported on the singular locus, we have H2(T 0

C ) = 0 and
H1(T 1

C ) = 0. The spectral sequence Ep,q2 then gives an exact sequence

0→H1(T 0
C )→ T 1

C →H0(T 1
C )→ 0→ T 2

C →H0(T 2
C ).

Since T 1
C and T 2

C are supported on the singular locus, we have

H0(T 1
C ) =⊕mi=1H

0(X, (T 1
C )qi),

H0(T 2
C ) =⊕mi=1H

0(X, (T 2
C )qi).
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Thus, the exact sequence shows that DefC →⊕mi=1 Def(qi∈C) induces a surjection on first-order
deformations and an injection on obstruction spaces. Formal smoothness follows by [Ser06,
Proposition 2.3.6]. Finally, the relative dimension of the map on first-order deformations is
evidently dimH1(T 0

C ) = h1(C, Ω∨C). 2

Corollary 2.2. M1,n(m) is smooth if and only if m6 5.

Proof. By Lemma 2.1,M1,n(m) is smooth at a point [C] ∈M1,n(m) if and only if the local rings
OC,p have unobstructed deformations for all singular points p ∈ C. For m= 1, 2, 3, the elliptic
m-fold point is a local complete intersection, hence has unobstructed deformations. The cases
m= 4, 5 are handled by slightly less well-known criteria: the local ring OC,p is a Cohen–Macaulay
quotient of a regular local ring of dimension three when m= 4, and a Gorenstein quotient of
a regular local ring of dimension four when m= 5 (see [Smy11, Proposition 2.5]). There is a
determinantal structure theorem for such local rings, which implies that they have unobstructed
deformations [Har10, Theorems 8.3 and 9.7]. This shows that M1,n(m) is smooth when m6 5.
We will show that M1,n(m) is singular for m> 6 in § 4.3. 2

Corollary 2.3. The boundary ∆⊂M1,n(m) is normal crossing if and only if m= 0.

Proof. If m> 1, then there exists an m-stable curve (C, {pi}ni=1) with a single cusp q ∈ C and
no other singular points. The family

Spec k[a, b, x, y]/(y2 = x3 + ax+ b)→ Spec k[a, b]

is a miniversal deformation for the cusp and in these coordinates the locus of singular
deformations is cut out by b2 − 4a3. It follows from Lemma 2.1 that, locally around [C, {pi}ni=1] ∈
M1,n(m), we can choose two smooth coordinates a and b such that ∆ is defined by the equation
b2 − 4a3. In particular, ∆ is not a normal crossing divisor. 2

Corollary 2.4 (Stratification of M1,n(m) by singularity type). Consider the set-theoretic
decomposition given by

M1,n(m) =M1,n

∐
E0

∐
E1

∐
· · ·
∐
Em,

where Ei are defined by

E0 := {[C] ∈M1,n(m) | C is singular with only nodal singularities},
El := {[C] ∈M1,n(m) | C has an elliptic l-fold point}.

Then we have:

(1) El ⊂M1,n(m) is a locally closed substack;

(2) for l > 1, El is smooth;

(3) E0 has normal crossing singularities and pure codimension one;

(4) El ⊂ El
∐
El+1

∐
El+2

∐
· · ·
∐
Em.

Proof. First, we show that if l > 1, then El ⊂M1,n(m) is smooth and locally closed. Suppose that
(C, {pi}ni=1) is an m-stable curve with an elliptic l-fold point q0 ∈ C and nodes q1, . . . , qk ∈ C.
There exists an etale neighborhood of [C, {pi}ni=1], say

π : (U, 0)→M1,n(m),
0→ [C, {pi}ni=1],
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and a morphism

s : U →
k∏
i=0

Ver(qi ∈ C)→Ver(q0 ∈ C),

where Ver(qi ∈ C) is the base of a miniversal deformation of the singularity qi ∈ C. Note that
π−1(El)⊂ U is simply the fiber of s over s(0) ∈Ver(C, q0). Using Lemma 2.1 and the fact that the
miniversal deformation space of a node is smooth, we conclude that s is smooth in a neighborhood
of 0, so s−1(s(0))⊂ U is a smooth, closed subvariety of U . It follows that El ⊂M1,n(m) is smooth
and locally closed.

The argument that E0 is locally closed with pure codimension one and normal crossing
singularities is essentially identical: if (C, {pi}ni=1) is an m-stable curve with nodes q1, . . . , qk ∈ C,
there are an etale neighborhood U of [C, {pi}ni=1] ∈M1,n(m) and maps

si : U →
k∏
i=1

Ver(qi ∈ C)→Ver(C, qi),

and π−1(E0) is the union of the fibers s−1
i (si(0)) for i= 1, . . . , k.

Finally, to see that El = El
∐
El+1

∐
El+2

∐
· · ·
∐
Em, it is sufficient to note that elliptic

m-fold points only deform to elliptic l-fold points if l < m. This fact is proved in [Smy11,
Lemma 3.10]. 2

In order to describe the strata El explicitly, we need to understand the moduli of attaching
data of the elliptic m-fold point.

2.2 Moduli of attaching data of the elliptic m-fold point

It is well known that if q ∈ C is a node, then C is determined (up to isomorphism) by its
normalization C̃ and the two points q1, q2 lying above the node. Indeed, one can recover C as
follows: take C̃/(q1 ∼ q2) to be the underlying topological space of C and define the sheaf of
regular functions on C to be the subsheaf of OC̃ generated by all functions which vanish at q1

and q2. By contrast, if q ∈ C is an elliptic m-fold point, then the isomorphism class of C is not
determined by the pointed normalization (C̃, {qi}mi=1).

In order to study the moduli of attaching data of the elliptic m-fold point, let us fix a curve
C̃ with m distinct smooth points, say q1, . . . , qm ∈ C̃, and define the following two sets:

Attaching Moduli := {(C, q) | (C, q) satisfies (a) and (b)}/',
Attaching Maps := {π : (C̃, {qi}mi=1)→ (C, q) | π satisfies (a) and (c)}/',

where the conditions (a), (b), and (c) refer to:

(a) q ∈ C is an elliptic m-fold point;

(b) the normalization of (C, q) is isomorphic to (C̃, {qi}mi=1);

(c) π is the normalization of (C, q).

As usual, an isomorphism between two maps, say π : (C̃, {qi}mi=1)→ (C, q) and π′ : (C̃, {qi}mi=1)→
(C ′, q′), consists of an isomorphism i : (C, q)' (C ′, q′) such that the obvious diagram commutes.
There is a surjection

Attaching Maps → Attaching Moduli,
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given by forgetting the map, and two maps have the same image in moduli if and only if they
differ by an automorphism of (C̃, {qi}mi=1). Thus, we have

Attaching Moduli ' Attaching Maps /Aut(C̃, {qi}mi=1).

Remark 2.5. For simplicity, we will assume that every automorphism of C̃ which fixes the set
{qi}mi=1 actually fixes the points qi individually. This holds when (C̃, {qi}mi=1) consists of m
distinct non-isomorphic connected components, each containing one of the points qi, and this is
the only case we need.

Now let us consider the problem of parameterizing these sets algebraically. Given

π : (C̃, {qi}mi=1)→ (C, q)

satisfying (a) and (c), [Smy11, Lemma 2.2] implies that we obtain a codimension-one subspace

π∗(T∨q )⊂⊕mi=1T
∨
qi

satisfying π∗(T∨q ) ) T∨qi for each i= 1, . . . , m. Since OC can be recovered as the sheaf generated
by (arbitrary lifts of) a basis of π∗T∨q , together with all functions vanishing to order at least
two along q1, . . . , qm, this subspace determines the map up to isomorphism. Conversely, any
codimension-one subspace

V ⊂⊕mi=1T
∨
qi ,

with the property that V ) T∨qi for any i= 1, . . . , m, gives rise to a map π : C̃→ C simply by
identifying the points q1, . . . , qm, and declaring OC to be the push forward of the subsheaf of OC̃
generated by (arbitrary lifts of) a basis of V , together with all functions vanishing to order at
least two along q1, . . . , qm. By [Smy11, Lemma 2.2], the singular point π(q1) = · · ·= π(qm) ∈ C
is an elliptic m-fold point. In sum, we have established the following.

Lemma 2.6. Let P := P(⊕mj=1T
∨
qi) denote the projective space of hyperplanes in ⊕mj=1T

∨
qi , and let

Hi ⊂ P be the coordinate hyperplane Hi := P(⊕j 6=iT∨qj ). Then we have a natural bijection

Attaching Maps↔ P\(H1 ∪ · · · ∪Hm),
π → π∗(T∨q ).

Corollary 2.7. If Aut(C̃, {qi}mi=1) = {0}, then we have a natural bijection

Attaching Moduli↔ P\(H1 ∪ · · · ∪Hm).

In the following lemma, we extend this description to the case when (C̃, {qi}mi=1) has
automorphisms.

Lemma 2.8. Suppose that the image of the natural map

Aut(C̃, {qi}mi=1)→⊕mi=1 Aut(T∨qi)

is precisely

⊕i∈S Aut(T∨qi),

for some proper subset S ⊂ {1, . . . , m}. Let P, H1, . . . , Hm be defined as before and set

HS :=
⋂
i∈S

Hi = P(⊕i/∈S T∨qi).
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Then we have a natural bijection

Attaching Moduli↔HS

∖ ⋃
i/∈S

(Hi ∩HS).

Proof. Consider the map

Attaching Maps→ P\(H1 ∪ · · · ∪Hm)→HS

∖ ⋃
i/∈S

(Hi ∩HS),

defined by

π→ π∗(T∨q )→ π∗(T∨q ) ∩ ⊕i/∈S T∨qi .

Two distinct maps differ by an element of Aut(C̃, {qi}mi=1) if and only if the corresponding
subspaces π∗(T∨q )⊂⊕mi=1T

∨
qi differ by an element of ⊕i∈S Aut(T∨qi). Since

Attaching Moduli'Attaching Maps /Aut(C̃, {qi}mi=1),

it suffices to show that two subspaces π∗(T∨q )⊂⊕mi=1T
∨
qi differ by an element of ⊕i∈S Aut(T∨qi) if

and only if they have the same projection π∗(T∨q ) ∩ ⊕i/∈S T∨qi .
To see this explicitly, order the branches so that S = {1, . . . , k}, choose uniformizers

t1, . . . , tm on the normalization, and pick coordinates for P\(H1 ∪ · · · ∪Hm) so that the point
(c1, . . . , cm) ∈ (k∗)m corresponds to the subspace spanned by

t1 0 · · · 0 c1tm

0 t2
. . .

... c2tm
...

. . . . . . 0
...

0 · · · 0 tm−1 cm−1tm

.
The projection of this subspace to ⊕i/∈S T∨qi is simply

tk+1 0 · · · 0 ck+1tk+1

0 tk+2
. . .

... ck+2tk+2
...

. . . . . . 0
...

0 · · · 0 tm−1 cm−1tm

.
In these coordinates, an element (λ1, . . . , λk) ∈ ⊕i∈S Aut(T∨qi) = (k∗)|S| acts by

(λ1, . . . , λk) ∗ (c1, . . . , cm−1) = (λ−1
1 c1, . . . , λ

−1
k ck, ck+1, . . . , cm−1),

which shows that two subspaces are in the same orbit if and only if they have the same projection
to ⊕i/∈S T∨qi . 2

Remark 2.9. This entire discussion applies without change to the case of pointed curves, i.e. if
we are given an n-pointed curve (C, {pi}ni=1) and m smooth points {qi}mi=1 ∈ C which are distinct
from the marked points, we may define

Attaching Moduli := {(C, q, {pi}ni=1) | (C, q, {pi}ni=1) satisfies (a) and (b)}/',
Attaching Maps := {π : (C̃, {qi}mi=1, {pi}ni=1)→ (C, q, {pi}ni=1) | π satisfies (a) and (c)}/',

where the conditions (a), (b), and (c) refer to:
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Figure 2. Compactification of the moduli of attaching data of the planar triple point. Over
the three coordinate hyperplanes in P(T∨q1 ⊕ T

∨
q2 ⊕ T

∨
q3), the normalization sprouts a P1 at the

corresponding branch.

(a) p ∈ C is an elliptic m-fold point;

(b) the normalization of (C, q, {pi}ni=1) is isomorphic to (C̃, {qi}mi=1, {pi}ni=1);

(c) π is the normalization of (C, q, {pi}ni=1).

Precisely the same arguments give

Attaching Moduli ' Attaching Maps /Aut(C̃, {qi}mi=1, {pi}ni=1),

and the statement and proof of Lemma 2.8 hold in this context, with Aut(C̃, {qi}mi=1) replaced
by Aut(C̃, {qi}mi=1, {pi}ni=1).

2.3 Construction of universal elliptic m-fold pointed families

If (C̃, {qi}mi=1) is a fixed curve with Aut(C̃, {qi}mi=1) = 0, Corollary 2.7 implies that

Attaching Moduli' P\(H1 ∪ · · · ∪Hm)' (k∗)m−1.

