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SUMMARY

We used the winter of 2009–2010, which had minimal influenza circulation due to the earlier
2009 influenza A(H1N1) pandemic, to test the accuracy of ecological trend methods used to
estimate influenza-related deaths and hospitalizations. We aggregated weekly counts of person-
time, all-cause deaths, and hospitalizations for pneumonia/influenza and respiratory/circulatory
conditions from seven healthcare systems. We predicted the incidence of the outcomes during the
winter of 2009–2010 using three different methods: a cyclic (Serfling) regression model, a cyclic
regression model with viral circulation data (virological regression), and an autoregressive,
integrated moving average model with viral circulation data (ARIMAX). We compared predicted
non-influenza incidence with actual winter incidence. All three models generally displayed high
accuracy, with prediction errors for death ranging from −5% to −2%. For hospitalizations,
errors ranged from −10% to −2% for pneumonia/influenza and from −3% to 0% for respiratory/
circulatory. The Serfling and virological models consistently outperformed the ARIMAX model.
The three methods tested could predict incidence of non-influenza deaths and hospitalizations
during a winter with negligible influenza circulation. However, meaningful mis-estimation of the
burden of influenza can still result with outcomes for which the contribution of influenza is low,
such as all-cause mortality.
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INTRODUCTION

The burden of hospitalizations and deaths caused by
influenza is generally estimated using ecological
trend studies (e.g. [1–10]). These studies use

population-level rates of outcomes that are not specific
to influenza, such as all-cause mortality. Outcome
rates during time periods when influenza did not circu-
late are used to predict rates due to non-influenza
causes during periods of influenza circulation.
During influenza seasons, the difference between
observed rates (which are due both to influenza and
to non-influenza causes) and predicted rates (due to
non-influenza causes only) is then attributed to
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influenza. Accurate estimates of the burden of
influenza from these studies depend on accurate esti-
mates of the predicted rates of non-influenza
outcomes.

A key challenge to estimating non-influenza rates in
these ecological studies is confounding by season [11].
Influenza tends to circulate in winter, which is when
many other seasonal causes of morbidity and mor-
tality also peak. Ecological study designs must ac-
count for this seasonal confounding; a variety of
approaches have been used for this (e.g. [2, 4, 7, 8,
10, 12]). Importantly, while the assumptions that
underlie these methods have been described [11], few
data exist on whether these methods accurately
account for seasonal confounding. Because seasonal
influenza viruses circulate every winter in temperate
regions, winter rates of outcomes in the absence of
influenza are usually not observable. So it is unknown
whether ecological studies successfully estimate the
winter incidence of outcomes due to causes other
than influenza.

The emergence and global circulation of the 2009
influenza A(H1N1) pandemic virus (2009
H1N1pdm) provided a unique opportunity to test
the accuracy of ecological study designs. The 2009
H1N1pdm virus circulated early relative to the typi-
cal influenza season in the United States, with peak
circulation occurring in September/October, and
with influenza circulation essentially absent by
mid-December 2009 [13]. Therefore, observed mor-
bidity and mortality during the winter of 2009–2010
represents winter baselines of these events occurring
in the absence of influenza. We used this winter to
test the accuracy of common ecological methods
used to estimate the winter incidence of outcomes
due to causes other than influenza.

METHODS

Study population

We conducted this study within the Vaccine Safety
Datalink (VSD) Project, a collaboration between the
Centers for Disease Control and Prevention (CDC),
America’s Health Insurance Plans, and ten geographi-
cally diverse healthcare systems (‘sites’) [14]. In combi-
nation, the VSD contains data on site enrolment,
healthcare utilization, and mortality for about 3% of
the US population [14]. Our study used data from
seven VSD sites with complete enrolment, demo-
graphic, hospitalization, and mortality data for the

study period (1 September 1997 to 31 August 2010):
Kaiser Permanente of Northern California (NCK;
Oakland, CA); Kaiser Permanente of Colorado
(KPC; Denver, CO); Health Partners Research
Foundation (HPM; Minneapolis, MN); Marshfield
Clinic Research Foundation (MFC; Marshfield, WI);
Kaiser Permanente Northwest (NWK; Portland, OR);
Kaiser Permanente of Southern California (SCK; Los
Angeles, CA); and Group Health Cooperative (GHC;
Seattle, WA).

