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1. ForEwoORrD

Our purpose is to introduce some models of inference for risk
processes. The bayesian viewpoint is adopted and for our treatment
the concepts of exchangeability and partial exchangeability (duc to
B. de Finetti, [6], [7]) are essential.

We recall the definitions:

The random variables of a sequence (X1, X2 .. .) arc exchangeable
if, for every #, the joint distribution of # r.v. of the sequence is
always the same, whatever the # r.v. are and however they are
permuted.

From a structural point of view an exchangeable process X1, Xs

. can be intended as a sequence of r.v. equally distributed among
which a “stochastic dependence due to uncertainty” exists. More
precisely the X; are independent conditionally on any of a given
set (finite or not) of exhaustive and exclusive hypothesis. These
hypotheses may concern, for instance, the values of a parameter
(number or vector) on which the common distribution, of known
functional form, of X; depends. We shall restrict ourselves to this
case, Therefore, we shall assume that, conditionally on each possible
value 6 of a parameter ©, the X; are independent with F(x/0) as
known distribution function. According to the bayesian approach,
a probability distribution on ® must be assigned.

Ifwedenotethisd.f.as U(0), thedistribution of the X;is themixture:
F(x) = [ F(x|0)dU(®)
If the observations relevant to # of the r.v. X (e.g. to the first n

X1 = x1, Xo = %2, ... Xy, = x,) are available, the distribution on
@ is modified according to

w(0] %1, %2, ..., Xn) o€ L(x1, %3, ..., x5]0) u(6)
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where #(0) denotes the density of the distribution (supposing that
it exists. The modification in a discrete case is obvious).

L(x1, %2, ..., %4]0) is the likelihood of 6, after the observation
X = X1,%X2, ... Xp.
We have

L(xy, %2, ..., x]0) = H f(x:19)

if f(x/0) is the density of the X distributions (in the discrete case
the modification is obvious).

The d.f. of the X; after the » observations is
Fulx) = [ F(x0)dUO\xy, x2, .. ., x5) (1)

In the bayesian formulation the exchangeability can be a sub-
stitute for the randomness concept of the sampling theory. Ac-
cording to this viewpoint, the partial exchangeability can be defined
assuming that, also in this case, the X; are independent condi-
tionally on each hypothesis about the value of a parameter ®, but
now their distributions are different and depend, as well as on 6, on
another observable entity ¢;, relevant to each X;. If, for instance,
the modalities of ¢; are only two, two subsequences are individual-
ized

XM, X0, ... and X@, X9, ...
In each of them the X; are exchangeable and have as d.f.:
FW(x) = [ FW(x|0)dU0), & =T1,2.

After n observations relevant to # variables
X0 = 20, XP = 1, XD = 40,

XO — x®, X — 1 XD — 40
(n, + ny = n), the distributions of the X{» become
FM (x) = [F®(x[6)dU,0), h=1,z2

Ny, N
where

dUL(0) o T fO010) T O (4 6)dU ()

j=

Referring to one risk process, we shall now assume to collect—for
each of the subsequent equally sized intervals of time (e.g. years)—
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the observations relevant to the number of claims and the amount
of each of them (and then the cumulated claim per year).

Thus, schematically, the observation in the period i supplies the
data

ng; a2, 2@ S, =840 =1,2, ...
W=

Instead of limiting the observation to one risk, we could enlarge it
to more risks which, although “similar”’, must be differentiated,
from the very beginning, owing to some feature peculiar to each of
them. That is, for instance, in the observation of the claim number
process in motor insurance to consider cars with different H.P. as
“similar”’ risks, or, in fire insurance, to consider commercial buil-
dings with different kind of services as partially exchangeable risks.

Then, we can resort to the partial exchangeability in order to set
up an inference procedure which allows us to specify our opinions
about the behaviour of a risk also by means of observations on a
similar but differentiated one. This is particularly useful when the
observations on a single risk are few.

2. INFERENCE FOR NUMBER OF CLAIMS

a) Referring to a single risk, be it of interest to make inference for
the number of claims per year.