In this section, we construct a modular compactification (k∗)m−1 ⊂ Pm−1 which is functorial with
respect to the normalization (C̃, {qi}mi=1). The key idea is to allow the normalization (C̃, {qi}mi=1)
to sprout a semistable P1 at qi as the modulus of attaching data approaches the hyperplane Hi

(see Figure 2).

Definition 2.10 (Sprouting). Let (C̃, {qi}mi=1) be an m-pointed curve and S ⊂ [m] a proper
subset. We say that (C̃ ′, {q′i}mi=1) is obtained from (C̃, {qi}mi=1) by sprouting at {qi}i∈S if

C̃ ′ ' C̃ ∪ E1 ∪ · · · ∪ E|S|,

where:

(1) Ei is a smooth rational curve, nodally attached to C̃ at qi;

(2) for i ∈ S, q′i is an arbitrary point of Ei − {qi};
(3) for i /∈ S, qi = q′i.
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Note that the isomorphism class of (C̃ ′, {q′i}mi=1) is uniquely determined by (C̃, {qi}mi=1) and the
subset S ⊂ [m].

If Aut(C̃, {qi}mi=1) = 0 and (C̃ ′, {q′i}mi=1) is obtained from (C̃, {qi}mi=1) by sprouting at S, then

Image(Aut(C̃ ′, {q′i}mi=1)→⊕mi=1 Aut(T∨q′i)) =⊕i∈S Aut(T∨q′i).

Thus, Lemma 2.8 implies that the attaching moduli for (C̃ ′, {q′i}mi=1) is given by HS\
⋃
i/∈S(Hi ∩

HS). As S ranges over proper subsets of [m], the locally closed subvarieties HS\
⋃
i/∈S(Hi ∩HS)

give a stratification of P. This suggests the construction of a flat family over P whose fibers
range over all isomorphism classes of elliptic m-fold pointed curves with pointed normalization
obtained from (C̃, {qi}mi=1) by sprouting along a proper subset of {qi}mi=1. In fact, we can make
this construction relative to a family of varying normalizations.

To set notation, let (f : C → T, {τi}mi=1) be a family of curves with {τi}mi=1 mutually disjoint
sections in the smooth locus of f . Let ψi := τ∗i OC(−τi) be the universal cotangent bundle along τi,
and consider the projective bundle

p : P := P(⊕mi=1ψi)→ T.

We will abuse notation by letting f and τi continue to denote the pull backs p∗f and p∗τi. For
any subset S ⊂ [m], let HS denote the Pm−|S|−1-subbundle of P corresponding to the quotient

⊕mi=1ψi→⊕i/∈{S}ψi→ 0,

and set
US :=HS

∖ ⋃
i/∈{S}

(Hi ∩HS).

Note that, as S ranges over non-empty subsets of [m], the locally closed subschemes US give a
stratification of P.

Proposition 2.11 (Construction of universal elliptic m-fold pointed families I). With notation
as above, there exists a diagram

D̃
π

$$IIIIIIIIIII
φ

vvmmmmmmmmmmmmmmm

g̃

��

C ×T P(⊕mi=1ψi)
f

((QQQQQQQQQQQQ D
g

zzvvvvvvvvvv

P(⊕mi=1ψi)
{τi}mi=1

__
{τ̃i}mi=1

GG

τ

GG

satisfying:

(1) g, g̃ are flat of relative dimension one;

(2) φ is the blow-up of C ×T P along the smooth codimension-two locus
⋃m
i=1(τi(P) ∩ f−1(Hi)),

and τ̃i is the strict transform of τi;

(3) π is an isomorphism away from
⋃m
i=1 τ̃i and π(τ̃1) = · · ·= π(τ̃m) = τ , i.e. π is the

normalization of D along τ ;

(4) for each geometric point z ∈ P, τ(z) ∈Dz is an elliptic m-fold point.

Furthermore, we can describe the restriction of this diagram to a geometric point z ∈ P as follows:
let S ⊂ [m] be the unique proper subset (possibly empty) such that z ∈ US . Then:
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(5) φz : (D̃z, {τ̃i(z)}mi=1)→ (Cz, {τi(z)}mi=1), is the sprouting of Cz along {τi(z)}i∈S . In
particular, there is a canonical identification

⊕i/∈S T∨Cz ,τi(z)
=⊕i/∈S T∨D̃z ,τ̃i(z)

;

(6) πz : (D̃z, {τ̃i(z)}mi=1)→ (Dz, τ(z)), is the normalization of Dz at the elliptic m-fold point
τ(z). The codimension-one subspace π∗(T∨Dz ,τ(z))⊂⊕

m
i=1T

∨
D̃z ,τ̃i(z)

satisfies

π∗(T∨Dz ,τ(z)) ∩ ⊕i/∈S T
∨
D̃z ,τ̃i(z)

= [z] ∩ ⊕i/∈S T∨Cz ,τi(z)
,

where [z]⊂⊕mi=1 T
∨
Cz ,τi(z)

is the codimension-one subspace corresponding to z ∈ P, and we

identify ⊕i/∈S T∨Cz ,τi(z)
=⊕i/∈S T∨D̃z ,τ̃i(z)

as in (5).

Proof. To construct the diagram, first note that for each i= 1, . . . , m, the codimension-two
subvariety

f−1(Hi) ∩ τi(P)⊂ C ×T P
is contained in the smooth locus of f . Furthermore, these subvarieties are mutually disjoint. Let

φ : D̃ → C ×T P

be the blow-up along the union of these subvarieties, let E1, . . . , Em denote the exceptional
divisors of the blow-up, and let τ̃i denote the strict transform of τi. The flatness of g̃ : D̃ → P is
a standard local calculation. Note that if z ∈ US , then the fiber over z intersects the center of
the blow-up transversely at τi(z) for i ∈ S, so property (5) is clear.

It remains to construct the map π. Begin by considering the tautological sequence on P:

⊕mi=1 p
∗ψi→ OP(1)→ 0,

and let ej ∈Hom(p∗ψj , OP(1)) be the section obtained by the composition

ej : p∗ψj ↪→⊕mi=1 p
∗ψi→ OP(1).

Note that ej vanishes to order one along Hj and is non-vanishing elsewhere. Set

ψ̃i := τ̃∗i OC(−τ̃i),

and note that φ∗τi = τ̃i + Ei implies that

ψ̃i = (p∗ψi)(Hi).

Since ei : p∗ψi→ OP(1) vanishes to order one along Hi and is non-vanishing elsewhere, ei induces
an isomorphism

ẽi : ψ̃i ' OP(1).
Taking the direct sum of these maps, we obtain an exact sequence

0→E →⊕mi=1ψ̃i→ OP(1)→ 0,

with the property that, for each point z ∈ P, the induced subspace

Ez ⊂⊕mi=1 T
∨
τ̃i(z)

does not contain any of the lines T∨τ̃i(z).
It is sufficient to define φ locally around τ̃1, . . . , τ̃m, so we may assume that g̃ is smooth and

affine, i.e. we may assume that
D̃ := Spec

OP
g̃∗OD̃.

1855

https://doi.org/10.1112/S0010437X11005549 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005549


D. I. Smyth

We specify a sheaf of OP-subalgebras of g̃∗OD̃ as follows: we consider the exact sequence on P,

0→ g̃∗OD̃(−2τ̃1 − · · · − 2τ̃m)→ g̃∗OD̃(−τ̃1 − · · · − τ̃m)→⊕mi=1ψ̃i→ 0,

and let F ⊂ g̃∗OD̃(−τ̃1 − · · · − τ̃m) be the inverse image of E ⊂ ⊕mi=1ψ̃i. Then we define G ⊂ g̃∗OD̃
to be the sheaf of OP-subalgebras generated by sections of F . Setting D := SpecOPG , we let π
be the morphism D̃ → D associated to the inclusion G ⊂ g̃∗OD̃.

Conclusion (3) is clear by construction, since any section of G vanishes along one section τi
if and only if it vanishes along all of them. For (4), note that for any geometric point z ∈ P,

π∗zODz(−2τ(z)) = OD̃z
(−2τ̃1(z)− · · · − 2τ̃m(z)),

π∗z(T
∨
τ(z)) = Ez ⊂⊕mi=1T

∨
τ̃i(z)

.

Since Ez does not contain any of the lines T∨τ̃i(z), τ(z) ∈ C is an elliptic m-fold point by [Smy11,

Lemma 2.2]. Finally, for (6), note that if z ∈ US , then the inclusion p∗ψi ⊂ ψ̃i is an isomorphism
in a neighborhood of z, for all i /∈ S. Thus, we have a commutative diagram.

⊕i/∈S ψ̃i // OP(1) // 0

⊕i/∈S p∗ψi

'

OO

// OP(1) //

'

OO

0

The bottom arrow is induced by the tautological sequence, while the kernel of the top arrow is
E ∩ ⊕i/∈S ψ̃i. It follows that

Ez ∩ ⊕i/∈S ⊕mi=1 T
∨
D̃z ,τ̃i(z)

= [z] ∩ ⊕mi=1 T
∨
Cz ,τi(z)

. 2

Corollary 2.12. Suppose that (f : C → T, {τi}mi=1, {σi}ni=1) is a family of (n+m)-pointed
curves satisfying:

(1) the geometric fibers of f have no automorphisms (as pointed curves);

(2) no two geometric fibers of f are isomorphic (as pointed curves).

Then the construction of Proposition 2.11 gives a family (g :D→ P, τ, {σi}ni=1) with the property
that there is a bijection

{k-points z ∈ P} ↔ {(D, q, {pi}ni=1) satisfying (a), (b)}/',
z ↔ (Dz, τ(z), {σi(z)}mi=1),

where the conditions (a) and (b) are:

(a) q ∈D is an elliptic m-fold point;

(b) if (D̃, {qi}mi=1, {pi}ni=1) denotes the normalization of (D, q, {pi}ni=1) at q, then there exist
a geometric fiber of f , say (Ct, {τi(t)}mi=1, {σi(t)}ni=1), and a proper subset S ⊂ [m], such
that (D̃, {qi}mi=1, {pi}ni=1) is obtained from (Ct, {τi(t)}mi=1, {σi(t)}ni=1) by sprouting along
{τi(t)}i∈S .

Proof. Note that the morphisms φ and π constructed in Proposition 2.11 are isomorphisms in a
neighborhood of the sections {σi}ni=1, so they induce sections {σi}ni=1 on D→ P.

To check the stated bijection, fix a geometric point t ∈ T and a proper subset S ⊂ [m], and let
(D̃, {qi}mi=1, {pi}ni=1) be the curve obtained from the fiber f−1(t) by sprouting along {τi(t)}i∈S .
Since the fiber f−1(t) has no automorphisms, the automorphism group of (D̃, {qi}mi=1, {pi}ni=1)
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is (k∗)|S|, and we have

Image(Aut(D̃, {qi}mi=1, {pi}ni=1)→⊕mi=1 Aut(T∨qi)) =⊕i∈S Aut(T∨qi).

Now Lemma 2.8 and conclusion (6) of Proposition 2.11 imply that the fibers of g over p−1(t) ∩ US
precisely range over all isomorphism classes of elliptic m-fold pointed curves whose pointed
normalization is isomorphic to (D̃, {qi}mi=1, {pi}ni=1). Since the locally closed subsets US stratify P,
the fibers of g over p−1(t) range over all isomorphism classes of elliptic m-fold pointed curves
whose normalization is obtained from the fiber f−1(t) by sprouting along an arbitrary proper
subset of {τi(t)}mi=1. The claim follows. 2

In § 2.4, we will need a slight modification of Proposition 2.11. Suppose that we are given
a family (C → T, {τi}li=1) with only l attaching sections, where l < m. In Proposition 2.13, we
construct a universal family of ellipticm-fold pointed curves whose normalizations are the disjoint
union of m− l smooth rational curves and a curve obtained from a fiber of f by sprouting along
a proper subset of {τi(t)}li=1. As before, we define ψi := τ∗i OC(−τi), p : P := P(⊕li=1ψi)→ T, and
abuse notation by letting f and τi denote the pull backs p∗f and p∗τi. Furthermore, for each
i= l + 1, . . . , m, we define

(Ri→ P, τ̃i)
to be the one-pointed P1-bundle P(OP ⊕ OP(1))→ P with section τ̃i corresponding to the quotient
OP ⊕ OP(1)→ OP.