We defined our study cohort as all seniors enrolled
in one of the study sites between 1 September 2002
(KPC) or 1 September 1997 (other sites) and 31
August 2010. Seniors began contributing person-time
to the study following their first year of continuous en-
rolment, and continued to contribute person-time
until the earliest of death, disenrolment, or the study
end date of 31 August 2010. We restricted our study
population to seniors (adults aged565 years), for
two reasons. First, older adults were less susceptible
to 2009 H1N1pdm than were other age groups, due
to cross-protective antibodies from A(H1N1)
influenza strains that circulated prior to 1957 [15].
Thus, seniors would be unlikely to experience delayed
health outcomes in winter that could have resulted
from influenza infections in autumn. Second, seniors
are at high risk of influenza complications and are
the most common group for whom influenza burden
is estimated (e.g. [12, 16, 17]).

Health outcomes

The primary health outcomes studied were all-cause
mortality; hospitalizations due to pneumonia or
influenza (PI); and hospitalizations for respiratory or
cardiovascular (RC) conditions. We also studied hos-
pitalizations for acute myocardial infarction (AMI) as
a secondary outcome. We identified all onset dates of
these health outcomes (which aggregate influenza-
attributed and non-influenza-attributed events) in
study population members during the entire follow-up
period. We determined dates of death from adminis-
trative records at the participating sites, which com-
bine death data from multiple sources (including
hospital discharge records, state mortality records,
and enrolment databases).

Hospitalization outcomes were defined by Inter-
national Classification of Diseases, version 9, Clinical
Modification (ICD-9-CM) codes assigned to in-
patient visits: codes 480–487 (PI hospitalizations),
codes 390–519 (RC hospitalizations), and code 410
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(AMI hospitalizations). These codes were chosen for
consistency with previous studies [9, 18].

Influenza circulation data

We used data on positive influenza tests from the US
World Health Organization and National Respiratory
and Enteric Virus Surveillance System (WHO/
NREVSS) collaborating laboratories. Publically avail-
able WHO/NREVSS surveillance data are stratified
by each of the ten Department of Health and
Human Services regions of the United States. For
each site, we calculated the percent of specimens test-
ing positive for influenza, overall and by type and sub-
type [A(H1N1), 2009 H1N1pdm, A(H3N2), and B],
from the region in which the site is located as a
measure of influenza circulation. For each year and re-
gion we defined influenza seasons as the consecutive
weeks with at least 10% of isolates testing positive
for influenza [9].

Analysis

Individual-level data on person-time and counts of
health outcomes were aggregated by age group
(65–69, 70–74, 75–79, 80–84, 585 years), sex, site,
and study week. The aggregated weekly data at each
site were merged with weekly influenza data from the
corresponding region.We defined the prediction period
as the weeks of 14 December 2009 to 1 March 2010, as
>95% of influenza infections for 2009–2010 occurred
prior to 14 December 2009 [13]. The remaining weeks
were the baseline period used to fit the models.

For each of the health outcomes we fit three differ-
ent statistical models to the data. We first estimated
each model’s parameters using the baseline period.
We then used the baseline model to predict the
expected incidence during the prediction period.
Because the 2009–2010 winter was effectively
influenza-free, the predicted rates are predictions of
the outcome rates due to causes other than influenza.