The sampling variables are, in this case, the r.v. of the sequence
Ni, N2, ... and we can consider them as the subsequent increments
(relevant to equal periods of time) of a claim number process M,
(number of claimsino, )y Ny =M, — M, ;,i=1,2, ...

In this approach, it is spontaneous to consider a

Poisson process’’ where

<

‘weighted

c(0nn
P, =ny = [ O mrave), m=ox, ..

This process, introduced in 1940 by O. Lundberg {10], under the
name of “compound Poisson process’” has been studied in terms of
a process with exchangeable increments by H. Biithlmann [1] in 1960.
Inference procedures for this process have already been treated by
several Authors (besides O. Lundberg himself in the quoted book
[10]). However we deem it interesting to expose some considerations
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in order to show how the above illustrated formulation can be
applied to this fundamental model.

First of all, we can prove that one arrives to a weighted Poisson
process from a Markov claim number process assuming that the
interarrival times are exchangeable.

The question is to identify the intensities for occurence, A,(f),
# =0,1, ..., of the Markov process according to the required
condition of exchangeability.

These intensities appear in the differential system

P, (7.t
LD pats) =01
P (t,t
_pi_fa(t ) — MOpulrt) + Noat)py-1(vl) j>i=0,1,... - (2)

which, under the initial conditions p(r, ©) = 8/, gives the condi-
tional probabilities of transition. Let T, T2 ... be the subsequent
interarrival times, we have

Fp() = P{T, St} = T — poof0, §) = 1 —+ e @4
We have also
PT,>HT, ==} = puln, t + 1) = gr{n@Ids,
So the density of the joint distribution of T3, T, if Ae(f), Au(f)
continuous, is
o, r, ) = xo(tl)e_{ll"(x)dx M+ Gy)e” t{ )z

and an analogous formula can be written for the joint distribution
of the first » inter-arrival times.

Let us suppose, now, that A,(#) > o when ¢ is finite and for each
integer n. If Ay(¢f) = o for # > N, only N arrivals are possible in the
Markov process. Let us assume An(f) continuous for each # and

t t
t > 01). Then let us denote J(t) = ¢~ [ M@ and (t) = ¢ M@z,

1} These conditions imply that the joint densities of T; are continuous and
strictly positive for finite values of their arguments. For further considera-
tions on the nature of the A, (¢} see L. Daboni [5], L. Crisma [4] and M.
Strudthoff [12].
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The functions /() and ¢(f) are derivable and strictly positive for
t > o.

The condition of exchangeability

fT Tz(tl: 2) = fTT (b, 1) Vi, 8, >0

implies that

Vi,ta >0

namely
o(f) o l'(t).

So [(#) is twice derivable. Now we have

ho = ——( and M) = —

and therefore

() = —

Reasoning in the same way upon the distribution of 71, 7%, T3, we
l/ll(t)
ll’(t)
Necessarily the /(f) must be completely monotdne: (—1)4®(¢) >o
J(n+1) (t)
A, ® -

Now we have [(0) == 1 and therefore (Bernstein’s theorem) I(z)

satisfies our conditions iff

obtain As(f) = — . And so on for ay(t), n > 3.

and, generally, it follows that A,{t) = —

©

) = I ¢~ au (o)
with U(6) as d.f. of ar.v. ©® > 0.

We have, by now, established that the r.v. T3, Ts, ...., inter-
arrival times in a Markov claim number process are exchangeable iff

Fol) = 1—I(t) = 1 — [ e~ dU(®).

0
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In the hypothesis that 6 ' and 6 ? are integrable with respect to
U(0), we obtain easily

E(T) = [[1 — F(t)]dt — [0 'dU®) = E (01,
var (T) = 2 E (073 — E (0~ 1)?

cov (T, Ty) = E (0% — E ()2, (3)

where in the right-hand sides E is the expectation with respect to
the distribution U(8).

From the (z), by recurrent integrations we find

SNy o
Pti+n(r, ) = (1) o 1D m=o0,1,..."