Proposition 2.13 (Construction of universal elliptic m-fold pointed families II). With notation
as above, there exists a diagram

D̃0

φ

��

i // D̃ := D̃0
∐
Rl+1

∐
· · ·
∐
Rm

π

��
g̃

zzuuuuuuuuuuuuuuuuuuuuuuuu

C ×T P(⊕mi=1ψi)
f

((PPPPPPPPPPPP D
g

ttjjjjjjjjjjjjjjjjjjj

P(⊕li=1ψi)
{τi}li=1

__

{τ̃i}li=1

hh

{τ̃i}li=1

66

τ

;;

satisfying:

(1) g, g̃ are flat of relative dimension one;

(2) φ is the blow-up of C ×T P along the smooth codimension-two locus
⋃l
i=1(τi(P) ∩ f−1(Hi)),

and τ̃i is the strict transform of τi for i= 1, . . . , l;

(3) i : D̃0→ D̃ is the inclusion of D̃0 into the disjoint union D̃0
∐
Rl+1

∐
· · ·
∐
Rm;

(4) π is an isomorphism away from
⋃m
i=1 τ̃i and π(τ̃1) = · · ·= π(τ̃m) = τ ;

(5) for each geometric point z ∈ P, τ(z) ∈Dz is an elliptic m-fold point.

Furthermore, we can describe the restriction of this diagram to a geometric point z ∈ P as follows.
For any subset S ⊂ [l], let HS ⊂ P and US ⊂ P be defined as in Proposition 2.11, and let S ⊂ [l]
be the unique subset such that z ∈ US . Then we have:

(6) φz : (D̃0
z , {τ̃i(z)}li=1)→ (Cz, {τi(z)}li=1) is the sprouting of Cz along {τi(z)}i∈S . In particular,

there is a canonical identification

⊕i∈[l]\S T
∨
Cz ,τi(z)

=⊕i∈[l]\S T
∨
D̃0

z ,τ̃i(z)
=⊕i∈[l]\S T

∨
D̃z ,τ̃i(z)

;
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(7) πz : (D̃z, {τ̃i(z)}mi=1)→ (Dz, τ(z)) is the normalization of Dz at the elliptic m-fold point
τ(z). The codimension-one subspace π∗(T∨Dz ,τ(z))⊂⊕

m
i=1T

∨
D̃z ,τ̃i(z)

satisfies

φ∗(T∨Dz ,τ(z)) ∩ ⊕i∈[l]\S T
∨
D̃z ,τ̃i(z)

= [z] ∩ ⊕i∈[l]\S T
∨
Cz ,τi(z)

,

where [z]⊂⊕li=1 T
∨
Cz ,τi(z)

is the codimension-one subspace corresponding to z ∈ P, and we

identify ⊕i∈[l]\S T
∨
Cz ,τi(z)

=⊕i∈[l]\S T
∨
D̃z ,τ̃i(z)

as in (5).

Proof. The blow-up φ is constructed as in Proposition 2.11. To construct π, we use the sections
{τ̃i}li=1 on D̃0 and the sections τ̃l+1, . . . , τ̃m on Rl+1, . . . ,Rm. Set ψ̃i := τ̃∗i OD̃(−τi) and observe
that, for each i= 1, . . . , m, we have a natural isomorphism

ei : ψ̃i ' OP(1).

For i= 1, . . . , l, the existence of ei follows as in the proof of Proposition 2.11. For i=
l + 1, . . . , m, this is a standard computation on the projective bundle Ri. Taking the direct
sum of the isomorphisms ei, we obtain an exact sequence

0→E →⊕mi=1 ψ̃i→ OP(1)→ 0,

where E has the property that for each point z ∈ P the induced subspace Ez ⊂⊕mi=1 T
∨
σ̃i(z)

does not

contain any of the lines T∨σ̃i(z)
. Using E , we may construct φ : D̃ → D and verify properties (4)–(7)

precisely as in Proposition 2.11. 2

Since each of the projective bundles Ri→ P is endowed with a distinguished section disjoint
from the attaching section (namely, the section corresponding to the quotient OP ⊕ OP(1)→
OP(1)→ 0), we may use the previous proposition to construct universal families of n-pointed
elliptic m-fold pointed curves from (n−m+ l)-pointed families of normalizations.

Corollary 2.14. Suppose that (f : C → T, {τi}li=1, {σi}
n−m+l
i=1 ) is a family of pointed curves

satisfying:

(1) the geometric fibers of f have no automorphisms (as pointed curves);

(2) no two geometric fibers of f are isomorphic (as pointed curves).

Then the construction of Proposition 2.11 gives rise to a family of n-pointed curves (g :D→
P, τ, {σi}ni=1) with the property that there is a bijection

{k-points z ∈ P} ↔ {(D, q, {pi}ni=1) satisfying (a), (b)}/',
z ∈ P→ (Dz, τ(z), {σi(z)}mi=1),

where the conditions (a) and (b) are:

(a) q ∈D is an elliptic m-fold point;

(b) the normalization of (D, q, {pi}ni=1) at q is a disjoint union

(D̃0, {qi}li=1, {pi}n−m+l
i=1 )

∐( m∐
i=l+1

(Ri, qi, pn−m+i)
)
,

where (D̃0, {qi}li=1, {pi}
n−m+l
i=1 ) is obtained from a geometric fiber of f , say (Ct, {τi(t)}li=1,

{σi(t)}n−m+l
i=1 ), by sprouting along {τi(t)}i∈S for some S ⊂ [l], and each (Ri, qi, pn−m+i)'

(P1, 0,∞).
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Proof. The morphisms φ and π are isomorphisms in a neighborhood of {σi}n−m+l
i=1 , so {σi}n−m+l

i=1

induce sections on g :D→ P. For i= l + 1, . . . , m, we define σn−m+i to be the section of Ri→ P
corresponding to the quotient OP ⊕ OP(1)→ OP(1)→ 0. Since this section is disjoint from the
attaching section τ̃i, it induces a section of D→ P. Altogether, we obtain a family of n-pointed
curves (D→ P, {σi}ni=1). The proof of the stated bijection is essentially identical to the proof of
Corollary 2.12. 2

2.4 Stratification by singularity type
In § 2.1, we defined a stratification of M1,n(m) by singularity type:

M1,n(m) =M1,n

∐
E0

∐
E1

∐
· · ·
∐
Em.

In this section, we construct the strata El (l > 1) explicitly. We will show that the irreducible
components (equivalently, by Corollary 2.4(2), the connected components) of El are indexed by
partitions of [n] into l subsets, i.e. we have

El =
∐
Σ

EΣ,

where Σ runs over l-partitions of [n]. To describe the curves parameterized by the irreducible
component EΣ, we need the following definition.

Definition 2.15 (Combinatorial type). Let (C, {pi}ni=1) be an m-stable curve with an elliptic
l-fold point q ∈ C. Then the normalization of C at q consists of l distinct connected components,
each of which carries at least one of the marked points {pi}ni=1. We define the combinatorial
type of (C, {pi}ni=1) to be the partition {S1, . . . , Sl} of [n] induced by the connected components
of C̃.

Given a partition Σ := {S1, . . . , Sl} of [n], we will construct a universal family for all m-stable
curves of combinatorial type Σ. We must consider two cases.

Case I. Each Si satisfies |Si|> 2.

Let fi : Ci→M0,|S1|+1 × · · · ×M0,|Sl|+1 be the pull back of the universal curve over M0,|Si|+1,
and label the tautological sections of fi as {σj : j ∈ Si} ∪ {τi}. Now apply Proposition 2.11 with

T := M0,|S1|+1 × · · · ×M0,|Sk|+1,

f :=
l∐

i=1

Ci→M0,|S1|+1 × · · · ×M0,|Sl|+1,

τi := T →Ci ↪→
∐
Ci.

By Corollary 2.12, we obtain an n-pointed family of curves

(g :D→ P, {σi}ni=1)

over the projective bundle P := P(⊕li=1ψi)→ T, such that the fibers of g range over all
isomorphism classes of elliptic l-fold pointed curves (D, q, {pi}ni=1) whose normalization
(D̃, {qi}li=1, {pi}ni=1) is obtained from a fiber of f by sprouting along a proper subset of the
points {τi(t)}li=1.

Since the normalization of any m-stable curve of combinatorial type Σ at its unique elliptic
l-fold point is obtained from a disjoint union of l stable curves of genus zero by sprouting along
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a subset of attaching points, every m-stable curve of combinatorial type Σ appears as a fiber
of D. On the other hand, some fibers of D→ P may fail to be m-stable (i.e. they may have
elliptic l-bridges for some l < k 6m). Since m-stability is an open condition however [Smy11,
Lemma 3.10], there is a maximal Zariski open subset EΣ ⊂ P such that the fibers of g over EΣ

are m-stable, and we obtain an m-stable curve

(g : C → EΣ, {σi}ni=1)

whose fibers comprise all m-stable curves of combinatorial type Σ.

Case II. One or more of Si satisfy |Si|= 1.

Order the Si so that |Si|> 2 for i= 1, . . . , k, and |Si|= 1 for i= k + 1, . . . , l. For i= 1, . . . , k,
let fi : Ci→M0,|S1|+1 × · · · ×M0,|Sk|+1 be the pull back of the universal curve over M0,|Si|+1,
and label the tautological sections of fi as {σj : j ∈ Si} ∪ {τi}. Now apply Proposition 2.13 with

T := M0,|S1|+1 × · · · ×M0,|Sk|+1,

f :=
k∐
i=1

Ci→M0,|S1|+1 × · · · ×M0,|Sk|+1,

τi := T →Ci ↪→
∐
Ci.

By Corollary 2.14, we obtain a family of n-pointed curves (g :D→ P, {σi}ni=1) over the projective
bundle P := P(⊕ki=1ψi)→ T, such that the fibers of g range over all isomorphism classes of curves
whose normalization is a disjoint union of l − k smooth one-pointed rational curves and a curve
obtained from a fiber of f by sprouting along a proper subset of the points {τi(t)}ki=1. Note that
we consider the l − k sections lying on the one-pointed rational components as labeled by the
elements in Sk+1, . . . , Sl.

As in Case I, there is a maximal Zariski open subset EΣ ⊂ P such that the fibers of g over EΣ

are m-stable, and we obtain an m-stable curve

(g : C → EΣ, {σi}ni=1)

whose fibers comprise all m-stable curves of combinatorial type Σ.

Proposition 2.16. The natural classifying map∐
Σ

EΣ→El ⊂M1,n(m)

is an isomorphism. In particular, the varieties EΣ are the irreducible components of El.

Proof. Since every point of El is an m-stable curve whose combinatorial type is given by some
l-partition of [n], the natural map ∐

Σ

EΣ→El

is bijective on k-points. Since
⋃

Σ EΣ is smooth by construction and El is smooth by
Corollary 2.4(2), the morphism

∐
Σ EΣ→El is smooth. Since we are working in characteristic

zero, a smooth morphism which is bijective on k-points is an isomorphism. 2

Corollary 2.17. The boundary stratum El ⊂M1,n(m) has pure codimension l + 1.

Proof. If Σ := {S1, . . . , Sl} is any l-partition of [n], ordered so that |Si|> 2 for i= 1, . . . , k,
and |Sk+1|= · · ·= |Sl|= 1, then EΣ ⊂ El is an open subset of a projective bundle P(⊕ki=1ψi)→
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M0,|S1|+1 × · · · ×M0,|Sk|+1. The dimension of this projective bundle is

k∑
i=1

(|Si| − 2) + (k − 1).

Since
∑k

i=1 |Si|= n− l + k, this expression reduces to n− l − 1, as desired. 2

3. Intersection theory on M1,n(m)

3.1 The Picard group of M1,n(m)∗

In this section, we will define several tautological divisor classes on M1,n, M1,n(m), and
M1,n(m)∗ (equivalently, M1,n, M1,n(m), and M1,n(m)∗), and use these to give a complete
description of PicQ(M1,n(m)∗).

We begin by recalling the definition of the tautological divisor classes onM1,n. If π : C →M1,n

is the universal curve, with universal sections σ1, . . . , σn, we have line bundles λ, ψ1, . . . , ψn, ψ ∈
Pic(M1,n) defined as:

λ = det(π∗ωC/M1,n
),

ψi = σ∗i (ωC/M1,n
),

ψ = ⊗ni=1ψi.

To define the boundary divisors of M1,n, we adopt the following terminology: if (C, {pi}ni=1) is
an n-pointed curve of arithmetic genus one and S ⊂ [n] is any subset, we say that q ∈ C is a
node of type S if the normalization of C at q consists of two connected components (necessarily
of genera zero and one), and {pi | i ∈ S} is the set of marked points supported on the genus-zero
component. We say that a node q ∈ C is non-disconnecting if the normalization of C at q is
connected. We then define

∆irr := {[C] ∈M1,n | C has a non-disconnecting node} ⊂M1,n,

∆0,S := {[C] ∈M1,n | C has a node of type S} ⊂M1,n,

∆0 := {[C] ∈M1,n | C has a disconnecting node} ⊂M1,n.

∆irr and ∆0,S are closed, irreducible, codimension-one substacks of M1,n when |S|> 2, while
∆0 =

∑
S⊂[n] ∆0,S . Thus, we obtain cycles

∆irr,∆0,S ,∆0 ∈A1(M1,n).

Since the deformation space of a node is regular, these substacks are Cartier, and we obtain line
bundles

δirr, δ0,S , δ0 ∈ Pic(M1,n).