The first statistical model was a cyclic regression
model, which was first introduced by Serfling in
1963 [7]. In this approach, data from weeks when
influenza circulated are removed from the time series.
A cyclic regression model, using sine and cosine terms
to represent seasonality, is then fit to the remaining
data. Non-influenza incidence during periods when
influenza circulates is interpolated from the model
parameters, and differences between the observed
and predicted influenza season incidence are

attributed to influenza. We fit the following Poisson
regression model to the data from weeks when
influenza did not circulate, modelling the weekly
count of events as a function of calendar time:

Yt = α exp
β0j + β1 t( ) + β2 t2

( )+ β3 sin 2πt/k
( )( )

+ β4 cos 2πt/k
( )( )+ β5 male( ) + β6(age)

[ ]
,

where Yt is the number of events during week t, k is
the period of the time series (k = 52·177 for weekly
data), β0j is the site-specific intercept (i.e. random in-
tercept model), β6 is a vector of parameters for the
age strata, and α is the offset terms for log of weekly
person-time. Predicted incidence in the total popu-
lation was calculated by computing a weighted aver-
age of the stratum-specific predicted incidences.
Because model-based standard errors do not account
for the autocorrelation of the data, we calculated
95% confidence limits using seasonal block bootstrap-
ping [19, 20].

The second statistical model we used was the ‘viro-
logical’ regression model, which uses the Serfling
model as a foundation and adds data on influenza cir-
culation. This model has been the standard approach
used by the CDC for estimating the burden of
influenza from ecological studies since 2003 [9, 10,
21, 22]. In the virological regression model, all time
points during the baseline period are used, including
weeks from both influenza and non-influenza seasons.
Parameters are included for percent of tests positive
for each influenza type and subtype. For consistency
with the standard use of these models [10, 21, 22],
we did not include lagged effects of influenza.
Incidence of non-influenza outcomes during influenza
season is then predicted from the model parameters,
setting the influenza covariates to zero. As with the
Serfling model, we calculated 95% confidence limits
using a seasonal block bootstrap.

The third statistical model we tested was an autore-
gressive, integrated moving average (ARIMA) time-
series model [23]. Use of these models for predicting
the burden of influenza has been described in detail
elsewhere [2, 11]. In brief, an ARIMA model assumes
that the incidence rate at time t (Yt) is influenced by a
‘random shock’ (αt) to the population at time t. The
random shock is the cumulative effect of all factors af-
fecting incidence, such as weather, temperature,
pathogens, and air pollution. The effect of the random
shock may persist for several time periods, so inci-
dence at time t may depend on prior random shocks,
αt–p for some values of p. In addition, Yt may depend
on prior incidence, Yt–q for some values of q.
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Conceptually, this could be due to depletion of suscep-
tibles during the early stages of an epidemic, leaving
fewer susceptibles in later stages. Thus, an ARIMA
model has the form:

Yt = ø1 αt( ) + ø2 αt−1
( )+ . . .+ øp αt−p

( )+ θ1 Yt−1
( )

+ . . .+ θq Yt−q
( )

.

ARIMA models may also use differencing to remove
trend or drift in the time series. In differencing, the de-
pendent variable is the differenced time series Zt:

Zt = Yt − Yt−d,

where d represents the level, or order, of differencing.
ARIMA models can include seasonal lags in αt and in
Yt to account for cyclic trends in incidence. ARIMA
models are described by the orders of autoregressive,
differencing, and moving average terms; for example,
a (p,d,q)(1,0,0) model refers to a model with a
first-order autoregressive term and no differencing or
moving average terms; upper-case (P,D,Q) are used
to refer to seasonal terms. Finally, ARIMA models
can include other time series as independent variables;
these models are sometimes referred to as ‘ARIMAX’

models. In our study, we used ARIMAX methods to
model outcome incidence, where we included weekly
counts of positive influenza tests as independent
variables.

Unlike the cyclic regression models, where the
model covariates may be chosen a priori, ARIMA
and ARIMAX models are built empirically. The mod-
eller identifies values for p, q, and d that are specific to
the time series being modelled. For each outcome and
site, we first fit an ARIMA model to the weekly
observed data during the entire baseline period. We
then added weekly percents of tests positive for
influenza (by type and subtype) as predictors if they
were significantly associated with the outcome after
fitting the initial ARIMA model and if their inclusion
in the model did not decrease the fit of the ARIMA
model to the data. We used the resulting ARIMAX
model to estimate (forecast) weekly outcome incidence
rates during the prediction period.

