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Abstract

Wet-snow avalanches are triggered by the infiltration of liquid water which weakens the snow-
pack. Wet-snow avalanches are among the most destructive avalanches, yet their release mechan-
ism is not sufficiently understood for a process-based prediction model. Therefore, we followed a
data-driven approach and developed a random forest model, depending on slope aspect, to pre-
dict the local wet-snow avalanche activity at the locations of 124 automated weather stations dis-
tributed throughout the Swiss Alps. The input variables were the snow and weather data recorded
by the stations over the past 20 years. The target variable was based on manual observations over
the same 20-year period. To filter out erroneous reports, we defined the days with wet-snow ava-
lanches in a stringent manner, selecting only the most extreme active or inactive days, which
reduced the size of the dataset but increased the reliability of the target variable. The model
was trained with weather variables and variables computed from simulated snow stratigraphy
in 38◦ slopes facing the 4 cardinal directions. While model development and validation were
done in nowcast mode, we also studied model performance in 24-hour forecast mode by using
input variables computed from a numerical weather prediction (NWP) model. Overall, the per-
formance was good in both nowcast and forecast mode (f1-score around 0.8). To assess model
performance beyond the stringent definition of wet-snow avalanche days, we compared model
predictions to wet-snow avalanche activity over the entire Swiss Alps, based on the raw data
over 8 winters. We obtained a Spearman correlation coefficient of 0.71. Hence, our model repre-
sents a step toward the application of support tools in operational wet-snow avalanche
forecasting.

1. Introduction

Liquid water from snow melt or rain modifies the properties of the snowpack. Both surficial
wetting and infiltration of liquid water may reduce snowpack stability and lead to the release of
wet-snow avalanches on inclined, snow-covered slopes (e.g. Kattelmann, 1985; Conway and
Raymond, 1993). Despite the high damage potential of wet-snow avalanches, their formation
mechanisms are less well understood compared to dry-snow avalanches (e.g. Baggi and
Schweizer, 2009). This is partly due to a lack of in-situ observations such as reliable measure-
ments of liquid water content (LWC) in the snowpack and to the largely unknown influence of
water content on mechanical properties such as strength. Moreover, wet-snow instability is a
highly transient and spatially-variable phenomenon related to the water transport in snow
(Schneebeli, 2004). Once the snowpack becomes partly wet, the probability of avalanche
release may rapidly increase (e.g. Conway and Raymond, 1993), but determining the peak
and end of a period of high wet-snow avalanche activity is particularly difficult (Techel and
Pielmeier, 2009).

The lack of process-based models motivated different data-based approaches based on wea-
ther and snowpack properties (Romig and others, 2004; Baggi and Schweizer, 2009; Helbig and
others, 2015) and simulated LWC (Mitterer and others, 2013; Wever and others, 2016; Bellaire
and others, 2017). While air temperature was clearly related to wet-snow instability (Peitzsch
and others, 2021), it is a poor predictor on its own (Romig and others, 2004; Baggi and
Schweizer, 2009) and causes many false alarms. As infiltrating meltwater is a prime driver
of wet-snow instability, the energy balance at the snow surface needs to be considered, ideally
complemented with the LWC in the snowpack. Hence, Mitterer and Schweizer (2013) consid-
ered melt water production at the snow surface using the 1-D numerical snow cover model
SNOWPACK (Bartelt and Lehning, 2002). A simple proxy of water infiltration is the mean
LWC of the snowpack, which motivated the introduction of the liquid water content index
(LWCindex) (Mitterer and others, 2013; Wever and others, 2016; Bellaire and others, 2017).
While indices based on LWC thresholds are generally effective in detecting the onset of
wet-snow avalanche cycles, as these coincide with rapid increases in LWC, such indices are
not well-suited to predict the end of avalanche periods. The transient nature of wet-snow ava-
lanching was highlighted in several studies (e.g. Durand and others, 1999; Techel and others,
2011; Wever and others, 2016). The notion of ’first wetting’ is therefore often used in the con-
text of the onset of wet-snow avalanching and is a term best associated with the first wetting of
previously dry, weak layers in the snowpack.
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The use of downscaled NWP output variables for probabilistic
wet-snow avalanche forecasting has been considered by, for
example, Helbig and others (2015) and Bellaire and others
(2017). In particular, Bellaire and others (2017) pointed out dis-
crepancies between measured and forecast weather variables and
consequently snow related properties, and developed mitigation
strategies to deal with these differences. They adapted the
LWC-based thresholds above which a day is considered as a
wet-snow avalanche day depending on the nowcast or forecast
nature of the input data.

More generally, and not restricted to the topic of wet-snow
avalanches, statistical avalanche forecasting has been widely stud-
ied. A comprehensive overview was recently presented in Sielenou
and others (2021). In the last few years, machine learning meth-
ods have been increasingly used in data-based approaches. In par-
ticular, various random forest (RF) models (ensemble of decision
trees) have been developed to support snow avalanche forecasting.
Among others, Pérez-Guillén and others (2022) successfully set
up a RF model based on weather and snowpack variables to pre-
dict the avalanche danger level (EAWS, 2022a), Mayer and others
(2022) implemented a RF model to assess snowpack stability, and
Viallon-Galinier and others (2022) developed a RF model based
on avalanche observations to predict avalanche activity.
Machine learning methods have also been implemented for mod-
eling avalanche debris susceptibility (e.g. Choubin and others,
2020).