Now let us define the analogous tautological divisor classes onM1,n(m). We define λ, ψ1, . . . ,
ψn, ψ ∈ Pic(M1,n(m)) by precisely the same recipes as for M1,n. Similarly, we define reduced
closed substacks of M1,n(m):

∆irr := {[C] ∈M1,n(m) | C has a non-disconnecting node or non-nodal singularity},

∆0,S := {[C] ∈M1,n(m) | C has a node of type S},

∆0 := {[C] ∈M1,n(m) | C has a disconnecting node}.
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Note that ∆0,S is non-empty if and only if 2 6 |S|6 n−m. (The condition |S|6 n−m comes
from the requirement that (C, {pi}ni=1) have no elliptic m-bridge.)

With this notation, ∆irr,∆0,S ,∆0 ∈M1,n(m) are simply the birational images of the
corresponding divisors on M1,n. In particular, they are irreducible and we obtain

∆irr,∆0,S ,∆0 ∈A1(M1,n(m)).

As before, each substack ∆0,S is Cartier, so we obtain line bundles

δ0,S , δ0 ∈ Pic(M1,n(m)).

On the other hand, ∆irr ⊂M1,n(m) is not obviously Cartier, so we do not immediately obtain
a line bundle δirr ∈ Pic(M1,n(m)).

Finally, we will abuse notation by using λ, ψi, ψ,∆irr,∆0,S to denote the line bundles and
cycles on M1,n(m) and M1,n(m)∗ induced by the canonical isomorphisms [Vis89, Proposition 6.1]

PicQ(M1,n(m)) ' PicQ(M1,n(m)),
A1

Q(M1,n(m)) ' A1
Q(M1,n(m)),

PicQ(M1,n(m)∗) ' PicQ(M1,n(m)∗),
A1

Q(M1,n(m)∗) ' A1
Q(M1,n(m)∗).

Note that the normalization of the coarse moduli space of a Deligne–Mumford stack is canonically
isomorphic to the coarse moduli space of the normalization of the stack, so there is no ambiguity
in the definition of M1,n(m)∗.

It is well known that the tautological classes generate PicQ(M1,n), and we have a complete
description of the relations between them. In the following proposition (and throughout this
section), we will use the notation [n]ji := {S ⊂ [n] | i6 |S|6 j}.

Proposition 3.1 (Q-Picard group of M1,n).

(1) PicQ(M1,n) is freely generated by λ and the boundary divisors {δ0,S}S∈[n]n2
.

(2) The following relations hold in PicQ(M1,n):

δirr = 12λ,

ψi = λ+
∑

i∈S∈[n]n2

δ0,S ,

ψ = nλ+
∑
S∈[n]n2

|S|δ0,S .

Proof. See [AC98, Theorem 2.2]. 2

We would like an analogue of Proposition 3.1 for PicQ(M1,n(m)). Unfortunately, we do not
know whether M1,n(m) is normal, and this presents a major obstacle. On the other hand,
a description of PicQ(M1,n(m)∗) follows easily from Proposition 3.1.

Proposition 3.2 (Q-Picard group of M1,n(m)∗).

(1) The cycle map PicQ(M1,n(m)∗)→A1
Q(M1,n(m)∗) is an isomorphism. In particular,

M1,n(m)∗ is Q-factorial.

(2) PicQ(M1,n(m)∗) is freely generated by λ and {δ0,S}S∈[n]n−m
2

.
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(3) The following relations hold in PicQ(M1,n(m)∗):

ψi = λ+
∑

i∈S∈[n]n−m
2

δ0,S ,

ψ = nλ+
∑

S∈[n]n−m
2

|S|δ0,S .

Proof. Let U ⊂M1,n be the open set parameterizing m-stable curves, and let φ :M1,n 99K
M1,n(m) be the natural map. Then φ|U is an isomorphism, and φ(U)⊂M1,n(m) is precisely
the locus of nodal curves in M1,n(m). In particular, φ(U) is smooth and, by Corollary 2.17, the
codimension of M1,n(m)\φ(U) is two.

Now let V be the maximal open subset on which the birational map M1,n 99KM1,n(m)∗ is
regular. Since the complement of V in M1,n has codimension two, Proposition 3.1 gives

A1
Q(V )'A1

Q(M1,n)'Q{∆irr,∆0,S : S ∈ [n]n2}.

Evidently, U ⊂ V and the codimension-one points of V \U are precisely the generic points of the
divisors {∆0,S : S ∈ [n]nn−m+1}. Thus, we have an exact sequence

Q{∆0,S : S ∈ [n]nn−m+1}→A1
Q(V )→A1

Q(U)→ 0.

Since all boundary divisors are linearly independent in A1
Q(M1,n), the map on the left is injective.

Thus,

A1
Q(U)'Q{∆irr,∆0,S : S ⊂ [n]n−m2 }.

Since φ|U is an isomorphism, and the normalization mapM1,n(m)∗→M1,n(m) is an isomorphism
over φ(U), we have

A1
Q(M1,n(m)∗)'A1

Q(φ(U))'Q{∆irr,∆0,S : S ⊂ [n]n−m2 }.

Now consider the map

PicQ(M1,n(m)∗)→A1
Q(M1,n(m)∗).

It is injective since M1,n(m)∗ is normal. To show that it is surjective, it suffices to see that
δ0,S maps to ∆0,S and 12λ maps to ∆irr. This can be checked after restriction to φ(U) since
the complement has codimension two. But, since φ|U is an isomorphism, these follow from the
corresponding statements on M1,n. Similarly, the stated relations can be checked after restriction
to φ(U), where they follow from the corresponding relations in PicQ(M1,n). 2

Remark 3.3. While we do not know whether ∆irr ∈A1(M1,n(m)) is Q-Cartier, the proof of
Proposition 3.2 shows that the cycle ∆irr ∈A1(M1,n(m)∗) is Q-Cartier with associated line
bundle 12λ.

3.2 Intersection theory on one-parameter families

If (f : C →B, {σi}ni=1) is an n-pointed m-stable curve over a smooth curve B, we obtain a
classifying map

c :B→M1,n(m),
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and we wish to compute the intersection numbers

λ ·B := degB c
∗λ,

ψi ·B := degB c
∗ψi,

δ0,S ·B := degB c
∗δ0,S ,

in terms of the geometry of the family. Evidently, ψi ·B and δ0,S ·B may be computed by
standard techniques: ψi ·B is −σ2

i and δ0,S ·B is the number of disconnecting nodes of type S
in the fibers of f , counted with multiplicity. Furthermore, since the limit of a node of type S is
a node of type S in any family of m-stable curves, the case where B ⊂∆0,S is handled in the
usual way: normalizing C along the locus of nodes of type S and letting τ1, τ2 be the sections
lying over this locus, we have δ0,S ·B = τ2

1 + τ2
2 .

In this section, we explain how to compute λ ·B for arbitrary one-parameter families of
m-stable curves. First, we consider the special case where the classifying map c :B→M1,n(m)
factors through one of the equisingular boundary strata El, i.e. when every fiber of f has an
elliptic l-fold point. In this case, we compute λ ·B as a certain self-intersection on the surface
obtained by normalizing along the locus of elliptic l-fold points (Proposition 3.4). Then we use
stable reduction to reduce the general case to this special case (Corollary 3.7).

Case I. c :B→M1,n(m) factors through a boundary stratum El (l > 1).

Since f : C →B has a unique elliptic l-fold point in each fiber, f admits a section τ such that
τ(b) ∈ Cb is an elliptic l-fold point for each b ∈B. Let π : C̃ → C be the normalization of C along
τ , and let τ̃1, . . . , τ̃l by the sections lying over τ .

Proposition 3.4. With notation as above, λ ·B = τ̃2
i for any i ∈ {1, . . . , l}.

Proof. Consider the sheaf homomorphism τ∗Iτ →⊕li=1τ̃
∗
i Iτ̃i , whose restriction to the fiber over

b ∈B is just the map

mτ(b)/m
2
τ(b)→⊕

l
i=1mτ̃i(b)/m

2
τ̃i(b)

.

Since τ(b) ∈ Cb is an elliptic l-fold point, [Smy11, Lemma 2.2(1)] implies that this map has a
one-dimensional quotient. Since this holds on every fiber, we have an invertible quotient sheaf
L , defined by the exact sequence

τ∗Iτ →⊕li=1τ̃
∗
i (Iτ̃i)→L → 0.

[Smy11, Lemma 2.2(2)] implies that each composition

τ∗i Iτ̃i ↪→⊕li=1τ̃
∗
i Iτ̃i →L

is nowhere vanishing. Since τ̃∗i Iτ̃i and L are invertible, these must be isomorphisms. Thus, we
have

ψi := τ̃∗i I ∨τ̃i 'L ∨,

for each i ∈ {1, . . . , l}. Note that since f̃ : C̃ →B is a family of genus-zero curves, we have
c1(π̃∗ωC̃/B) = 0. Thus, to prove the proposition, it suffices to show that

c1(π∗ωC/B) = c1(π̃∗ωC̃/B) + c1(L ∨).

To prove this formula, we must recall some facts about the dualizing sheaf of an elliptic m-fold
pointed curve. If C is a complete curve with an elliptic l-fold point q ∈ C, π : C̃→ C is the
normalization of C at q, and q1, . . . , ql ∈ C̃ are the points lying above q, we may compare ωC
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and ωC̃ as follows: for any section ω ∈ ωC̃(2q1 + · · ·+ 2ql), let (ω) :⊕li=1mqi/m
2
qi → k denote the

linear functional induced by

f →
l∑

i=1

Resqi(fω), f ∈ ⊕li=1mqi .

In [Smy11, § 2.2], we showed that ωC ⊂ π∗ωC̃(2q1 + · · ·+ 2ql) is precisely the subsheaf of sections
satisfying:

(a)
∑l

i=1 Resqi ω = 0; and

(b) (ω) ∈Ker(⊕li=1(mqi/m
2
qi)
∨→ (mq/m

2
q)
∨).

We make use of this observation by considering the following two-step filtration for f∗ωC/B:

f̃∗ωC̃/B ⊂ f∗ωC/B ∩ f̃∗ωC̃/B(τ̃1 + · · ·+ τ̃l)⊂ f∗ωC/B ∩ f̃∗ωC̃/B(2τ̃1 + · · ·+ 2τ̃l) = f∗ωC/B.

Define Λ and Λ′ to be the quotients of this filtration, i.e.

0→ f̃∗ωC̃/B → f∗ωC/B ∩ f̃∗ωC̃/B(τ̃1 + · · ·+ τ̃l)→ Λ′→ 0,

0→ f∗ωC/B ∩ f̃∗ωC̃/B(τ̃1 + · · ·+ τ̃l)→ f∗ωC/B → Λ→ 0.

It suffices to show that c1(Λ′) = 0 and c1(Λ) = c1(L ∨). To check that c1(Λ′) = 0, consider the
sequence

0→ f̃∗ωC̃/B → f̃∗ωC̃/B(τ̃1 + · · ·+ τ̃l)→⊕li=1OB,

where we have used the canonical isomorphism ωC̃/B(τ̃i)|τ̃i ' Oτ̃i coming from adjunction. Since

the map f̃∗ωC̃/B(τ̃1 + · · ·+ τ̃l)→⊕li=1OB is given by taking residues, condition (a) implies that
Λ′ lies in an exact sequence

0→ Λ′→⊕li=1OB → OB → 0,

where ⊕li=1OB → OB is given by summing sections. Thus, c1(Λ′) = 0.
To check that c1(Λ) = c1(L ∨), consider the sequence

0→ f̃∗ωC̃/B(τ̃1 + · · ·+ τ̃l)→ f̃∗ωC̃/B(2τ̃1 + · · ·+ 2τ̃l)→⊕li=1τ̃
∗
i I ∨τ̃i ,

where we have used the canonical isomorphism ωC̃/B(2τ̃i)|τ̃i 'I ∨τ̃i |τ̃i coming from adjunction.
Now condition (b) implies that Λ is simply the kernel of the map

⊕li=1τ̃
∗
i I ∨τ̃i → (τ∗Iτ )∨→ 0,

i.e. Λ'L ∨, as desired. 2

Example 3.5. Recall that the connected components of El are parameterized by partitions of [n]
(Proposition 2.16). Given a partition Σ = {S1, . . . , Sl}, with S1, . . . , Sk satisfying |Si|> 2 and
|Sk+1|= · · ·= |Sl|= 1, the associated connected component EΣ is simply the projective bundle

P(ψ1 ⊕ · · · ⊕ ψk)→M0,|S1|+1 × · · · ×M0,|Sk|+1.

Let B = P1 be a generic fiber of this projective bundle and let (f : C →B, {σi}ni=1) be the
associated family of m-stable curves. We will compute the intersection numbers ψi ·B, δ0,S ·B,
and λ ·B for this family.

Unwinding the construction of EΣ in Proposition 2.13, we find that C →B can be explicitly
described as follows. For each i= 1, . . . , k, choose a point zi ∈ P1 and a smooth genus zero stable
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curve (Ci, {pj}|Si|
j=1, qi), and let

C̃i = Blow-up of Ci × P1 at (qi, zi).