It is easy to verify that
P{M; — M, =n}= Zpiian(T» t) poi(0, 1) =

= (—1)n (i—i)f Z (— 1)? il 16+ (1) —

1!

= (—1)n ({fi)n 1) (1—r) :f (t%'LVL B7¢ -0 D4U(6).

Analogously it is proved that for + < ¢ <<t + 4,
PMi—M.=mn) N (Me¢sp— M.y =m)} =

hn+m
= (—a)nim e fmim(2h),  n,m=0,1,. ...

n! m!

Thus, for a fixed %, the joint distribution of two increments
relevant to equal and disjoint intervals is symmetric. And this is
for as many increments as we want.

Then put Np(s) = Mps— M|p_1fs, h=1,2, ..., 5 >0, ther.v.
of the sequence Ni(s), Nz(s), Ns(s), ... are exchangeable with distri-
butions

S’ﬂ ey
P{NA(s) = n} = - [ 0% %dU®)  h=12, ...
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It is easy to state
E(Nn(s)) = sE(0),
var (Np(s)) = s?var (0) + sE(0),
cov (NVp(s), Ni(s)) = s?var (0). (4)
Later on we will assume s = 1 and denote the number of arrivals
in the h:th unitary interval of time (h:th year) by N.
In conclusion the r.v.

Ni, Ng, N3, ...
and
Tl, T2, T3,

whose distributions depend on the parameter 0, are exchangeable.

.« vy

Our initial distribution for ©® is the U(0). Now by means of the
observations relevant to ¢ r.v.

Ni=mn, No=ns, ..., Nt = ny

we can specify our knowledge about ® according to what stated
sub 1.

Here we have

L(n, n2, ..., n[|0) oc @Mt sn g0 — gug-10
with n= X #u.

Hence
0
{ %4 U (x)
U, o8 = U@Blny, 05, ..., m) = T,
[ 6me-*dU(6)

Then after the observations we have

f6n+le—te dU(G)

Een(®) = [ 04U, 4(0) = > — Anlt)
; [ me- 4U(6)

and
vary, n(0) = M (O)[Mn +1(8) — Anl2)).
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This is a positive quantity unless Uy, ,(0) is concentrated in one
point. So that for the increments N;y, ¢ =1, 2, ... and by (4)
we have

Et,n(Nn) = M(t),

vars,a(Na) = M(t)[An+1{) — Aalt) + 1),
cove,n(Na, Nik) = A(8)[An+1(8) — Anlf)] > 0.

If the observations concern the intervals 71 = &, T2 = f3, ...

Ty = tn, we have L(fy, 3, ..., 1,[0) = 0%~ %, with ¢t = T ¢;.

i=1

Then, the conclusions are the same we have reached for the
process { N} except that ¢ is now real, while before it was integer.
In both cases the “‘sufficient statistic’’ is the total number, #, of
arrivals and the length, ¢, of the whole interval of observations.
After the n observations and taking into account the (3), we get

Epn(Ty) = E(Tilts, to, ..., tn) = [ 874U n(8) =

[ 9n-10-94417(6)

¢

[ 6me=%t4U (6)

- -1 (f)

and, if n > 2,
2 A 1(t) — An-2(t)
A-1() “An_2()
A-1(t) — An-a(t)
Aa-1(8) *An_2(t)

varg o(T4) =

covyn(Ti, Tj) = Lj=n-4+I,n+2....

Finally we note that A,(¢) is a function of the sufficient statistic
(n, £), whose functional form depends on the initial distribution
U(6). In the statistic, the integer # (number of arrivals in o, ) does
not decrease when ¢ increases. Let us suppose, now, that for a fixed
U(o),

t—+®

then both covariances of the r.v. {N;} and {7} converge to o0 when
t— 4+ oo.

https://doi.org/10.1017/50515036100009168 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100009168

46 INFERENCE FROM A BAYESIAN VIEWPOINT

The stochastic dependence due to the incertainty fades out and
we are, asymptotically, in conditions of independence. Then we can
expect that the limit A4, = A does not depend on the distribution
U(6) unless it is not constant in a neighbourhood of . In the quoted
paper of O. Lundberg it is proved that if nf{ = y, when ¢ varies,
then lim A,(f) = y (if U(0) is not constant in a neighbourhood of ¥).

t—>+

After treating the inference problem in general conditions, let us
try to detail the initial distribution U(6).