In line with the concept of considering different avalanche
problem types (Statham and others, 2018), we developed a
data-driven model specifically for predicting wet-snow avalanche
activity. We trained a RF model based on a dataset of more than
20 years of weather and snow measurements carried out by auto-
mated weather stations (AWS) covering the Swiss Alps. These
measurements are used to simulate the snowpack for north-,
east-, south- and west-facing slopes, providing crucial and tem-
porally highly-resolved, information about changes in LWC and
its impact on snowpack layering. Based on manual observations
of wet-snow avalanche activity in the Swiss Alps, we defined a
binary target variable, avalanche day and non-avalanche day
and evaluated model performance in both nowcast and 24-hour
forecast modes.

2. Data

In the following, we describe the avalanche observation data
(Section 2.1), the weather and snowpack input variables
(Section 2.2) and how avalanche observations (target) and input
variables were linked (Section 2.3).

2.1 Avalanche data

Throughout the Swiss Alps, about 80 trained observers report
avalanches in their area to the national avalanche warning service
at the WSL Institute for Snow and Avalanche Research SLF, which
is responsible for issuing the avalanche warnings for all regions
in the Swiss Alps and Jura mountains. Observations are made
on a daily basis during the forecasting season (typically from
December to April). Avalanche observations include, among
other parameters, an approximate location and the date of the
avalanche release - and sometimes the time, the elevation and
slope aspect of the release area, the LWC of the snow in the
release area of the avalanche (dry or wet) (SLF, 2020), and
the size of the avalanche, which is estimated according to the
European avalanche size classification ranging from 1 (small) to
5 (extremely large) (Table 1; EAWS, 2022b). In most cases, the
exact time of release is unknown and estimated, as the actual ava-
lanche release was not observed. Avalanches can be reported as an

individual avalanche event, or by reporting several avalanches in
an avalanche summary report. If no recent avalanches were
observed, this is also reported.

The avalanche data base includes avalanche records since
2001. During this time, the reporting system changed once.
Initially, avalanche records used to be linked to the place of obser-
vation rather than the actual location of the avalanche release
(IFKIS platform until summer 2019; Bründl and others, 2004).
Today the reporting system is map-based (SLFPro, since Oct
2019). A further important difference between previous and pre-
sent recording standards concerns the way avalanche summaries
are reported. Before October 2019, the summary form permitted
to report both dry- and wet-snow avalanches in the same report.
As a consequence, in case of a summary report, it is not possible
to unambiguously extract the number of avalanches of a certain
size and liquid water content, nor the aspects and elevation ranges
where these avalanches released from the data base (see also
Mitterer and Schweizer, 2013).

For this study, we considered avalanches that released between
1 December and 30 April.

2.2 Weather and snowpack data

We built the training and test dataset based on data from AWS
used by the operational avalanche warning service in
Switzerland (Section 2.2.1). We also investigated the influence
of using NWP output as input data for wet-snow avalanche pre-
dictions. NWP data are briefly described in Section 2.2.2. Further
details about AWS and NWP setups are provided in Pérez-Guillén
and others (2022).

2.2.1 Measurement-based SNOWPACK simulations (‘nowcast’)
Snowpack simulations for the purpose of avalanche forecasting
for the Swiss Alps use a station-based setup (Lehning and
others, 1999; Morin and others, 2020). Currently, the network
of automatic weather stations (AWS) of the Intercantonal
Measurement and Information System (IMIS) network (Fig. 1)
consists of 186 AWS, located at the elevations of potential ava-
lanche starting zones. We only used, for our work, the 124 sta-
tions that measure snow properties in addition to weather
properties. The measurements are recorded every 30 minutes
(Fig. 1; see Appendix A for a list of parameters measured).
These measurements are used to drive the simulation of snow
stratigraphy with the 1-D snow cover model SNOWPACK
(Bartelt and Lehning, 2002). We used the operational
SNOWPACK setting (Snowpack DEFAULT version
20210925.e77eeeb; Wever and others, 2014; Morin and others,
2020) where liquid water percolation is modeled with a bucket-
type approach (Lehning and others, 1999; Vionnet and others,
2012; Lafaysse and others, 2017). Alternatively, water transport
can be modeled with the Richards’ equation. However, this trans-
port scheme is more demanding and not used in the operational
setting for avalanche forecasting in Switzerland.

Stratigraphic profiles are simulated every 3 hours at the loca-
tion of each station, including simulations of the snowpack for

Table 1. Avalanche size s according to EAWS (2022b) and weight w used for the
calculation of the avalanche activity index (Eqn. (2))

Size (s) Label Typical volume (m3) Weight (w)

1 small 100 0.01
2 medium 1 000 0.1
3 large 10 000 1
4 very large 100 000 10
5 extremely large >100 000 10
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four virtual slopes (aspects asp: N, E, S, W) with an incline of 38◦

(Morin and others, 2020), resulting in 8 profiles per day and
aspect.

If not stated otherwise, we always refer to this nowcast setup.

2.2.2 NWP model-based SNOWPACK simulations (‘24-hour
forecast’)
For the purpose of operational avalanche forecasting,
SNOWPACK simulations are also driven with output from the
NWP model COSMO (Consortium for Small-scale Modeling;
Cosmo 2021) allowing the simulation of snowpack stratigraphy
for the following 30 hours. To this end, the COSMO-1 model out-
put with 1 km resolution is downscaled to the local topography,
referred to as COSMO-OSHD in the following (Griessinger and
others, 2019). As for the nowcast setup, the snow stratigraphy is
simulated for four virtual slopes every 3 hours. This downscaling
setup provides more realistic simulations of the snowpack proper-
ties than driving SNOWPACK directly with the COSMO model
output of the grid point nearest to the AWS (Bellaire and others,
2017).