Because ARIMA models are fit to a single outcome
time series, an ARIMAX model cannot be adjusted
for age or sex. Stratifying by age would have required
fitting separate models for each age stratum, a fivefold
increase in the number of models to fit. Instead, we fit
an ARIMAX model to each outcome time series at
each site, aggregated across all age/sex groups. To
test whether stratifying by age might improve the ac-
curacy of the ARIMAX model, we fit separate

ARIMAX models to each of the five age groups for
the PI outcome in one site (NCK), and compared
the overall predicted incidence from the unstratified
model with the combined predicted incidence from
the stratified models. Forecasts from the unstratified
model differed from the age-stratified models by
<0·5 cases/10 000 person-years (data not shown).

Accuracy endpoints

The study endpoints to assess accuracy of the statisti-
cal methods were the errors between the observed and
predicted rates of the health outcomes during the pre-
diction period. We compared the predicted incidence
of each outcome during the prediction period with
the observed incidence in each site. We quantified
the prediction accuracy of the statistical models by
calculating the difference between the observed and
predicted incidence rates. We calculated prediction
error as both absolute differences and relative differ-
ences as a percentage of the observed incidence. We
used US census data to standardize prediction error
to event counts in the US population and compared
annual predicted deaths in the United States from
the virological regression model to recent CDC esti-
mates for adults aged 565 years based on the same
model [21] during 1997–1998 to 2006–2007, years
for which predictions were available in the present
study and the CDC estimates.

This study was approved by the Institutional
Review Boards of all participating sites. Analyses
were conducted using SAS v. 9.2 (SAS Institute,
USA) and Stata version 12 (StataCorp, USA).

RESULTS

We observed a total of 10 947 081 person-years of
follow-up time during the study period, of which
31% was in seniors aged 65–69 years, 26% was in
seniors aged 70–74 years, 20% was in seniors aged
75–79 years, 13% was in seniors aged 80–84 years,
and 10% was in seniors aged 585 years (Table 1).
Our study population experienced 408 437 deaths;
149 630 PI hospitalizations; 1 507 965 RC hospitaliza-
tions; and 102 810 AMI hospitalizations during the
study period. Incidence of all health outcomes fluctu-
ated seasonally (Fig. 1).

In virological regression models, influenza A
(H3N2) and B were significantly associated with
deaths and with PI and RC hospitalizations.
Influenza A(H1N1) was only significantly associated
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with RC hospitalizations, while influenza A(H1N1)
pdm was only associated with PI hospitalizations.
The exact form of the final ARIMAX models varied
by health outcome and by site, but the most typical
model included first-order differencing and a
first-order moving average as well as a seasonal mov-
ing average term [i.e. a (p,d,q)(P,D,Q)(0,1,1)(0,0,1)
model]. One or two influenza parameters [typically
A(H3N2) or B] were usually included in the final
models for death and for PI and RC hospitalizations.
Influenza parameters were never significantly

associated with AMI hospitalizations in either viro-
logical or ARIMA models. Yearly predicted US
influenza-related deaths from the virological re-
gression model during 1997–1998 to 2006–2007 ran-
ged from 8531 to 36 972 and were well correlated
(R2 = 0·74) with CDC’s estimated deaths during
the same time period, which ranged from 10 800
to 43 727.

During the prediction period, Serfling and virologi-
cal regression models were more accurate that the
ARIMAX models for all health outcomes except

Table 1. Distribution of person-time and outcomes by site, age, sex, and influenza year

Hospitalizations for

Group Person-years Deaths
Pneumonia or
influenza

All respiratory or
circulatory conditions

Acute myocardial
infarction

Full population 10 947 081 408 437 149 630 1 507 965 102 810
Site

NCK 4 452 420 163 568 55 756 546 272 39 513
KPC 454 956 16 611 6782 99 851 3049
MFC 486 907 17 432 5472 56 995 3691
HPM 285 380 13 018 8528 85 728 4222
NWK 571 502 25 728 8052 84 014 5424
SCK 4 027 871 142 743 57 148 559 680 40 836
GHC 668 044 29 337 7892 75 425 6075