It is usual to assume that it belongs to the “Gamma’ class
(conjugated to the likelihood function). It is known that in this

v+ n

case the weighted process is a Pélya process with A,(f) = NIt
if w(®) = U'(6) och* e

In fact, however, the choice of such a U(8) means that we already
have some knowledge about ®, coming for instance from past
experience. With weak knowledge, we could choose w(6) « 6°* (im-
proper distribution) 2). The Uy »(8) would be proper and of the
Gamma type (and even erlangian) as follows from

te,n(8) ocB%e G = gn-le¥

when # = X n; > 1. Here # and ¢ are integer. Considering a Gamma
i=1

function with positive and real parameters v, A, this means that

we make a choice in the larger class of the Gamma distribution

(with v/A o n/t). As already recalled, under these conditions the

claim number process is a Pélya process, where
x\l

PNa = K} = T [ E -G ko r
that is
Me .
P{thk}z-ﬁp(l—p), k=o0,1,... (5)

where (Mr=v(M+I)...(v+k—1I),(vo=Tandp = N1 + A

The (5) are negative binomial distributions.?)

?) The adoption of such improper distributions, failling past experience,
has been suggested by H. Jeffreys. See, on this subject, also D. V. Lindley
(8], [9] and A. Zellner [14].
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b) Then we can approach the inference for the number of claims
in the following terms. We have good grounds for considering the
arrival process as Poisson’s with a random intensity ®. If the risk
is observed from the beginning (i.e. from the starting moment of the
possible observations), and then an improper distribution #(6) oc6-*
is assigned to the parameter @, after ¢ years (and with » claims in
o0, t) we should obtain a negative binomial distribution of the sub-
sequent increments. That is the (5) withv = n and p = ¢/1 + ¢

Starting from the beginning of the ( 4+ 1):th year and thinking
that the past observation is not available, we could adopt the methed
previously illustrated (weighted Poisson process with #(6) oc 677)
or, otherwise, assume that the Nj are exchangeable with the
distribution (5) whose paramecters are now random and infer for

them.

c) Apart from the previous consideration, we now intend to infer
for the process of the exchangeable r.v. N1, No, ... with distribu-
tions

pr=P{N;=k} = [ P{N; =Fk|§,0}dU{E,0), k=o,1,...
where
O o o
P{N; = k\g,e}:fk—‘e(xwe) , 0<E< 4+ 0 o<B<1,

(5"
and, as usual, U(E, 0) is the initial distribution, that is supposed to
be provided with density (£, 0), on the parameters & and @. The
Ny can, as previously, count the number of claims relevant to a
given risk in the ¢:th year ( = 1.2 ...). The model we are going to
work out seems to be interesting especially when the observation for
every period is slight (see § 3).

If in ¢ subsequent periods, %1, #s, . . ., #; arrivals respectively have
been observed, the distribution of the N; becomes

pulns, nsy .,y = [ dE [ P{N, = kIE, 8} u(Z, Oms, s, . .., n) d8

and, in particular, we have

— 8
9 u (€, Olm1, ma, ..., ng) dO.

E(Nin, ne, ..., 1n) = fd&fil
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The basic problem now lies in choosing the initial distribution
U(E, 6). It is to be noticed for this purpose that the likelihood of the
observation is

L(ni, ne, ..., mlE, 0) < (E)p - (E)m,

1 2

- (E)n' etE (1 — e)n

with # = X #n;. Then it is sensible for mathematical convenience to

choose, for instance, a density of the type

u(, 8) 0 RE)* 11 —0)P Lo<E< 4+ 0o<h<I, (6)
where R(E) is a suitable rational function of § and «, B, vy are real,
non negative, numbers.