The NWP predictions and the simulated profiles are not stored
but overwritten every 3 hours. Therefore, a historic forecast data-
set is not available for model development.

2.2.3 Variable definition
From the snowpack simulations, we extracted weather parameters
and properties describing the state of the snowpack. As the tem-
poral resolution of the avalanche observations was often restricted
to the release day rather than an exact time, we derived 24 h aver-
aged weather and snowpack features (00:00–24:00 local time, LT),
as well as weather and snowpack properties corresponding to the

time of the wettest profile of the day (Fig. 2). We defined the wet-
test profile as the profile with the highest LWC index (LWCindex;
described below); in most cases, the profile at 15:00 LT was the
wettest. If the LWCindex was zero for all time-steps, we used the
data from the simulated profile at 15:00 LT. We chose this
setup to account for daily weather and snowpack properties and
to have a snapshot of the situation, when the snowpack was wet-
test (similar to Wever and others, 2018). In addition, we com-
puted the differences to the values describing snowpack
properties 1, 2 and 3 days before. The complete list of input fea-
tures used for model development is reported in Appendix A.
LWC-related features used were mostly based on Wever and
others (2018). We extracted in total 146 of features (Tables 5
and 6). Those included 36 features related to LWC, 9 of them
were extracted from the wettest profile of the day and the remain-
ing 27 describe changes in LWC over the last 1, 2 and 3 days. The
other 110 features were meteorological and snowpack variables
describing either daily averages (flagged with the subscript
daily) or actual values at the time of the wettest profile (see Fig. 2).

From the simulated profiles, the LWC of each layer can be
derived. It allows to compute the so-called LWC index,
LWCindex, a feature that has been suggested to predict wet-snow
avalanches (Mitterer and others, 2013). The index is the average
of the LWC, in percent, of the entire snowpack weighted by
layer height and divided by 3 %, i.e.

LWCindex = 1
3

∑
layer h layer

( )
LWC layer

( )

HS
(1)

where the sum carried out over all snowpack layers, with
HS = ∑

layer h(layer) the snowpack height, h the layer thickness

Figure 1. Location and elevation of the 124 automated weather stations (IMIS network) that measure snow properties.
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and LWC the LWC in percent volume. Above a LWC of 3 %, it is
assumed that excess water drains to the layers below since it is no
longer held between grains by capillary forces, i.e. the threshold of
3 % corresponds to the transition from the pendular to the
funicular regime. Therefore, LWCindex ≥ 1 may indicate a par-
ticular loss of strength (Mitterer and others, 2013), or a snowpack
wet throughout.

2.3 Linking avalanche observations to SNOWPACK simulations

The occurrence of wet-snow avalanches depends on the snowpack
conditions, which may differ strongly between slope aspect and
elevation (Mitterer and Schweizer, 2013; Wever and others,
2018). Therefore, we linked an observed avalanche in the vicinity
of a station st and SNOWPACK simulation for aspect asp if:

1. The avalanche was classified as a wet-snow avalanche, a size
was estimated and the aspect and elevation were reported.

2. The avalanche released within an elevation band of ±250 m of
the elevation of the station, Hst. In case of avalanche summary
reports indicating an elevation range (avelev.min-max), ava-
lanches were assigned to this station relative to the overlapping
proportion between this elevation band (Hst ± 250 m) and the
elevation band indicated in the avalanche summary report. For
example, if Hst was at 2000 m (± 250 m: 1750 to 2250 m), and
avelev.min-max ranged from 2000 to 2500 m, the overlapping
elevation band is 2000 to 2250 m, which is 50 % of the
indicated avelev.min-max. In this case, each of the avalanches
in the summary report was weighted with 0.5.

3. The avalanche was within a distance of at most 8.9 km, 17.8 km
and 39.9 km corresponding to circle-shaped areas around the
location of the station of 250 km2, 1000 km2 and 5000 km2.

4. The avalanche released in the same slope aspect as the simula-
tion was performed for. For example, a wet-snow avalanche
observed on a north-facing slope was only linked to the simu-
lated stratigraphy on the virtual slope of northern aspect. If an
avalanche was observed on a northeast-facing slope, this ava-
lanche was assigned with half its weight w to both northern
and eastern aspect slope simulations.

Figure 3 illustrates the matching requirements 2 to 4.
The avalanche summary reports prior to October 2019 often

did not allow to extract the number and size of avalanches by
aspect, as dry-snow and wet-snow avalanches could be reported
in the same form. Therefore, we could rarely use these data in
our analysis.

To quantify avalanche activity in a region, the avalanche activ-
ity index (AAI) was used (Schweizer and others, 2003). For each
station st, we determined the AAI for several spatial scales a (area)

for the four slope aspects asp as:

AAIaspst a( ) =
∑5
s=1

w(s)Nasp
s a( ), (2)

with avalanche size s∈ {1, 2, 3, 4, 5}, weight w(s) as defined in
Table 1, the number of avalanches of size s, Nasp

s (a) reported in the
area a∈ {250, 1000, 5000 km2} and slope aspect asp∈ {north,
east, south, west}. The computation of AAI was constrained by
restricting it to a specific elevation band around a station: ±250 m.