Age (years)
65–69 3 429 263 45 346 19 766 262 012 19 351
70–74 2 796 897 60 820 25 627 306 805 21 491
75–79 2 183 608 76 719 31 492 331 352 22 094
80–85 1 471 171 87 529 32 753 300 214 19 733
585 1 066 142 138 023 39 992 307 582 20 141

Sex
Female 6 099 807 207 873 73 816 740 755 44 948
Male 4 847 274 200 564 75 814 767 210 57 862

Influenza year*
1997–1998 643 653 23 737 8657 86 127 6480
1998–1999 674 248 24 950 9499 92 752 7143
1999–2000 710 292 27 207 10 502 99 575 7704
2000–2001 744 936 29 400 10 747 106 101 8374
2001–2002 770 184 29 340 11 577 108 363 8206
2002–2003 837 470 31 667 12 212 116 258 8787
2003–2004 895 008 34 883 13 517 125 171 9268
2004–2005 895 982 34 898 13 195 127 889 8658
2005–2006 914 922 35 610 12 649 126 777 8175
2006–2007 925 571 35 069 11 513 125 476 7918
2007–2008 940 641 34 246 12 413 130 387 7798
2008–2009 985 314 33 531 11 866 133 489 7325
2009–2010 1 008 861 33 899 11 283 129 600 6974

NCK, Kaiser Permanente of Northern California (Oakland, CA); KPC, Kaiser Permanente of Colorado (Denver, CO); MFC,
Marshfield Clinic Research Foundation (Marshfield, WI); HPM, Health Partners Research Foundation (Minneapolis, MN);
NWK, Kaiser Permanente Northwest (Portland, OR); SCK, Kaiser Permanente of Southern California (Los Angeles, CA);
GHC, Group Health Cooperative (Seattle, WA).
* Influenza years run from 1 September to 31 August.
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AMI hospitalizations (Table 2). When averaged
across all seven sites, all three statistical methods pre-
dicted non-influenza mortality rates during the winter
of 2009–2010 with reasonable accuracy (Table 2). All
three methods underestimated non-influenza mortality
slightly, by 5% (ARIMAX), 2% (Serfling), and 2%
(virological). Accuracy for the PI hospitalization out-
comes was worse for the ARIMAX model, with 10%
under-estimation. Accuracy was high for the RC hos-
pitalization outcome for all three methods. However,
confidence intervals were wide for all outcomes and
all methods and spanned 0% prediction error. For
example, the Serfling method predicted winter mor-
tality incidence was 2% lower than the observed inci-
dence, but the confidence interval on this prediction
error was −21% to 17%.

We age- and sex-standardized the virological predic-
tion errors to the US population. In a typical 12-week
influenza season, a 2% underestimate of non-influenza
mortality corresponded to overestimating deaths due
to influenza by 9694 deaths. The 4% underestimate of
PI hospitalizations corresponded to overestimating
influenza-related PI hospitalizations by 5381.

DISCUSSION

This study provides new insights into the accuracy of
methods used in ecological studies of the burden of
influenza. In a winter with negligible influenza circu-
lation, we found that all three of the methods pre-
dicted winter incidence of the health outcomes with
fairly high accuracy. This finding was unexpected.
The accuracy of the Serfling method in particular is
surprising. This cyclic regression makes the assump-
tion that the winter peak in non-influenza incidence
is exactly equal to the summer trough in duration
and amplitude [11, 24]. Seasonal changes in mortality
and hospitalizations are likely influenced by numerous
factors that vary over time in a complex way, such as
temperature, weather, air pollution, hours of daylight,
and circulation of other pathogens. A priori, we did
not expect the simplistic cyclic regression function to
accurately account for seasonal changes in mortality
and in hospitalizations. Our findings suggest that
changes in seasonal incidence of mortality and hospi-
talizations are primarily driven by factors that vary
with the same timing and amplitude from year to
year, such as hours of sunlight per day (e.g. [25]).