Note that, for a fixed £ and when v§ + « — 1 >0, § > 1, the
density u(£, 8) reaches its maximum value at the point

Yitoa—1

Ty tatp—2

and this quantity converges to 1 if £ — 4 o0.

b,

If, in our opinion, the expectation
1—0
E(NE6) =& 5~

is near to a value ¢ we could choose «, B, v, R(£) so that the density
becomes concentrated in a neighbourhood of the curve £(1 -— 6) —
—¢B = o in the strip 0 < 0 < 1, £ > o of the (£, 0) plane.

We shall assume #(g,0) oc £ 6%~ (1 —6)* ' with « > o,
B >0,y > 0. Wehave

W, Olns, ma, ..., m0) CET ), (B, - - (€ B¢ FIE N T — ),
Such distribution is proper (for » > 1). In fact Q,_,(8) = £}
I ()n, is a polinomial of the (# — 1) degree. On the other hand,

i=1
we have

fea+waa—%1__eﬂ*94de:aBKt+—wE—Fa,"*FB]

0

Now we know that, if ¢ remains fixed, we have

L(p+q)

Hm —e pl=1

poo  L(P) B

y
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so that for § >,
['(n + B)
[t + v)E+ a]?*?"

Bl(t + )& + a0, n+ B] < (1 +¢)
Hence, there exists the integral
C=]0y,E) Bl{t + 7)E + o, n+ B]dE
and it is finite when & >0, p > o and » > 1.

Note that also the initial distribution is proper if in the (6) the
function R(£) is finite for every £ > o and, for £ — -+ o0, R(§) =

= o).
For the distributions of the N;, after the observations, we now
have
ﬁkl’}’h, Ne, .. = P{Ni = klm, Ha, ..., m} ES

- d&f— 65(1 — 6)F u(Z, Olms, s, - . ., 1) dB —

ct
= o [0 0u @ BIE v+ DE o B A,
k=o0,1,...50=¢t+1,t4+2, ....

Namely, taking into account the

. @ _
B(ib»9+k) —B(P:Q) (P+Q)k’ O,I,Z, )
pkln,, Ny n: -
)an 1() B
[y +DE+ o, n+ Bl dE
(n+ B¢ [(t+y+ )&+ a4 2+ B
k!

10,1 (6) B(t 4 1)E + o, m -+ B] dE

If, in particular, B is integer, taking into account the

I'(n+8)
(ﬁ)nﬂ}

B(p,n+B) =
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and putting

m—1

. . 4—!—1
Hm(g;t) = I——l (Q + ; l‘«L Y)

i

we have
b IV () st
/)Ic\n,, Mayerny ne k! t’%Y‘F 1 i’TLY T wE O(,B,Y, 1,R2,..., ¢
(7)
with
fm@iﬂﬂidz
up =
,_Q_Zl 1(8) dE
M, o0
Here is
(€) I, .Gt
(e = : L L S PP
B (, n w+5+°°+1) nep(B A1)
AN +y4
and
I, (& ¢
M@:ﬁli¥l—.
n+3(g’ ¢ + I)
Apart from perturbing factors ug, the (7) are the probabilities of
t+
a negatlve binomial distribution with parameters #» + 8, —— P 1 I

Note that the uy is the weighted average of the function vg(£) with
the weighting density @, _,(§)/I1,, . 5(&; ).
For every £ in (0, + o0) we have vo(§) < 1 and vg(§) = vi+1(8)

nta B
according to whether 2 = —————.
grow = ity

Therefore also the sequence yy at first increases (and wo << 1) and
n+ o+ B)

then decreases <1f there exists & > A;:{_—_, .