3. Random-forest model

3.1 Definition of the target variable: avalanche day and
non-avalanche day

We defined a binary target variable to discriminate days with
wet-snow avalanche activity (avalanche days, AvD) from days

Figure 2. Temporal characteristics of the input features: 24 h averaged weather features (gray area), weather and snowpack features at the time of the wettest
profile (for example at 15:00 LT). Red stars indicate observed wet-snow avalanches.

Figure 3. Schematic representation of how observed wet-snow avalanches on south
facing slopes (red squares) were linked to input features derived from SNOWPACK
simulations on a virtual south-facing slope at the location an AWS (station; red
star). The pyramids represent different elevation bands and aspects for each
observed avalanche and the virtual slopes at the station. The elevation bands
show the ±250m tolerance band. The circles represent the borders of areas sur-
rounding the station. Green dots represent avalanches not assigned to the station
because they did not satisfy the elevation and/or aspect criteria.
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without any activity (non-avalanche days, nAvD). Even though
avalanche observations are reported from throughout the Swiss
Alps, there are regions where rarely any observations are
reported. And even in the areas generally covered by observers,
observations are not always possible. Therefore, the absence of
an avalanche in the data base does not necessarily indicate that
no avalanche occurred. Beside the challenge of detecting days
when no wet-snow avalanches occurred, we are aware of two
main sources of error or uncertainty relating to avalanche
observations:

1. The classification of the avalanche as either a wet-snow or a
dry-snow avalanche. According to the observational guidelines
(SLF, 2020), the presence of liquid water should be estimated
based on the conditions in the release area. However, since
the avalanche release area is often not accessible, the LWC of
the snow in the release area is often an estimate from the valley
floor.

2. The release date. The uncertainty in the reported release date
depends on the frequency of observations in an area, on wea-
ther conditions (e.g. visibility), but also on the overall quality of
the observations provided by a specific observer.

To address these points, which are highly relevant for this study,
we opted for an approach allowing us to check the plausibility of
the release date and avalanche type classification by considering
observations independently made on the same day by observers
in neighboring areas. More specifically, we define an avalanche
day or non-avalanche day, our target variable Yasp

st , associated
with data from a station st for a given slope aspect asp as:

Yasp
st =

0 if AAI(SwissAlps)= 0 for all elevations and aspects
1 if AAIaspst (250km2)≥0.1 & AAIaspst (1000km2)≥ 0.4&

AAIaspst (5000km2)≥ 2 & gap check
NaN otherwise,

⎧⎪⎪⎨
⎪⎪⎩

(3)

with NaN ‘not a number’. The gap check requirement
wasAAIaspst (5000 km2) . AAIaspst (1000 km2) & AAIaspst (1000 km2) .
AAIaspst (250 km2), ensuring that avalanche activity increased with
increasing area and was not a local phenomenon.

The choice for selecting an AAI threshold of 0.1 was guided by
the fact that an AAIaspst (250 km2) ≥ 0.1 either means that there
was at least one potentially life-threatening size 2 event (Eqn.
(2); Table 1) or 10 avalanches of size 1. Moreover, an area a of
250 km2 corresponds approximately to the mean size of the warn-
ing regions, the smallest spatial units used for communication of
avalanche danger in the Swiss avalanche bulletin (e.g. Techel and
others, 2018), and 5000 km2 is approximately the size of a snow-
climate region (e.g. Techel, 2020, p. 50). Within a warning region
there is often at most one observer providing regular avalanche
observations; within a snow-climatological region there are
typically between 5 and 20 observers. With the definition given
above, we ensure that local avalanche activity with
AAIaspst (250 km2) ≥ 0.1 is representative of avalanche activity in
a larger area. We chose this approach to ensure that the target
variable was not a local property, but included several independ-
ent observations, thus reducing noise due to erroneous dating or
wetness classification. We considered this step as important, as
AAIaspst only considers observations within a specific slope aspect
and elevation band. We used a similarly strict criterion to define a
non-avalanche day (nAvD: Yasp

st = 0) as the uncertainty related to
observations of no avalanches is much higher. Thus, a day is con-
sidered only as nAvD if none of the observers in the Swiss Alps
reported a wet-snow avalanche. Furthermore, we considered

only nAvD for station-aspect combinations that had at least one
AvD in the same season.

With this definition for the target variable, we wanted to sep-
arate days with widespread avalanche activity (AvD) of a certain
magnitude from days with absolutely no avalanches (nAvD),
and excluded days with rather local avalanche activity (NaN
values). With regard to the development of the model, our strict
definition led us to train and test the classifier on rather extreme
cases, which are however comparatively reliable in terms of the
quality of the class label.

3.2 Labeling and splitting the dataset

Input data were labeled as AvD and nAvD according to Eqn (3).
We split the data into three uncorrelated datasets according to
the winter the avalanches occurred (Fig. 4): Dataset1 contained
AvD (Y = 1) and nAvD (Y = 0) labeled data for the winter 2019–
2020 and historical AvD events between 2001 and 2014.
Dataset2 contained data for winter 2020–2021. Operational tests
were carried out during the winter 2021–2022 (dataset3). The
dataset characteristics are summarized in Table 2. The stringent
manner, we defined the target variable (Eqn. (3)), considerably
reduced the number of AvD events. For instance, dataset2 and
dataset3 originally contained 2595 and 1696 records with AAI
≥ 0.1, respectively. However, only 223 (dataset2) and 97 (data-
set3) were labeled as AvD according to our target variable defin-
ition (Table 2).