Fig. 1. Observed weekly incidence rates per 10 000 person-years, for (a) deaths; (b) pneumonia/influenza (PI)
hospitalizations; (c) respiratory circulatory (RC) hospitalizations; (d) acute myocardial infarction (MI) hospitalizations.
Grey bars indicate prediction periods.
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We also found that the cyclic regression models,
with or without viral circulation data, performed bet-
ter than the ARIMAX model in predicting winter
non-influenza incidence. This is also somewhat sur-
prising, as ARIMAX models were developed specifi-
cally for handling some of the unique features of
time-series data, such as trends over time, seasonal
fluctuations, and autocorrelations [23]. We expected
that fitting an ARIMAX model to each individual
time series would result in better prediction than ap-
plying identical cyclic regression models to each time
series. The fact that cyclic regression models appear
to predict non-influenza incidence as well as
ARIMAX models is also evidence that the seasonal
variation in mortality and hospitalizations can be
well modelled by a simple cyclic regression function.

Despite the high accuracy of the Serfling and viro-
logical regression methods, our results suggest that
caution is needed in using these methods to estimate
the burden of influenza. A 2% underestimate in non-
influenza mortality corresponds to overestimating
US influenza-related deaths by over 9694 deaths per
year. A recent study using virological regression esti-
mated that influenza causes an average of 21 098
deaths per year [21]. Thus, our results suggest that
nearly half of this estimate could be attributable to
prediction error rather than influenza. Because
influenza only accounts for a small proportion of all
winter deaths, even a small error in estimating non-
influenza deaths can lead to large errors in deaths
attributed to influenza. By contrast, Thompson et al.
[9] used virological regression to estimate that
influenza causes an annual average of 66 373 PI hospi-
talization in US adults aged 565 years. In our study,
the virological method overestimated PI hospitaliza-
tions by 5300, which implies that prediction error
only accounts for 8% of the PI hospitalizations attrib-
uted to influenza.

A potential limitation of this study is that, in contrast
to typical years, influenza viruses were circulating
intensely during autumn 2009. It is possible that seniors
who would typically have had influenza-related
hospitalizations or deaths during winter were affected
instead in autumn. This effect in turnmight cause mod-
els to overestimate 2009–2010 winter mortality on the
basis of atypically high mortality in autumn 2009.
However, we think this is unlikely. Influenza viruses
circulating in autumn 2009 were almost entirely 2009
H1N1pdm, which caused comparatively little mor-
bidity and mortality in seniors [13] due to cross-
protective antibodies from influenza A(H1N1) strainsT
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that circulated before 1957 [15]. Thus, the impact of the
autumn pandemic wave on deaths in seniors was mod-
est at best, and should not substantively affect model
predictions. A second limitation is the VSD population
used for this study represents only 3% of the total popu-
lation of seniors in the United States. However, at the
timewe began this study in 2011, themortality and hos-
pitalization data that are commonly used for US bur-
den of influenza studies were not yet available for the
winter of 2009–2010. Extrapolating from our study
population to the entire US for 1997–1998 to 2006–
2007 gave similar mortality estimates as a recent
study based on the entire US population [21], which
increases our confidence that our sample is representa-
tive of the United States as a whole. The smaller sample
size may lead to wider confidence intervals than are
found in similar studies that use data for the entire
US population, although similar studies have often
ignored autocorrelation when estimating standard
errors [4, 21, 22] or have not reported standard errors
[9, 10]. We cannot rule out chance as an explanation
for our findings that the methods tend to underestimate
non-influenza morbidity and mortality.

Estimating the burden of morbidity and mortality
caused by influenza remains a matter of public health
importance. Our study suggests that ecological esti-
mates of non-influenza outcome rates may be suffi-
ciently accurate when applied to health outcomes
where the contribution of influenza is large. By contrast,
these models are probably not sufficiently accurate for
outcomes where the contribution of influenza is low.
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