A

I
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These results (valid if 8 is integer and « > 0), however, do not
allow us to evaluate the expectation E(N;lni, nz, ..., #s) of the N;

after the observations.
It is easy to state that E(N,|....) exists if « > 1 (and B > o).
Under these conditions we have

E(Ndms, ne, .., ne) = [ dE [ 011 —0) u(f, Olmy, ns, . . ., ms) dO —

[ 50 1(E) BI(t + Y)E + o — 1,1 + B+ 1)dZ

[ O (&) Bllt + Y)E + o n + B d&

and since, if p > o,

q
B(p, ¢+ 1) :;B(p+1,q)
results
n -+ p
E(N;|n1, ne, ..., = if 0 = 1, d
( i, ne ﬂz) t 4y I o an
fora >1
E(N1|%1, Ne, ...,m):

f _ BE
¢t+vE+a—1

o

Qn-18) Bl(t + Y)E + o, n + Bl dE

[0, 1(8) Bt + Y)E + o n + 8] dE

The ratio in the right side is the average of the function
(n + B)E
w@ =T o .
(¢t +yE+a—1
with the density Q,, _;(8) B[{t + v)& + o, % + fland,ino < £ << + o0,

n
we have o < p(§) < -—.

If the ratio #/t converges to a limit A, when ¢ (and ») diverge, then
asymptotically we have

n+ B
piE) ~ - ~2

I+ v
for & = o and E(Ny|n1, ne, ..., #g) ~ A
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Note that this conclusion and the one relevant to the whole
distribution, are valid in the more general class of initial distribution
Py(E)
Py(E)’
numerator, Py(E), is smaller than j of the denominator. Instead of
Qn-1(E), there is, in this case, the rational function R(%) IT (£)n,,
so that only the weighting densities above considered vary.

(6) if in R(E) = the degree, 7, of the polinomial at the

3. INFERENCE FOR THE NUMBER OF CLAIMS: PARTIAL
EXCHANGEABILITY

We propose the following model of partial exchangeability, whose
calculations will not be given.

Let us observe the numbers of claims, per year, relevant to two
“similar’’ but differentiated risks. Let us assume that for both, the
distributions of the number of claims in a year are negative binomial,
namely of the form (5), but that the parameters ;, 9; are different
for the two risks.

We are under conditions of partial exchangeability, if, for instan-
ce, the parameter £ is random and common to both risks, while
the parameters 0, and 0. are different and known.

Alternatively we can consider 6 random and common to both
risks and differentiate them by means of the known value of the
parameters £, and .

More generally, we could assume that the common parameter is
unknown too: we will deal with this case afterwards.

a) Let then N® N,
and N® N,

be the r.v. which count the numbers of claims per year of the two
risks and assume that

P{N® — f f f Sk gz ) ku(t, 8, 6,) dE dO, do,

and

P(N® — f f f Sk gt 00k u(z, 8, 0,) dE 6, d6, .
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Here the u(£, 01, 02) denotes the “‘initial”” joint density of the r.v.
E, 01, ©2. When £ is certain the parameters ®:, ®2 must be sto-
chastically dependent; in the opposite case we shall have, obviously,
two different exchangeable processes. On the other hand, we could
assurne that the parameter E is random and independent of the
other two and then (according to our opinion and information)
choose a density of the form

w(E, 01, 02) = v(E)- (01, 02)

The v(€) is definite (proper or improper) for o << £ < + co and
the #(0;, 02) (proper or improper) on the square o < 0 < 1,
0 <0 <1,

If—in ¢ subsequent years—a, #2, . . ., #; claims for the first risk
and vi, ve, . .., v for the second one respectively have been observed
(on the whole # 4+ v = X#; 4 Xv; claims) the likelihood for the
hypothesis £, 01, 02 is the function L{ni, ns, ..., %; v1, va, . .., v&,
01, 02) o (B, e -+ (B~ B, By -+ (o) BF - 6 (1 —0))
(1 — 85" = O (8) (0, 0)% (1 — )" (1 — 6,)", where Q,,,., (8) is a
polinomial in £ of the (# -4 v) degree.

Also taking into account what said sub 2), a suitable choice of the
u(E, 01, 82) is the

u(&, 01, 62) ocRE P(6,, 02)
where P(01, 02) is a polinomial with non-negative values in the
square domain of 01, 62; when P is set, the necessary correlation
between the two parameters must be taken into account.