In the following, we name ’test set’ the complementary of the
training set, for example, if we used dataset1 as the training set,
the test was dataset2.

3.3 Random forest model development

We trained a RF model, as it is one of the most common and
robust machine learning models to classify tabular data
(Breiman, 2001). We used the scikit-learn library in Python
(Pedregosa and others, 2011).

The datasets are heavily imbalanced and contain only relatively
few AvD events (Table 2). As the datasets are also rather small, we
did not use a standard approach of splitting the data in a training,
a validation and a test set. Instead, we only used a training and a
test set.

We relied on the out-of-bag (OOB) score to assess model per-
formance (Probst and others, 2019). Each tree of a RF model was
trained separately using a training subset randomly sampled with
replacement. These subsets are named bootstrap samples. The left
out samples, i.e. samples not contained in the boostrap samples,
are named the OOB samples and were used to compute OOB
scores, such as the f1-score (see Appendix C for metrics defini-
tions). The OOB samples size was around 1/3 of the size of the
training set (Breiman, 2001).

The RF hyperparameters were tuned to maximize the
out-of-bag f1-score of class AvD of the training set using a grid
search (Table 7).

In order to reduce the complexity of the model and remove
non-relevant input variables, we applied recursive feature elimin-
ation (RFE; Guyon and others, 2002). First, we fitted a model
keeping all the original 146 features and computed impurity-
based features importance ranking (for implementation details
see Breiman, 2017). Then we discarded the less important fea-
tures, re-fitted the model and repeated the process until only 4
features remained. At each step, we computed the OOB f1-score
of AvD, which allowed us to select the best model as a function
of the number of features. The best performance was obtained
using 40 features (Fig. 11). We used this set of features for the
remaining of the work.
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The final prediction of the RF model is obtained by taking the
majority vote of the predictions made by each individual decision
tree, and the probability of a particular class, here AvD or nAvD, is
determined by the percentage of trees that have voted for that
class. In the following, we used also the AvD probability to assess
model performance.

4. Results

4.1 Model performance for historic data

We trained three distinct RF models: on dataset1 (winters before
Sept. 2020), on dataset2 (winter 2020–2021), and on dataset12
(winters before Sept. 2021). Models are named respectively,
RF1, RF2 and RF12. The OOB f1-score of RF12 was highest,
while performance metrics of RF2, only trained with winter
2020–2021, were lowest (Table 3). The f1-score of the test sets
for RF1 and RF2 were close to the OOB f1-scores. This finding
suggests that the trained models did not over-fit. Model perform-
ance metrics (precision and recall) for days with no wet-snow
avalanche activity (nAvD) were all very close to 1 and are not
reported in Table 3.

We further evaluated the performance of the models on histor-
ical winters. Since slope aspect was not consistently reported prior
to the winter 2019-2020 in the IFKIS data base, many winters
were not included in the dataset. There were winters without
any avalanche event satisfying the definition of the target variable
(Eqn. (3)), or when the aspect information was recorded in an
inconsistent format (Fig. 4). Nevertheless, for these winters, we
could still determine a daily wet-snow avalanche activity for
Switzerland, regardless of slope aspect, and compare it with
daily average models outputs (all locations, all aspects; Table 4).
For example, we showed that the daily mean AvD probability cor-
related well with avalanche activity for all aspects and all stations
(Table 4 and Fig. 5a).

4.2 Detailed model performance for winter 2021–2022
(nowcast and 24-hour forecast mode)

We tested the RF12 model in a live setting during the winter
2021–2022 in nowcast and in forecast mode, as described in
Section 2.2.2.

97 events were labeled as wet-snow avalanche days AvD and
2151 events as non-avalanche days nAvD (Table 2). Model per-
formance for model RF12 in nowcast and forecast mode are sum-
marized in Fig. 6 and Table 3. The f1-score of the nowcast model
was 0.82, similar to the OOB f1-score of the model (0.79; Table 3).

Table 2. Number of cases in the datasets used for training and testing

Dataset1 winters before
Sept. 2020

Dataset2 winter
2020–2021

Dataset3 winter
2021–2022

nAvD 3322 (172) 5238 (42) 2151 (40)
AvD 413 (60) 223 (22) 97 (12)

In parentheses, the number of individual calendar days are given; for example, during winter
2021–2022 there were 97 AvD events on 12 different calendar days.

Table 3. Model performance for avalanche days (AvD) for different models and
test sets

Training Test

Dataset Model OOB f1 Dataset Mode pthres Precision Recall f1-score

1 RF1 0.78 2 nowcast 0.5 0.97 0.74 0.84
2 RF2 0.72 1 nowcast 0.5 0.68 0.88 0.77
12 RF12 0.79 3 nowcast 0.5 0.75 0.91 0.82

3 forecast 0.5 0.90 0.71 0.79
3 forecast 0.36 0.87 0.87 0.87

OOB scores were computed on the training set. Tests were carried out on data not used for
training, either dataset1 or dataset2 (Table 2), or the data from the dataset3 (test winter
2021–2022).