Let {σj}|Si|
j=1 and τi be the strict transforms of the sections {pj} × P1 and {qi} × P1, so that we

obtain a family of (|Si|+ 1)-pointed genus zero curves (Ci→B, {σj}j∈Si , τi).
In addition, for i= k + 1, . . . , l, let

Ci := P(OP1 ⊕ OP1(1))→B = P1

and label a pair of disjoint sections with self-intersections 1 and −1 by σj , (j ∈ Si), and τi,
respectively, so that we obtain a two-pointed family of genus-zero curves (Ci→B, {σj}j∈Si , τi).

The family (C →B, {σi}ni=1) is constructed by gluing {Ci}li=1 along the sections τ1, . . . , τl.
The gluing data corresponds to a one-dimensional quotient of the vector bundle ⊕li=1τ

∗
i OCi(−τi),

which is constructed as follows. For each i= 1, . . . , l, we have an isomorphism τ∗i OCi(−τi)'
OP(1) and taking the direct sum of these maps gives the quotient ⊕li=1τ

∗
i OCi(−τi)→ OP(1)→ 0.

Since the sections τ1, . . . , τl lying above the locus of elliptic l-fold points each have self-
intersection −1, Proposition 3.4 implies that λ ·B =−1. The remaining intersection numbers
are apparent from the construction:

λ ·B = −1,

δ0,S ·B =

{
1 if S ∈ {S1, . . . , Sk},
0 otherwise,

ψi ·B =

{
−1 if i ∈ {Sk+1, . . . , Sl},
0 otherwise.

Note that neither λ nor ψi is nef on M1,n(m), whereas both are nef on M1,n.

Case II. c :B→M1,n(m) does not factor through any boundary stratum El.

We reduce to Case I as follows: suppose that the generic fiber of C →B contains an elliptic
l-fold point. (If the generic fiber is smooth or nodal, take l = 0.) Outside a finite set of fibers,
(f : C →B, {σi}ni=1) is l-stable, so (after a finite base change) there exist a family of l-stable
curves (g :D→B, {σi}ni=1) and a birational map D 99K C over B. We obtain a commutative
diagram

B
cl

{{wwwwwwwww
cm

$$HHHHHHHHH

M1,n(l) //_______ M1,n(m)

where cl is the classifying map associated to the l-stable family and cm is the classifying map
associated to the m-stable family. We will use the notation

λm ·B := degB c∗mλ,
ψm ·B := degB c∗mψ,
δm0 ·B := degB c∗mδ0,

λl ·B := degB c∗l λ,
ψl ·B := degB c∗l ψ,
δl0 ·B := degB c∗l δ0.

Since the boundary stratum El ⊂M1,n(l) is closed, the image cl(B) lies entirely in El and we
can compute λl ·B as in Case I. The intersection numbers we are after are λm ·B, so we are left
with the problem of computing the difference λm ·B − λl ·B. We will explain how to compute
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this difference in terms of the explicit sequence of blow-ups and contractions that transforms the
fibers of D→B into the fibers of C →B.

For simplicity, let us assume that the generic fiber of C has no disconnecting nodes, and that
D and C are isomorphic away from the fiber over a single point b ∈B.

Claim. There exists a diagram

B0

p0

~~~~~~~~~~
q0

  @@@@@@@@ B1

p1

~~~~~~~~~~
q1

  @@@@@@@@ Bk
pk

}}zzzzzzzz
qk

  AAAAAAAA

C0 C1 C2 · · · Ck−1 Ck
satisfying:

(1) C0→D is the desingularization of D at the disconnecting nodes of Db;

(2) Ck→C is the desingularization of C at the disconnecting nodes of Cb;

(3) pi is the blow-up of Ci at a collection of smooth points of Ci, namely the marked points of
the minimal elliptic subcurve of (Ci)b;

(4) qi is a birational contraction with Exc(qi) = Ei, where Ei is the minimal elliptic subcurve
of (Bi)b.

(Recall that the minimal elliptic subcurve of a Gorenstein genus one curve C is the unique con-
nected genus one subcurve E ⊂ C such that E has no disconnecting nodes [Smy11, Lemma 3.1].)

Proof. This diagram is constructed precisely as in the proof of the valuative criterion forM1,n(m)
(see [Smy11, Theorem 3.11 and Figure 5]). For the convenience of the reader, we recall the
argument. Given Ci, we may certainly blow up along the collection of marked points of the
minimal elliptic subcurve of (Ci)b to obtain pi. To construct qi, it suffices by [Smy11, Lemma 2.12]
to exhibit a nef line bundle on Bi which has degree zero precisely on the minimal elliptic subcurve
Ei ⊂ (Bi)b. One easily checks that the line bundle ωBi/B(Ei + 2Σn

i=1σi) satisfies this condition.
It only remains to check that, after finitely many steps, we arrive at the desingularization

of the m-stable limit. To see this, one first checks (as in Step 2 of the proof of [Smy11,
Theorem 3.11(1)]) that the contraction qi replaces Ei by an elliptic li-fold point, where
li := |Ei ∩ Eci |, and that the number of disconnecting nodes in Ci+1 is less than the number
of disconnecting nodes in Ci. This implies that after finitely many steps, we arrive at a special
fiber of Ci+1 which has no elliptic j-bridge (j 6m) and has only nodes and elliptic j-fold points
(j 6m) as singularities. Letting Ck→C denote the morphism obtained by blowing down all
semistable chains of P1s, one checks (as in Step 3 of the proof of [Smy11, Theorem 3.11(1)])
that the special fiber of C is m-stable. By uniqueness of m-stable limits, the resulting family of
m-stable curves must be the family (C →B, {σi}ni=1). 2

Fixing a diagram as above, let Fi be the minimal elliptic subcurve of the fiber (Ci)b, and
define

ni := |{σi | σi(b) ∈ Fi}|,
mi := |Fi ∩ (Ci)b\Fi|,
li := ni +mi.

We call li the level of the minimal elliptic subcurve Fi ⊂ (Ci)b. With this notation, we can
record formulae not only for the difference λm ·B − λl ·B, but also for ψm ·B − ψl ·B and
δm0 ·B − δl0 ·B.
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Proposition 3.6. With notation as above, we have

λm ·B − λl ·B = k,

ψm ·B − ψl ·B =
k−1∑
i=0

ni,

δm0 ·B − δl0 ·B = −
k−1∑
i=0

mi,

(ψm − δm0 ) ·B − (ψl − δl0) ·B =
k−1∑
i=1

li.

Proof. Let gi denote the structure morphism gi : Ci→B and hi the structure morphism hi : Bi→
B. For the first formula, we must show that

c1(f∗ωC/B) = c1(g∗ωD/B) + k.

Note that since the desingularization maps C0→D and Ck→C are obtained by resolving
Ak-singularities, we have

g∗ωD/B = g0
∗ωC0/Bl,

f∗ωC/B = gk∗ωCk/B.

Thus, it is enough to show that for each i= 0, . . . , k − 1,

c1(gi+1
∗ ωCi/B) = c1(gi∗ωCi−1/B) + 1.

Let R1, . . . , Rni be the exceptional divisors of the blow-up pi and let Ei be the exceptional
divisors of the contraction qi, i.e. the minimal elliptic subcurve of (Bi)b. We claim that

p∗iωCi/B = ωBi/B(−ΣRi),
q∗i ωCi+1/B = ωBi/B(Ei).

The first formula is clear since pi is a simple blow-up. For the second formula, note that
q∗i ωCi+1/B = ωBi/B(D), where D is the unique Cartier divisor supported on Ei such
that ωBi/B(D)|Ei ' OEi . Clearly, D = Ei since ωBi/B(Ei)|Ei ' ωEi ' OEi . From these formulae,
it follows that

gi∗ωCi/B = hi∗ωBi/B,

gi+1
∗ ωCi+1/B = hi∗ωBi/B(Ei).

Thus, to compare gi∗ωCi/B and gi+1
∗ ωCi+1/B, we consider the exact sequence on Bi:

0→ ωBi/B → ωBi/B(Ei)→ OEi → 0.

Pushing forward, we obtain

0→ hi∗ωBi/B → hi∗ωBi/B(Ei)→ hi∗OEi → 0,

where we have used the fact that the connecting homomorphism hi∗OEi →R1hi∗ωBi/B is zero,
since hi∗OEi ' k(b) is torsion, while R1hi∗ωBi/B is locally free. We conclude that

c1(hi∗ωBi/B) = c1(hi∗ωBi/B(Ei)) + 1,

which implies that
c1(gi∗ωCi/B) = c1(gi+1

∗ ωCi+1/B) + 1,
as desired.
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To prove the formula relating ψl ·B and ψm ·B, let us define {σji }ni=1 to be the strict
transform of the sections {σi}ni=1 on Cj . Since the desingularization maps C0→D and Ck→C
are isomorphisms in a neighborhood of the sections and hence do not affect the sum of the
self-intersections, we have

ψl ·B = −
n∑
i=1

(σ0
i )

2,

ψm ·B = −
n∑
i=1

(σki )2.

Thus, it suffices to show that for j = 0, 1, . . . , k − 1,
n∑
i=1

(σj+1
i )2 −

n∑
i=1

(σji )
2 =−nj .

To see this, simply note that the blow-up pj is supported along nj marked points, and the self-
intersections of the strict transforms of the corresponding sections each decrease by one. On the
other hand, the contraction qj is an isomorphism in a neighborhood of the sections and hence
does not affect their self-intersections.

To prove the formula relating δl0 ·B and δm0 ·B, let us define δi to be the number of
disconnecting nodes in the fibers of Ci→B. Since the desingularization maps C0→D and Ck→C
introduce d− 1 nodes into the special fiber for each node counted with multiplicity d in δl0 ·B
and δm0 ·B, respectively, we have

δl0 ·B = δ0,

δm0 ·B = δk.

Thus, it suffices to show that for i= 0, 1, . . . , k − 1,

δi+1 − δi =−mi.

To see this, note that the blow-up pi introduces ni disconnecting nodes into the special fiber,
but the contraction qi absorbs ni +mi disconnecting nodes into an elliptic (ni +mi)-fold point.
Thus, there are mi fewer nodes in (Ci+1)b than in (Ci)b.

The final formula is an obvious consequence of the preceding two. 2

This analysis clearly extends to the case when D 99K C is an isomorphism away from multiple
fibers, since we can perform the necessary blow-ups and contractions on each fiber individually.

Corollary 3.7. Suppose that (f : C →B, {σi}ni=1) is a family of m-stable curves and (g :D→
B, {σi}ni=1) is a family of l-stable curves with l < m. Suppose that the generic fiber of f has
no disconnecting nodes, and that there is a birational morphism D 99K C, so that D and C are
isomorphic away from the fibers over b1, . . . , bt ∈B. Then we have

λm ·B = λl ·B +
t∑
i=1

ki,

(ψm − δm0 ) ·B = (ψl − δl0) ·B +
t∑
i=1

ki∑
j=1

lij ,

where ki is the number of blow-ups/contractions required to transform the fiber Dbi into Cbi ,
and lij is the level of the elliptic bridge contracted in the jth step of this transformation.

Proof. Immediate from Proposition 3.6. 2
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4. Proof of main result

4.1 The birational contraction φ :M1,n 99KM1,n(m)∗

Recall that a birational contraction is a birational map φ :X 99K Y between normal proper
algebraic spaces, such that Exc(φ−1) has codimension >2. The exceptional divisors of φ are the
divisors on X whose birational image in Y has codimension >2.

Lemma 4.1. φ :M1,n 99KM1,n(m)∗ is a birational contraction with exceptional divisors
{∆0,S}S∈[n]nn−m+1

.

Proof. Consider the commutative diagram.

M1,n
φ //___

%%J
J

J
J

J
M1,n(m)∗

π

��
M1,n(m)

Let El ⊂M1,n(m) denote the locally closed subspace parameterizing curves with an elliptic
l-fold point. Since an m-stable curve is stable if and only if it is nodal, the open set
U :=M1,n(m)−

⋃m
l=1 El parameterizes stable curves, so (π ◦ φ)−1|U is an isomorphism. Thus,

Exc(φ−1)⊂
⋃m
i=1 π

−1(El). Since π is finite,
⋃m
i=1 π

−1(El) has codimension >2 by Corollary 2.17.
To see that Exc(φ)⊂ {∆0,S}S∈[n]nn−m+1

, simply observe that the generic point of each divisor
{∆0,S}S∈[n]n−m

2
corresponds to an m-stable curve, so that φ must be an isomorphism at this point.

Conversely, the generic point of each divisor {∆0,S}S∈[n]nn−m+1
is not m-stable and is replaced by

an m-stable curve with an elliptic l-fold point, where l = n− |S|+ 1. Thus, the birational images
of {∆0,S}S∈[n]nn−m+1

are contained in
⋃m
l=1 π

−1(El), which has codimension >2. 2

In order to make calculations with test curves, it will be necessary to have a precise description
of the locus on which φ is regular. The following lemma gives a useful tool for determining this
locus.