Finally, in order to infer, for instance,.for Ni(l) we need the
marginal final distributions, whose the d.f. are

g 0y 1
U, Bajny, m2, ..., g5 91, ve, o, vg) = [dx [dr §ulx, 1, 0. ..)d0e.

When we are interested only in evaluating the expectations, we

have

EQN®. ... )= ] 45 [E6; (1 — 8n) w(E, 4] .;...)dBp h=1,2.

The other case can be dealt with formally in the same way.

4. INFERENCE FOR CUMULATED CLAIMS

With reference to one risk, it is now of interest to infer as well as
for the claim frequency also for the distribution of a single claim.
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We now assume that the r.v. X1, X2 ... measuring the subsequent
claims are both independent conditionally on any hypothesis about
the arrival process and exchangeable (that is, even here, equally
distributed conditionally on every hypothesis about a parameter ©
on which their common density f(x/0) depends).

If a Poisson mixture process (with random arrival intensity A)
is chosen as arrival process and an initial distribution on A and ©
with joint density #(a, 0) is assigned, then the distribution of cu-
mulated claim in a year is the mixture, weighted with that density,
of the classical distribution of a compound Poisson process. In such

Ni
way, the cumulated claim per year Si, Sz, ..., with S; =2 X,
are exchangeable, et
If the observations in a year are the X; = %1, Xo =2, .....
Xa = x5, the distribution of the cumulated claim is the mixture of
the compound Poisson process according to the final density
u(X, 0]x1, %2, ..., ¥u), product of the likelihood and of the initial
density.

The likelihood of the hypotheses A, 8 for that observation is

L(x1, %2, ..., %n|h, 0) ccA”e > T f(x4)6)

and a sufficient statistic of finite dimension exists if f(x(6) is chosen
in the exponential family (Gamma, Pareto, etc.).

When choosing, then #(0, A) we can assume either the indepen-
dence of the two parameters or, what seems more sensible, a
stochastic dependence of them (which makes the claim distributions
depéend on the arrival intensity).

Also because of the imaginable difficulties in the calculation, we
can generally restrict ourselves to infer for E(S;) and var (Sy) in-
stead of the whole distribution.

Under our hypotheses, after the observations x = (x1, x2, ..., %a)
we have

E(Slx) = [f % E(X]0) u(2, 6{x) d AdO
and
var (S|x) = E{var (S, 0)|x} + var{E(S[A, 0)|x}
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where var (.|x) means the variance relevant to the final distribution
u(A, 8)x) and
Elvar (S|, 0)] = E{a[var (X7, 6) + E(X]x, 0)71}.

As a very simple example, that we only mention without per-
forming the easy calculations, we could state f(x6) = 6 ¢~®* and
assume that the density of the initial distribution is the product of
two Gamma densities relevant to A and 0 respectively (independence
of A and ©). The use of a Gamma bivariate distribution would be
formally more complex but would allow us to introduce an a priori
dependance between the two parameters.

CONCLUSIVE REMARKS

In conclusion, we would point out that, basically, our approach
concerns the use of a bayesian adaptive process which, at least
conceptually, seems to be worthy with respect to the theory of
experience rating. And so, essentially, because it allows us to face
different problems by means of a unitary approach.

There would be no difficulties with respect to the assumption of
exchangeability which, after all, induces us to suppose that some
increments of the risk processes are mixtures of independent r.v.
and the mixture varies according to the information. The partial
exchangeability concerns the possible heterogeneity of the risks
individually observed.

The very difficulty arises when we choose, case by case, both the
initial distribution and (in the parametric analysis we have treated)
the conditional distribution of the r.v. we are interested in {number
of claims or cumulated claim per period).

The greater the information based on the past experience is, the
less difficult such choices are. On the other hand, when the observa-
tion increases, the influence of the choice of the initial distribution
(generally) fade out. Finally, of course, the unavoidable difficulties
in calculation must be taken into account.
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