Table 4. Model performance computed for winters not included in the training
set

Correlation model/observation

Winter RF1 RF2 RF12

2002–2003 0.75 0.72 0.76
2006–2007 0.74 0.66 0.78
2014–2015 0.70 0.62 0.72
2015–2016 0.62 0.52 0.69
2016–2017 0.64 0.52 0.68
2017–2018 0.73 0.70 0.70
2018–2019 0.63 0.62 0.67
2020–2021 0.74 − −
2021–2022 0.70 (0.67) 0.67 (0.65) 0.71 (0.69)

Spearman correlation coefficient (rs) between the mean model-predicted AvD probability
and the wet-snow avalanche activity index, AAI(Swiss Alps), regardless of elevation and
aspect. In addition, correlations are shown for winter 2021–2022 when the model was run in
nowcast and forecast mode. The latter is shown in brackets. All p-values are below 10−6.

Figure 4. Number of days labeled as AvD for dataset1 (blue), dataset2 (orange) and the dataset3 (green).
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Nowcast and forecast output probabilities were strongly correlated
(rs = 0.96, Fig. 5b), yet forecast f1-score was slightly lower com-
pared to the nowcast score due to relatively low value of recall.
The model using forecast inputs predicts less AvD (77 AvD)
than using nowcast data (118 AvD; Fig. 6a and b). However,
large activity was well captured by the model based on forecast
input, although predicted probability for AvD was generally
lower than the probability obtained with nowcast input (Fig. 6).

This performance difference is due to discrepancies between now-
cast (based on measurements) and forecast (based on NWP
model) input data. This difference is clearly noticeable by study-
ing the model behavior in function of pthres, the probability
threshold above which AvD is defined. The model was trained
with nowcast input to maximize the f1-score of AvD (Section 3)
using a default pthres = 0.5. We observed that in nowcast mode,
the model performed well with the default threshold of 0.5, i.e.

a

b

Figure 5. Daily average of (logarithm of) observed wet-snow avalanche activity for the entire Swiss Alps (AAI(SwissAlps), gray bars) compared to daily averaged
probability for AvD (all stations and aspects) provided by the RF12 model for (a) winter 2015-2016 and (b) winter 2021–2022. Correlations are provided in Table 4.

a b c

Figure 6. Performance statistics of RF12 model during live testing in winter 2021–2022 for (a) nowcast and (b) forecast mode. (c) shows the respective statistics for
the model in forecast mode using an adjusted threshold pthres = 0.36. The proportions indicated in the figure (coloring, percentage values) describe row-wise
proportions.
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the maximum of the f1-score of AvD was very close to pthres = 0.5
(Fig. 7a). However, in forecast mode the maximum f1-score was
obtained for pthres = 0.36 (Fig. 7a, Table 3).

The target variable was designed to separate avalanche days
from non-avalanche days, by reducing the influence of observa-
tion errors and, thus, providing robust training labels. However,
by doing this, many wet-snow avalanches were discarded and
flagged as NaN, such as, for example, an isolated large wet-snow
avalanche. To assess model performance without the potential fil-
tering bias introduced by our definition of the target variable, we
also compared the aspect-specific mean daily model predictions
with all avalanche observations in these slopes. In Fig. 8, the
size of observed wet-snow avalanches at different elevations are
plotted with the predictions of the RF12 model and the
LWCindex for the 2021–2022 winter. Overall, the predicted prob-
ability of an AvD increased at the onset of wet-snow avalanche
cycles and decreased afterwards. Moreover, differences between
south- and north-facing slopes were generally well reproduced
(compare Fig. 8a and 8b). The model performed also well with
regards to the maximum elevation at which avalanche activity
was observed (Fig. 8). The average absolute difference (mean
absolute error) between predicted maximum elevation in both
nowcast and forecast mode (using pthres = 0.36) and observations,
excluding nAvD, was around 300 m. Toward the end of the sea-
son, the model overestimated wet-snow activity, especially for
south-facing slopes (Fig. 8e).

The LWCindex, also plotted in Fig. 8, is a parameter that has
been suggested to predict the onset of wet-snow avalanche periods
(e.g. Mitterer and others, 2013; Bellaire and others, 2017). It has
also been used operationally by the Swiss avalanche warning ser-
vice to estimate snowpack wetting and wet-snow avalanche activ-
ity. However, the LWCindex generally did not decrease when
wet-snow avalanche activity decreased, as observed for south-
facing slopes in the second half of April 2022 (Fig. 8). LWCindex

-based threshold values will therefore lead to many false alarms
as can be noticed in Fig. 9a (low precision means high false
alarm ratio). While models including the temporal change of
LWCindex resulted in a better performance (Fig. 9b).

4.3 Feature importance

Impurity-based feature importance (Breiman, 2017) for RF12
model suggests that snow surface conditions and the presence
of liquid water in the snowpack were important to predict
wet-snow avalanche activity (Fig. 10). The two most important
features were related to snow surface temperature (TSS) and
sum of the LWC in the top 15 cm (sum_up) of the snowpack.
From the 20 most important features, 10 relate to the LWC of
the snowpack, with 5 of these features describing changes in
LWC over 1, 2 and 3 days (Fig. 10). The set of 20 most important
features included only 11 different features, provided that the tem-
poral characteristics of the variables (computed at the time of the
wettest profile, daily averaged or temporal changes) were not
considered.