Lemma 4.2. Suppose that φ :X 99K Y is a birational map of proper algebraic spaces with X
normal, and suppose that U ⊂X is an open subset such that φ|U is an isomorphism. If x ∈X is
any point, then φ is regular at x if and only if there exists a point y ∈ Y such that the following
condition holds.

For any map t : ∆→X satisfying:

(1) ∆ is the spectrum of a discrete valuation ring with generic point η ∈∆ and closed point
0 ∈∆;

(2) t(η) ∈ U ;

(3) t(0) = x,

the composition φ ◦ t : ∆→ Y satisfies φ ◦ t(0) = y. (The composition φ ◦ t is regular, since Y is
proper.)

Proof. The existence of a point y ∈ Y satisfying the given condition is clearly necessary for φ to
be regular at x. We will prove that it is sufficient. Consider a resolution of the rational map φ.

W
q

  AAAAAAAA
p

~~||||||||

X
φ //_______ Y
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We may choose the resolution so that W is normal and p and q are isomorphisms when restricted
to p−1(U).

We claim that p−1(x)⊂ q−1(y). Given any point w ∈ p−1(x), the fact that p−1(U)⊂W is
dense implies that there exists a map t : ∆→W such that t(η) ∈ p−1(U) and t(0) = w. Clearly,
the composition p ◦ t satisfies the conditions (1), (2), and (3), so our hypothesis ensures that
φ ◦ p ◦ t(0) = q ◦ t(0) = y ∈ Y . Thus, w ∈ q−1(y), as desired.

Now, if Y is normal, then q factors through p (locally around p−1(x)) and we are done. If Y is
not normal, let π : Ỹ → Y be the normalization of Y and let π−1(y) = {y1, . . . , ym}. Since W
is normal, q factors through π, say q = π ◦ q̃, and q−1(y) = q̃−1(y1) ∪ · · · ∪ q̃−1(ym). By Zariski’s
main theorem, p−1(x) is connected, so the above argument gives p−1(x)⊂ q−1(yi) for some i.
Thus, q̃ factors through p and φ̃ :X 99K Ỹ is regular at x ∈X with φ̃(x) = yi. Since π is regular
at yi, the composition φ= π ◦ φ̃ is regular at x, as desired. 2

Corollary 4.3. The birational map φ :M1,n 99KM1,n(m) is regular at [C, {pi}ni=1] ∈M1,n if
and only if [C, {pi}ni=1] satisfies one of the following conditions:

(1) [C, {pi}ni=1] /∈∆0,S for any S ∈ [n]nn−m+1; or

(2) C has only one disconnecting node.

Proof. If [C, {pi}ni=1] /∈∆0,S for some S ∈ [n]nn−m+1, then [C, {pi}ni=1] is m-stable, so φ is obviously
regular in a neighborhood of [C, {pi}ni=1]. Thus, we may assume that [C, {pi}ni=1] ∈∆0,S for some
S ∈ [n]nn−m+1 and that C has exactly one disconnecting node.

By Lemma 4.2, it suffices to show that there exists a point [C ′, {p′i}ni=1] ∈M1,n(m) with the
property that, for any map t : ∆→M1,n such that t(η) ∈M1,n and t(0) = [C, {pi}ni=1], we have
φ ◦ t(0) = [C ′, {p′i}ni=1]. Write

(C, {pi}ni=1) = (E, {pi}i∈[n]\S , q2)
⋃
q1∼q2

(P1, {pi}i∈S , q1),

where E and P1 are the two connected components of the normalization of C at its
unique disconnecting node. Now let (C ′, {p′i}ni=1) be the unique isomorphism class of elliptic
(n− |S|+ 1)-fold pointed curves with normalization equal to( ∐

i∈[n]\S

(P1, pi, qi)
)∐

(P1, {pi}i∈S , q1),

where (P1, pi, qi)' (P1, 0,∞) and we identify q1 ∪ {qi}i∈[n]\S to form an elliptic n− |S|+ 1-fold
point. Note that, by Corollary 2.7, the attaching data for this elliptic n− |S|+ 1-fold point is
uniquely determined. We claim that [C ′, {p′i}ni=1] ∈M1,n(m) satisfies the desired condition.

Given a map t : ∆→M1,n such that t(η) ∈M1,n and t(0) = [C, {pi}ni=1], we may assume (after
a finite base change) that t corresponds to the smoothing (C →∆, {σi}ni=1) and it suffices to show
that the m-stable limit of the generic fiber Cη is [C ′, {p′i}ni=1]. To check this, we use the explicit
algorithm for finding m-stable limits as described in [Smy11, Theorem 3.11]. When the total
space of C is smooth, the m-stable limit is produced simply by blowing up C at the marked
points on E and contracting the strict transform of E, which precisely gives [C ′, {p′i}ni=1]. If C
has an Ak singularity at the unique disconnecting node of C, the m-stable limit is produced by
desingularizing C at this point, and repeating this blow-up/contraction process k + 1 times. We
leave it to the reader to check that the result is again simply [C ′, {p′i}ni=1].
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To see that if [C, {pi}ni=1] ∈M1,n fails to satisfy (1) and (2), then φ is not regular at
[C, {pi}ni=1], it suffices to exhibit two smoothings of [C, {pi}ni=1] which have different m-stable
limits. We leave this as an exercise for the reader. 2

Corollary 4.4. Suppose that [C, {pi}ni=1] ∈M1,n satisfies:

(1) C ∈∆0,S for some S ∈ [n]nn−m+1;

(2) C has exactly one disconnecting node.

If we write

(C, {pi}ni=1) = (E, {pi}i∈[n]\S , q2)
⋃
q1∼q2

(P1, {pi}i∈S , q1),

then φ([C, {pi}ni=1]) = [C ′, {p′i}ni=1], where (C ′, {p′i}ni=1) is the unique isomorphism class
of elliptic (n− |S|+ 1)-fold pointed curves with normalization equal to (P1, {pi}i∈S , q1) ∪∐
i∈[n]\S(P1, pi, qi).

Proof. Immediate from the proof of the preceding corollary. 2

Corollary 4.5. The birational map φ :M1,n(m− 1) 99KM1,n(m) is regular if and only if
m= 1 or m= n− 1.

Proof. If m= 1, then any m-stable curve evidently satisfies condition (1) in Corollary 4.3. If
m= n− 1, then any m-stable curve has at most one disconnecting node, i.e. any m-stable curve
satisfies condition (2) in Corollary 4.3. On the other hand, if 2 6m6 n− 2, then the reader may
easily check that there exist m-stable curves which fail to satisfy both (1) and (2). 2

Since φ :M1,n 99KM1,n(m)∗ is a birational contraction, push forward of cycles and pull back
of divisors induce well-defined maps:

φ∗ :N1(M1,n)→N1(M1,n(m)∗),
φ∗ :N1(M1,n(m)∗)→N1(M1,n),

where N1(X) denotes the Q-vector space generated Cartier divisors moduli numerical
equivalence. Since N1(M1,n) and N1(M1,n(m)∗) are generated by the classes of the boundary
divisors (Propositions 3.1 and 3.2), the following proposition determines φ∗ and φ∗ completely.

Proposition 4.6. For the birational contraction φ :M1,n 99KM1,n(m)∗, φ∗ and φ∗ satisfy the
following formulae:

φ∗∆0,S = ∆0,S (S ∈ [n]n−m2 ),
φ∗∆irr = ∆irr,

φ∗∆0,S = ∆0,S (S ∈ [n]n−m2 ),

φ∗∆irr = ∆irr +
∑

S∈[n]nn−m+1

12∆0,S .

Proof. The push forward formulae are immediate from the definition of ∆0,S and ∆irr. For the
pull back formulae, note that since φ has exceptional divisors {∆0,T }T∈[n]nn−m+1

, we may write

φ∗∆irr = ∆irr +
∑

T∈[n]nn−m+1

aT∆0,T , (†)
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φ∗∆0,S = ∆0,S +
∑

T∈[n]nn−m+1

bT∆0,T , (‡)

for some coefficients aT , bT . We will prove that aT = 12 and bT = 0 by intersecting with an
appropriate collection of test curves.

Fix T ∈ [n]nn−m+1, and define a complete one-parameter family of n-pointed stable curves as
follows: let (C1→BT , {σi}|T |+1

i=1 ) be a non-constant family of (|T |+ 1)-pointed stable curves of
genus one, with smooth general fiber and only irreducible singular fibers. The existence of such
families follows from Corollary 4.13 in § 4.2. (The reader may verify that this proposition is not
invoked in the proof of any intermediate results.) Let σ1, . . . , σ|T | be labeled by the elements

of T , and consider σ|T |+1 as an attaching section. Next, let (C2→BT , {τi}n−|T |+1
i=1 ) be a constant

family of smooth rational curves over BT with n− |T |+ 1 constant sections. Let τ1, . . . , τn−|T |
be labeled by elements of [n]\T, and consider τn−|T |+1 as an attaching section. Gluing C1 to C2

along σ|T |+1 ∼ τn−|T |+1, we obtain a family of n-pointed stable curves over BT . We claim that
the curve BT ⊂M1,n satisfies:

(1) φ is regular in a neighborhood of BT ;

(2) BT is contracted by φ;

(3) ∆irr ·BT =−12(∆0,T ·BT );

(4) ∆0,S ·BT = 0 if S 6= T .

Part (1) follows from Corollary 4.3, since each fiber of the family has only one disconnecting node.
Using Corollary 4.4, one sees that each point of BT is mapped to the same point in M1,n(m), and
(2) follows. Part (3) is a standard calculation using the relations in PicQ(M1,n) (Proposition 3.1),
and (4) is immediate from the construction. Intersecting both sides of (†) and (‡) with the test
curve BT gives aT = 12 and bT = 0, as desired. 2

We can use our formulae for φ∗ and φ∗ to compare section rings on M1,n and M1,n(m)∗.

Proposition 4.7. R(M1,n, D(s)) =R(M1,n(m)∗, φ∗D(s)) if and only if s6 12−m.

Proof. It suffices to show that φ∗φ∗D(s)−D(s) > 0 if and only if s6 12−m. Using the relations
in PicQ(M1,n) (Proposition 3.1), we have

D(s) := sλ+ ψ −∆ =
(n+ s− 12)

12
∆irr +

∑
S∈[n]n2

(|S| − 1)∆0,S .

Using the formulae of Proposition 4.6, we have

φ∗D(s) =
(n+ s− 12)

12
∆irr +

∑
S∈[n]n−m

2

(|S| − 1)∆0,S ,

φ∗φ∗D(s) =
(n+ s− 12)

12
∆irr +

∑
S∈[n]n−m

2

(|S| − 1)∆0,S +
∑

S∈[n]nn−m+1

(n+ s− 12)∆0,S .

Thus,

D(s)− φ∗φ∗D(s) =
∑

S∈[n]nn−m+1

(|S|+ 11− n− s)∆0,S .
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Since |S|> n−m+ 1, we have D(s)− φ∗φ∗D(s) > 0⇐⇒ 12−m− s> 0. Thus, s6 12−m if
and only if R(M1,n, D(s)) =R(M1,n(m)∗, φ∗D(s)). 2

4.2 Ample divisors on M1,n(m)
In this section, we prove that M1,n(m) is projective. More precisely, we show that

ψ − δ0 − sλ is ample on M1,n(m) if m< s <m+ 1.

In conjunction with the discrepancy calculation of Proposition 4.7, this will allow us to prove our
main result (Corollary 4.14). Our proof of ampleness proceeds via Kleiman’s criterion, i.e. we
will show that the given divisors have positive intersection on all curves in M1,n(m). We begin
with two preparatory lemmas.

Lemma 4.8. (1) λ is nef on M1,n.

(2) ψ − δ is ample on M0,n.

(3) ψ − δ0 − λ is nef on M1,n.

(4) ψi is nef on M0,n for each i= 1, . . . , n.

Proof. Parts (1) and (4) are well known. For (2), consider the closed immersion

i :M0,n→Mg

defined by attaching fixed curves of genus g1, . . . , gn > 2 to the n marked points, where g is
chosen so that g1 + · · ·+ gn = g. By [CH88, Theorem 1.3], the divisor sλ− δ is ample on Mg if
s > 11. Since

i∗λ = λ,

i∗δ = δ − ψ,

we conclude that i∗(12λ− δ) = 12λ+ ψ − δ = ψ − δ is ample on M0,n.
The proof of (3) is similar. Consider the closed immersion

i :M1,n→Mg

defined by attaching fixed curves of genus g1, . . . , gn > 2 to the nmarked points, where g is chosen
so that g1 + · · ·+ gn + 1 = g. Using the same formulae as above and the relation δirr = 12λ on
M1,n, one checks that

i∗(11λ+ ψ − δ) = ψ − δ0 − λ,
so that ψ − δ0 − λ is nef on M1,n. 2

For our second lemma, suppose that (f : C →B, {σi}ni=1) is a family of m-stable curves over
a smooth curve B and that every fiber of f contains an elliptic l-fold point, for some l > 1. Then
f admits a section τ such that τ(b) ∈ Cb is an elliptic l-fold point for all b ∈B, and we may
consider the normalization C̃ → C along τ . Let {τ̃i}li=1 be the sections lying over τ , and let Si
be the subset of marked points lying on the ith connected component of the normalization. The
normalization C̃ decomposes as

l∐
i=1

(C̃i, τ̃i, {σ̃j}j∈Si),

where each (C̃i, τ̃i, {σ̃j}j∈Si) is a family of semistable genus zero curves over B. If we assume, in
addition, that the generic fiber of C has no disconnecting nodes, then the generic fiber of each C̃i
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is smooth. In this case, for each i satisfying |Si|> 2, there is a well-defined stabilization map,
i.e. a birational map C̃i→ C̃si obtained by blowing down the semistable components in the fibers
of C̃i. Let τ̃ si and σ̃si be the images of τ̃i and σ̃i under this map.