5. Discussion

We implemented a RF model to predict wet-snow avalanche days.
The model was trained on nowcast data from station measure-
ments. Despite the small size and the highly imbalanced nature
of the training datasets, our model reproduced the observed
wet-snow avalanche activity rather well (Figs. 5, 6 and 8;
Table 4). However, the operational avalanche forecasting process
is based on 24-hour NWP data (in Switzerland the
COSMO-OSHD data, Section 2.2.2). We therefore also investi-
gated model performance in forecast mode, highlighting some
discrepancies. Specifically, because air temperature sensors at
the AWSs are not ventilated, there is a significant temperature off-
set compared to COSMO-OSHD forecast data, especially during
sunny and calm afternoons (Bellaire and others, 2017). This
impacts the downstream SNOWPACK simulations, in particular
also the simulated LWC. Profiles based on NWP data therefore
generally appeared dryer than nowcast profiles. Despite this diffi-
culty, our results suggest that the model performed reasonably
well in forecast mode (Figs. 5b and 6). A better approach would
certainly be to train the model directly with NWP data rather
than station data. However, the forecasted weather and snow

a b

Figure 7. F1-score, precision and recall for AvD for different values of pthres for the model using (a) nowcast and (b) forecast data as input. pthres is the probability
threshold above which AvD is defined. The best f1-score was obtained with pthres = 0.51 in nowcast mode and pthres = 0.36 in forecast mode.
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properties produced for the operational warning service in
Switzerland are not stored but overwritten at each update.

A direct comparison between previous models (Mitterer and
others, 2013; Bellaire and others, 2017) and our RF model is
not feasible, though these models also aimed to predict days
with wet-snow avalanche activity. Indeed, the definition of the
target variable is different for the three approaches.
Nevertheless, our RF model performed better than a simple
LWCindex threshold approach as presented by Bellaire and others
(2017) (Fig. 9). Mitterer and others (2013) mainly used weather
and energy balance variables as model input. While we also
used these variables, we additionally introduced variables

characterizing the state and the temporal changes of snowpack
conditions. Temporal changes in LWC were ranked as important
variables in our model.

5.1 Feature importance

The feature importance of the model provides insight into the
main drivers of wet-snow avalanche release, as it was trained with-
out any prior expert knowledge. As expected, the snow surface
temperature (TSS) and LWC at the surface (sum_up) were key
predictors, as these are closely linked to snow melting, resulting
in a higher LWC. Snow depth (HS) changes were also decisive

a

b

c

d

e

f

Figure 8. Model predictions, avalanche observations and LWCindex by elevation for winter 2021–2022 for north-facing (a-c) and for south-facing slopes (d-f). (a, d)
Probability (RF12) for a wet-snow avalanche day (AvD) as predicted at the elevation of the stations. (b, e) Observed avalanches (by size) and highest elevation, for
which an avalanche day was predicted. The dashed dark line is the daily ’mean probability’ for AvD (all stations). (c, f) LWCindex as simulated at the elevation of the
stations. (a, c, d, f) White stripe correspond to missing data due to lack of snow, a defective AWS or an elevation band not covered by the AWS network.
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for the model as already shown in previous studies (Baggi and
Schweizer, 2009). As highlighted in several studies (e.g. Techel
and others, 2011; Wever and others, 2016, 2018), temporal
changes in the LWC parameters were also crucial. In our
model, almost half of the 20 most important features describe
temporal changes. This temporal sensitivity of the model allows
to reproduce the onset characterized by increases in LWC, but
also the end of periods with wet-snow avalanches when LWC
decreased or remained constant. The capability of the model to
detect the end of a cycle is an important improvement compared
to previous LWCindex-based thresholds approaches (Mitterer and
others, 2013; Bellaire and others, 2017), (Fig. 9). One of the main
limitations related to the feature importance ranking scheme we
used (the mean decrease impurity algorithm) is that it is biased
by the variability of the different wet-snow avalanche situations
contained in the training set. For example, there are only few

avalanches that were caused by rain. Most avalanches released
during dry weather periods when surface melting produced liquid
water. Features related to rain were therefore ranked as less
important. However, rain increases the LWC of the snowpack,
and is therefore well represented by LWC-related input features.
Alternative approaches to determine feature importance, such as
Permutation Based Feature Importance (Breiman, 2001) or
SHAP feature importance (Lundberg and Lee, 2017), may provide
different results.

5.2 Target variable definition

One of the strengths of the developed approach is the restrictive
definition for avalanche days and non-avalanche days (Eqn. (3))
allowing us to use observational data. Thus, we reduced potential
errors related to the release date and avalanche type (wet- or

a b

Figure 9. Performance statistics for two nowcast models, where (a) absolute values of the LWCindex and (b) temporal changes of LWCindex were used to predict
avalanche days. A day is considered AvD if LWCindex≥ a specific threshold (x-axis), nAvD otherwise. In (b), negative (resp. positive) threshold values correspond
to decreasing (resp. increasing) of LWCindex.

Figure 10. Relative importance of the 20 most important
features for model RF12. The subscript ‘_daily’ refers to
24-hour mean values, the remaining variables were derived
from the wettest profile. The subscript ‘_diff’ refers to tem-
poral changes, the digit before indicates the number of
days considered to calculate the change. Table 5 contains
a short descriptions of each features.
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dry-snow). However, this approach came at the cost of substan-
tially reducing the amount of data available to train the model.
Consequently, the model was developed likely using a smaller var-
iety of AvD and nAvD situations. For example, most of the
wet-snow avalanche events we have used for training were asso-
ciated with surface melt rather than rain. Moreover, the definition
of the target variable only selected the most ‘extreme’ AvD and
nAvD days. Being aware of this limitation of our approach, we
tested whether the resulting model was oversimplified by carrying
out a target-independent check. We compared model output with
unfiltered, raw avalanche observations (Figs. 6 and 8; Table 4). By
doing so, we returned to the original dataset keeping its intrinsic
errors, but allowed for studying model behavior over entire sea-
sons rather than for a few disparate AvD and nAvD. This ’beyond
the target definition’ verification was a crucial test that provided,
for example, insight into model performance in an operational
setting. Observed wet-snow avalanche cycles were well correlated
with model output in both nowcast and forecast mode (Fig. 6).