Without loss of generality, we may assume that the Si are ordered so that |Si|> 2 for i=
1, . . . , k and |Sk+1|= |Sk+2|= · · ·= |Sl|= 1. Then, for each i= 1, . . . , k, each (C̃si , τ̃ si , {σ̃sj}j∈Si)
is a stable family of genus-zero curves over B, so we have a map

cs :B→M0,|S1|+1 × · · · ×M0,|Sk|+1,

and we may define

ψs ·B := degB(cs)∗ψ,

δs0 ·B := degB(cs)∗δ.

The following lemma compares the intersection number (ψ − δ0) ·B with the intersection number
(ψs − δs0) ·B.

Lemma 4.9. Suppose that (f : C →B, {σi}ni=1) is a family of m-stable curves satisfying:

(1) every fiber of C has an elliptic l-fold point, for some l > 1;

(2) the generic fiber of C has no disconnecting nodes.

With notation as above, we have

(ψ − δ0) ·B = (ψs − δs0) ·B + lλ ·B.

Proof. As in the discussion preceding the lemma, we have a diagram

C̃
π

��<<<<<<<<
φ

����������

C̃s C

where π is the normalization of C along τ , and φ is the birational stabilization map.

Since π is an isomorphism in an open neighborhood of every node and every section σi, π
does not affect the relevant intersection numbers, i.e. we have

δ0 ·B = #{Nodes in fibers of C}= #{Nodes in fibers of C̃},

ψ ·B = −
k∑
i=1

σ2
i =−

k∑
i=1

σ̃2
i ,

where the nodes are counted with suitable multiplicity.

To analyze the effect of φ on these intersection numbers, observe that if R' P1 is a component
of a fiber of C̃i contracted by φ, then R meets the rest of the fiber at a single node and the section
τ̃i passes through R. If the attaching node is an Ak-singularity of the total space, then blowing
down R decreases the number of nodes in C̃ by k (counted with multiplicity), while raising the
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self-intersection of the section τ̃i by k. Thus,

ψs ·B − δs0 ·B = −
n∑
i=1

(σ̃si )
2 −

l∑
i=1

(τ̃ si )2 −#{Nodes in fibers of C̃s}

= −
n∑
i=1

σ̃2
i −

l∑
i=1

τ̃2
i −#{Nodes in fibers of C̃}

= ψ ·B − δ0 ·B −
l∑

i=1

(τ̃i)2.

Applying Proposition 3.4, we see that the last line is equivalent to (ψ − δ0) ·B − lλ ·B, as
desired. 2

Proposition 4.10. If s ∈Q ∩ [m, m+ 1], then ψ − δ0 − sλ is nef on M1,n(m).

Proof. Fix s ∈Q ∩ [m, m+ 1]. To prove that ψ − δ0 − sλ is nef on M1,n(m), it suffices to show
that ψ − δ0 − sλ has non-negative degree on any family of m-stable curves (f : C →B, {σi}ni=1)
over a smooth curve B. We begin with three reductions.

Reduction 1. We may assume that the generic fiber of C has no disconnecting nodes.

Proof. We may decompose a generic fiber of C as

C = E ∪R1 ∪ · · · ∪Rk,

where E is the minimal elliptic subcurve of C, and R1, . . . , Rk are rational tails meeting E in a
single node [Smy11, Lemma 3.1]. Since the limit of a disconnecting node is a disconnecting node,
there exist sections τ1, . . . , τk :B→C such that:

(1) τi(b) ∈ Cb is a disconnecting node for all b ∈B;

(2) τi(b) ∈ E ∩Ri over the generic point of B.

Let C̃ → C be the normalization of C along
⋃k
i=1 τi, so that we have

C̃ = E
∐
R1

∐
· · ·
∐
Rk,

where E →B is a family of genus-one curves and each Ri→B is a family of genus-zero curves.
Mark the two sections of C̃ lying above τi as τ ′i and τ ′′i , so that (C̃, {σi}ni=1, {τ ′i}ki=1, {τ ′′i }ki=1)
decomposes as

(E , {σi}i∈S0 , {τ ′i}ki=1)
∐

(R1, {σi}i∈S1 , τ
′′
1 )
∐
· · ·

∐
(Rk, {σi}i∈Sk

, τ ′′k ),

where {S0, S1, . . . , Sk} is some partition of [n]. Note that (E , {σi}i∈S0 , {τ ′i}ki=1) is an (|S0|+ k)-
pointed m-stable curve, and each (Rj , {σi}i∈Sj , τ

′′
j ) is an (|Sj |+ 1)-pointed stable curve of genus

zero. Let c0 :B→M1,|S0|+k(m) and cj :B→M0,|Sj |+1 be the corresponding classifying maps,
and define

λi ·B := degB c
∗
iλ,

(ψ − δ0)i ·B := degB c
∗
i (ψ − δ0).

1876

https://doi.org/10.1112/S0010437X11005549 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005549


Modular compactifications

Since the degree of λ is zero on any family of genus zero stable curves, we have

λ ·B = λ0 ·B +
k∑
j=1

λj ·B = λ0 ·B.

Furthermore, since (ψ − δ) is ample on M0,n (Lemma 4.8), we have

(ψ − δ0) ·B = (ψ − δ0)0 ·B +
k∑
j=1

(ψ − δ0)j ·B > (ψ − δ0)0 ·B.

Altogether, we obtain
(ψ − δ0 − sλ) ·B > (ψ − δ0 − sλ)0 ·B.

Since (E →B, {σi}i∈S0 , {τ ′i}ki=1) is an m-stable curve with no disconnecting nodes in the generic
fiber, it suffices to prove the non-negativity of ψ − δ0 − sλ on families ofm-stable curves satisfying
this extra condition. 2

Reduction 2. We may assume that λ ·B < 0.

Proof. Using the relations in Proposition 3.2, we have

(ψ − δ0 − sλ) ·B =
∑

S⊂[n]n−m
2

(|S| − 1)δ0,S ·B + (n− s)λ ·B.

By the first reduction, we have δ0,S ·B > 0 for each S ⊂ [n]n−m2 . Furthermore, n− s> 0, since
s6m+ 1 and m6 n− 1. Thus, if λ ·B > 0, the intersection number (ψ − δ0 − sλ) ·B is non-
negative. 2

Reduction 3. We may assume that the generic fiber of C contains an elliptic l-fold point, for
some l > 1.

Proof. Since λ is nef on M1,n (Lemma 4.8), Corollary 3.7 (applied with l = 0) implies that
λ ·B > 0 for any m-stable curve with nodal generic fiber. Thus, by the second reduction, we may
assume that the generic fiber of C contains an elliptic l-fold point, for some l > 1. 2

Now suppose first that every fiber of C contains an elliptic l-fold point. In this case, Lemma 4.9
implies that

(ψ − δ0 − sλ) ·B = (ψs − δs0) ·B + (l − s)λ ·B,
where (ψs − δs0) ·B is the sum of the intersection numbers of ψ − δ on the families of genus zero
stable curves obtained by normalizing C along the locus of elliptic l-fold points, and stabilizing
the resulting families of semistable curves. By Lemma 4.8(2), (ψs − δs0) ·B > 0, so

(ψ − δ0 − sλ) ·B > (l − s)λ ·B.

Since l 6m6 s and λ ·B < 0, this intersection number is non-negative.
It remains to consider the possibility that there is a finite set of points b1, . . . , bt ∈B where the

fibers of C acquire elliptic k-fold points with k > l. Since the restriction of f to B − {b1, . . . , bt}
is an l-stable curve, we have a classifying map cl :B→M1,n(l), an induced l-stable family
(Cl→∆, {σi}ni=1), and we set

λl ·B := degB c
∗
l λ,

(ψ − δ0)l ·B := degB c
∗
l (ψ − δ0).
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In the preceding paragraph, we saw that

(ψ − δ0 − sλ)l ·B > (l − s)λl ·B.
On the other hand, Corollary 3.7 says that

λ ·B − λl ·B =
t∑
i=1

ki,

(ψ − δ0) ·B − (ψ − δ0)l ·B =
t∑
i=1

ki∑
j=1

lij ,

where it takes ki blow-ups/contractions to transform the l-stable fiber Clbi into the m-stable fiber
Cbi , and lij is the level of the elliptic bridge contracted at the jth step. Thus, we obtain

(ψ − δ0 − sλ) ·B − (ψ − δ0 − sλ)l ·B =
t∑
i=1

ki∑
j=1

(lij − s).

We have lij > l + 1, since we only contract elliptic bridges of level l + 1, . . . , m in transforming
an l-stable fiber to an m-stable fiber. Thus, we obtain

t∑
i=1

ki∑
j=1

(lij − s) >
t∑
i=1

ki∑
j=1

(l + 1− s) = (l + 1− s)
t∑
i=1

ki.

Combining the preceding inequalities, we obtain

(ψ − δ0 − sλ) ·B = (ψ − δ0 − sλ)l ·B +
t∑
i=1

ki∑
j=1

(lij − s)

> (l − s)λl ·B + (l − s+ 1)
t∑
i=1

ki

= (l − s)
(
λl ·B +

t∑
i=1

ki

)
+

t∑
i=1

ki,

= (l − s)λ ·B +
t∑
i=1

ki,

which is non-negative since l 6m6 s and λ ·B < 0. 2

To upgrade from nefness to ampleness, we will use Kleiman’s criterion [Kol96, Theorem 2.19].
Unfortunately, Kleiman’s criterion can fail for algebraic spaces [Kol96, Excercise 2.19.3]. Thus,
we must first show that Kleiman’s criterion applies to M1,n(m)∗ without assuming a priori that
M1,n(m)∗ is a scheme.

Lemma 4.11. Any divisor in the interior of the nef cone of M1,n(m)∗ is ample.

Proof. To show that Kleiman’s criterion applies to M1,n(m)∗, we must show that for any
irreducible subvariety

Z ⊂M1,n(m)∗

there exists an effective Cartier divisor E which meets Z properly [FS10, Lemma 4.9]. Since
M1,n(m)∗ is Q-factorial, it is enough to show that there exists an open affine subscheme of
M1,n(m)∗ meeting Z.
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Let π :M1,n(m)∗→M1,n(m) be the normalization map, and consider the stratification of
M1,n(m)∗ induced by the equisingular stratification of M1,n(m):

M1,n(m)∗ = π−1(M1,n)
∐

π−1(E0)
∐
· · ·
∐

π−1(Em).

Using Proposition 4.12 and induction on m, we may assume that M1,n(m− 1)∗ is projective.
Since the open set

π−1(M1,n)
∐

π−1(E0)
∐
· · ·
∐

π−1(Em−1)⊂M1,n(m)∗

is isomorphic to an open subset of M1,n(m− 1)∗, every point has an open affine neighborhood.
Thus, we may assume that Z ⊂ π−1(Em).

Evidently, it is sufficient to produce an effective Cartier divisor on M1,n(m) which meets
π(Z) properly. π(Z) lies in one of the irreducible components of Em and, by Proposition 2.16,
these are each projective bundles of the form

p : P(ψ1 ⊕ · · · ⊕ ψk)→M0,|S1|+1 × · · · ×M0,|Sk|+1.

By construction, the divisor ∆0,S1 ⊂M1,n(m) restricts to a hyperplane subbundle

∆0,S1 ∩ P(ψ1 ⊕ · · · ⊕ ψk)⊂ P(ψ1 ⊕ · · · ⊕ ψk).

If Z meets ∆0,S1 properly, we are done, since some multiple of ∆0,S1 is Cartier. If not, then the
map

Z→ p(Z)⊂M0,|S1|+1 × · · · ×M0,|Sk|+1

is finite. Since M0,|S1|+1 × · · · ×M0,|Sk|+1 is affine and dim p(Z)> 1, p(Z) must meet some
boundary divisor π∗i ∆0,T , T ⊂ Si. Equivalently, Z meets the boundary divisor ∆0,T ⊂M1,n(m).
Since some multiple of ∆0,T is Cartier, we are done. 2

Now we will upgrade our nefness result to an ampleness result by showing that ψ − δ0 − sλ
remains ample under a small perturbation by boundary divisors.

Proposition 4.12. If s ∈Q ∩ (m, m+ 1), then ψ − δ0 − sλ is ample on M1,n(m). In particular,
M1,n(m) is projective.

Proof. Fix s ∈Q ∩ (m, m+ 1). It is sufficient to show that π∗(ψ − δ0 − sλ) is ample, where
π :M1,n(m)∗→M1,n(m) is the normalization map. By Proposition 3.2,

Pic(M1,n(m)∗)⊗Q = Q{λ, δ0,S : S ⊂ [n]n−m2 }.

Thus, by Lemma 4.11, it is enough to show that there exists c ∈Q>0 such that

(ψ − δ0 − sλ) + ελλ+
∑

S∈[n]n−m
2

εSδ0,S

is nef, for any choice of ελ, εS ∈Q ∩ (−c, c). Clearly, we may pick c small enough that
(s− c, s+ c) ∈ (m, m+ 1). Replacing s by s+ ελ, it suffices to show that

(ψ − δ0 − sλ) +
∑

S∈[n]n−m
2

εSδ0,S

is nef for any εS ∈Q ∩ (−c, c).
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Since ψ − δ0 is ample on M0,n (Lemma 4.8), we may choose c sufficiently small so that:

(1) c < s/m− 1;

(2) (ψ − δ0) +
∑

S⊂[k]k2
εSδ0,S is ample on M0,k, for all 3 6 k 6 n and εS ∈ (c,−c).

Now fix c satisfying (1) and (2), and fix εS ∈Q ∩ (−c, c). We claim that

(ψ − δ0 − sλ) +
∑

S∈[n]n−m
2

εSδ0,S

has positive degree on any one-parameter family of m-stable curves (f : C →B, {σi}ni=1). The
proof is essentially identical to the proof of Proposition 4.10, but we will indicate how the proof
needs to be modified at each step.

Reduction 1. We may assume that the generic fiber of C has no disconnecting nodes.

Proof. As in the proof of Proposition 4.10, we decompose C = E ∪ R1 ∪ · · · ∪Rk, where E →B
is a family of m-stable curves whose the general fiber has no disconnecting nodes, and
each Ri→B is a stable family of genus-zero curves. By condition (2) in our choice of c,
(ψ − δ0) +

∑
S∈[n]n−m

2
εSδ0,S has positive degree on each of the families Ri→B. Arguing

as in Proposition 4.10, we see that it is sufficient to prove the nefness of (ψ − δ0 − sλ) +∑
S∈[n]n−m

2
εSδ0,S on E →B. 2

Reduction 2. We may assume that λ ·B < 0.

Proof. Using the relations in Proposition 3.2, we have

(ψ − δ0 − sλ) ·B +
∑

S⊂[n]n−m
2

εSδ0,S =
∑

S⊂[n]n−m
2

(|S| − 1 + εS)δ0,S ·B + (n− s)λ ·B.

Since |S|> 2 and |εS |< 1, the coefficients (|S| − 1 + εS) are positive. Arguing precisely as in the
proof of Proposition 4.10, we may assume that λ ·B < 0. 2

Reduction 3. We may assume that the generic fiber of C contains an elliptic l-fold point, for
some l > 1.

Proof. Follows precisely as in the proof of Proposition 4.10. 2

Now suppose first that every fiber of C has an elliptic l-fold point. Then Lemma 4.9 implies
that

(ψ − δ0 − sλ) ·B +
∑

S⊂[n]n−m
2

εSδ0,S ·B = (ψs − δs0) ·B +
∑

S⊂[n]n−m
2

εSδ
s
0,S ·B + (l − s)λ ·B.

Our choice of c ensures that (ψs − δs0) ·B +
∑

S⊂[n]n−m
2

εSδ
s
0,S ·B is positive, i.e.

(ψ − δ0 − sλ) ·B +
∑

S⊂[n]n−m
2

εSδ0,S ·B > (l − s)λ ·B.

Since l 6m< s and λ ·B < 0, the total intersection number is positive.
It remains to consider the possibility that there is a finite set of points b1, . . . , bt ∈B,

where the fibers of C acquire elliptic k-fold points with k > l. Since the restriction of f
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to B − {b1, . . . , bt} is an l-stable curve, we have a classifying map cl :B→M1,n(l), and
we set

λl ·B := degB c
∗
l λ,

ψl ·B := degB c
∗
l ψ,

δl0,S ·B := degB c
∗
l δ0,S .

In the preceding paragraph, we saw that

(ψ − δ0 − sλ)l ·B +
∑

S⊂[n]n−m
2

εSδ
l
0,S ·B > 0,

so it suffices to show that

(ψ − δ0 − sλ) ·B − (ψ − δ0 − sλ)l ·B +
∑

S⊂[n]n−m
2

εS(δ0,S ·B − δl0,S ·B) > 0.

The proof of Proposition 4.10 shows that

(ψ − δ0 − sλ) ·B − (ψ − δ0 − sλ)l ·B > (l − s+ 1)
t∑
i=1

ki >
t∑
i=1

ki,

where it takes ki blow-ups/contractions to transform the l-stable fiber over bi into the m-stable
fiber.

On the other hand, it is easy to see that 0 > δ0 ·B − δl0 ·B >−m
∑t

i=1 ki, since each of the
ki contractions used to transform the l-stable fiber over bi into the m-stable fiber over bi absorbs
no more than m nodes. Thus, we obtain∑

S⊂[n]n−m
2

εS(δ0,S ·B − δl0,S ·B) >−cm
t∑
i=1

ki > (m− s)
t∑
i=1

ki >−
t∑
i=1

ki,

where −cm> (m− s) follows from condition (1) in our choice of c. Combining the previous two
equations, we obtain

(ψ − δ0 − sλ) ·B − (ψ − δ0 − sλ)l ·B +
∑

S⊂[n]n−m
2

εS(δ0,S ·B − δl0,S ·B) > 0,

as desired. 2

Corollary 4.13. For any n> 1, there exists a family of n-pointed stable curves of genus one
(π : C →B, {σi}ni=1) over a smooth complete curve B such that the generic fiber of π is smooth
and the only singular fibers of π are irreducible nodal curves.

Proof. Since M1,n(n− 1) is projective, a general complete-intersection curve B ⊂M1,n(n− 1)
will not intersect the codimension-two locus

⋃
l>1 El. The induced family (C →B, {σi}ni=1)

of (n− 1)-stable curves has no elliptic l-fold points and is therefore stable. Since the only
boundary divisor of M1,n(n− 1) is ∆irr, the only singular fibers of C →B will be irreducible
nodal. 2

Corollary 4.14. Given s ∈Q and m, n ∈ N satisfying m< n, we have:

(1) D(s) is big if and only if s ∈ (12− n,∞);
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(2) M
s
1,n =


M1,n if and only if s ∈ (11,∞),
M1,n(1) if and only if s ∈ (10, 11],
M1,n(m)∗ if and only if s ∈ (11−m, 12−m) and m ∈ {2, . . . , n− 2},
M1,n(n− 1)∗ if and only if s ∈ (12− n, 13− n].

Proof. Let us prove (2) first. Since δirr = 12λ, we have

D(s) := sλ+ ψ − δ = (s− 12)λ+ ψ − δ0 ∈ PicQ(M1,n).

Lemma 4.8 implies that D(s) is ample on M1,n for s ∈ (11,∞), since it lies in the interior of
the convex hull of λ and ψ − δ0 − λ. This implies that M s

1,n =M1,n for s ∈ (11,∞). To see that
M

s
1,n =M1,n(m)∗ for all s ∈ (11−m, 12−m) and m ∈ {1, . . . , n− 1}, consider the birational

contraction φ :M1,n 99KM1,n(m)∗. By Proposition 4.7, R(M1,n, D(s)) =R(M1,n(m)∗, φ∗D(s))
for all s ∈ (11−m, 12−m). Using Proposition 4.6, we have

φ∗D(s) = (s− 12)λ+ ψ − δ0 ∈ Pic(M1,n(m)∗).

Thus, Proposition 4.12 implies that φ∗D(s) is ample on M1,n(m)∗. It follows that

R(M1,n, D(s)) =R(M1,n(m)∗, φ∗D(s)) =M1,n(m)∗,

as desired. Finally, the fact that M12−m
1,n =M1,n(m) if and only if m= 1 or m= n− 1 is a formal

consequence of the fact that the rational map M1,n(m− 1) 99KM1,n(m) is regular if and only if
m= 1 or m= n− 1 (Corollary 4.5).

It remains to prove (1). It is clear that D(s) is big for s > 12− n, since D(s) becomes ample
on a suitable birational model of M1,n (for all but finitely many values of s). On the other hand, if
s= 12− n, then we may consider φ :M1,n 99KM1,n(n− 1)∗, and one easily checks that φ∗D(s)≡
0 ∈N1(M1,n(n− 1)∗). Thus, Proposition 4.7 implies that H0(M1,n, mD(s)) =H0(M1,n(n− 1)∗,
mD(s)) 6 1 for all m> 0, so D(s) is not big. 2

4.3 M1,n(m) is singular for m > 6
In this section, we use intersection theory to prove that M1,n(m) is singular for m> 6. By
Lemma 2.1, the singularities of M1,n(m) depend only on m, so it is sufficient to prove that
M1,7(6) is singular. The main idea is to study the discrepancies of the exceptional divisors of
the regular birational contraction M1,7(5)→M1,7(6).

Lemma 4.15. The canonical divisor of M1,n is given by

KM1,n
≡ n− 11

12
∆irr +

∑
S⊂[n]m2

(|S| − 2)∆0,S −∆0,[n].

Proof. A standard application of the Grothendieck Riemann–Roch theorem [HM98, § 3E] shows
that

KM1,n
= 13λ− 2δ + ψ ∈ Pic(M1,n).

Using the relations in Pic(M1,n) to rewrite this in terms of boundary divisors (Proposition 3.1),
we have

KM1,n
≡ n− 11

12
∆irr +

∑
S⊂[n]m2

(|S| − 2)∆0,S .
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Finally, the map M1,n→M1,n is ramified along the divisor ∆0,[n], so we obtain

KM1,n
≡ n− 11

12
∆irr +

∑
S⊂[n]m2

(|S| − 2)∆0,S −∆0,[n],

as desired. 2

The following lemma says that we can detect singularities by studying the discrepancies of
birational contractions.

Lemma 4.16. Suppose that φ :X → Y is a birational morphism of normal, projective varieties,

such that φ(Exc(φ)) is a finite collection of smooth points of Y . Then the discrepancy of any

exceptional divisor of φ is at least dim Y − 1.

Proof. Since the question is local on Y , we may assume that Y is smooth and that φ(Exc(φ)) = p

is a single point of Y . Since the discrepancy of any exceptional divisor E depends only on the
behavior of φ around a generic point of E, it is sufficient to prove the lemma after passing to a
resolution of singularities of X, i.e. we may assume that X is smooth. By the universal property
of blow-ups [Deb01, Proposition 1.43], φ factors as

X
φm−−−→Xm

εm−−−→Xm−1
εm−1−−−−→ · · · ε2−−→X1

ε1−−→ Y,

where each εi is a blow-up along a smooth center, and the restriction

φm|E : E→ φm(E)

is birational for each φ-exceptional divisor E. Thus, for the purpose of computing discrepancies,
we may assume that X =Xm and φ= εm ◦ · · · ◦ ε1 is a composition of blow-ups along smooth
centers. Since ε1 is the blow-up of Y at p, we have

ε∗1KY =KX1 + (dim Y − 1)E1,

where E1 is the exceptional divisor of ε1. But, since any other φ-exceptional divisor E is centered
over E1, its discrepancy must be at least (dim Y − 1). 2

Corollary 4.17. M1,n(m) is not smooth when m> 6.

Proof. It suffices to prove that M1,7(6) is not smooth. Suppose, to the contrary, that M1,7(6)
were smooth. Then the coarse moduli space M1,7(6) would be a normal projective variety.
Furthermore, since the finitely many points of M1,7(6) corresponding to curves with elliptic
six-fold points have no stabilizer, M1,7(6) would be smooth at these finitely many points. By
Corollary 4.3, the birational map

φ :M1,7(5)→M1,7(6)

is regular, with exceptional divisors {∆0,S : S ⊂ [7], |S|= 2}. Furthermore, if φm :M1,n 99K
M1,n(m) denotes the natural birational contraction, Lemma 4.15 and Proposition 4.6 give

KM1,7(5) = (φ5)∗KM1,7
= −4

12 ∆irr,

KM1,7(6) = (φ6)∗KM1,7
= −4

12 ∆irr.
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Using Proposition 4.6, we obtain

KM1,7(5) − φ
∗KM1,7(6) =

−4
12

∆irr − φ∗
(
−4
12

∆irr

)
= 4

∑
|S|=2

∆0,S .

Since 4< 6 = dimM1,7(6)− 1, this contradicts Lemma 4.16. We conclude thatM1,7(6) must be
singular. 2
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