In preliminary tests, we also explored other target variable
definitions. For example, among many others, we prototyped a
model based only on ’local’ constraint i.e. computing AvD and
nAvD from Eqn. (3) only considering the activity in the 250
km2 AWS surrounding. However, the resulting models were char-
acterized by a high false alarm rate. It is difficult to assess if this
was due to intrinsic limitations of the RF model (i.e. difficulties to
deal with ‘intermediate’ events) or because the quality of the input
data and/or the target variable were insufficient. Therefore, it
might be of interest to study the influence of the target definition
(using different thresholds, radius and also exploring multiclass
classification) on the performance of the model.

5.3 Spatial information

To evaluate model performance beyond the strict definition of our
target variable (Section 3.1), we used avalanche observation data
aggregated at the scale of the entire Swiss Alps (Figs. 6 and 8;
Table 4). Alternatively, the model predictions at the individual
locations of the AWS may be used to establish maps showing
the spatial variations in predictions. Furthermore, this would
allow for further assessing model performance beyond the binary
classification and for different spatial scales.

5.4 Model limitations

Despite going back 20 years, the necessity to obtain high quality
labels forced us to train the model using a comparably small data-
set. We suspect that a larger dataset, covering a wider variety of
avalanche conditions, may increase the model performance fur-
ther. For instance, we noticed that the model over-predicted ava-
lanche activity during the second half of April 2022 (Fig. 8). The
reason for this behavior is not clear. One possible explanation is
that the training data did not permit to learn the complex inter-
action between continued wetting of an already wet snowpack
sometimes leading to avalanches, though often not. Another rea-
son might be that the model did not include previous wet-snow
avalanche activity as an input variable. After all, previous ava-
lanche activity is highly relevant information taken into account
by avalanche forecasters. Furthermore, after a period with
wet-snow avalanches or extensive wetting of the snowpack
down to basal layers, loading by new snow or rain may be needed
to lead to another period of wet-snow avalanches. Potentially, this
could be addressed by including additional input variables having
longer temporal dependency (for example the sum of new snow
of the last 7 days). Therefore, we primarily see two paths to further
improve model performance: first, increasing the dataset available
for training and testing. However, we doubt whether this should

be done at the cost of a less restrictive definition of avalanche and
non-avalanche days. Second, it might prove beneficial to couple
model predictions with avalanche event data. This might require
completely new approaches to modeling wet-snow stability.

5.5 Further perspectives

The presented wet-snow avalanche model provides an indication
of the likelihood whether wet-snow avalanches will occur in a
region. However, in its current setup, it does not include informa-
tion on the magnitude of the event, i.e. the number and size of
avalanches. Since this information is of great importance for ava-
lanche forecasters, future work should aim to develop a model
that also provides such information. In this context, the depth
below the surface where liquid water is present could be used to
provide a rough estimate of avalanche size, as suggested by
Wever and others (2018).

To develop a model with a higher spatial resolution, one could
use the gridded COSMO-OSHD data in an extended way (Section
2.2.2). Indeed, in the presented model, COSMO-OSHD data were
only used to get 24-hour forecasts at the locations of the AWSs.
However, by using all the 1 km grid cells that tile the Swiss
Alps, would provide predictions for the entire Swiss Alps.

Finally, we believe that the model may also be suitable to study
the influence of climate change on wet-snow avalanche activity,
using climate scenarios such as presented in Fischer and others
(2022).

6. Conclusion

We developed a RF model to predict wet-snow avalanche activity
as a function of slope aspect based on a 20-year dataset of snow
stratigraphy simulations for virtual 38◦ slopes facing north, east,
south and west at the location of 124 automated weather and
snow stations in the Swiss Alps. To make the best use of manual
avalanche observations, we developed a rigorous approach to
define avalanche days, thereby strongly reducing the potential
errors in the dating and wetness classification of avalanches
and, hence, increasing the quality of the labels for training and
testing the model. Despite a strongly imbalanced dataset, with
more than ten times more non-avalanche days compared to ava-
lanche days, the model performance was satisfactory leading to an
OOB f1-score of 0.79 (Table 3). Because of the stringent definition
of our target variable, our model only learned from the most
extreme active or inactive days. Therefore, we paid particular
attention to study the behavior of the model for ’intermediate’
days (the NaN provided by Eqn. (3)). We assessed the model per-
formance using all avalanche observations from the Swiss Alps for
eight winters not included in the training dataset, and without
any of the filtering applied for training the models, yielding a cor-
relation between model predictions and avalanche activity of
around 0.71 (Spearman correlation) (Table 4).

In addition to the model development and validation using
historic data, we also carried out a ‘live’ test during winter
2021–2022 (Fig. 8). This allowed to evaluate the model perform-
ance in both a nowcast and 24-hour forecast mode (Fig. 6). The
results showed that even in forecast mode, which was not available
for model training, the aspect-dependent occurrence of wet-snow
avalanches, or their absence, was generally well captured (f1-score
about 0.8). The promising results obtained during the semi-
operational testing during winter 2021–2022 suggests that the
model may be useful to support operational avalanche forecasting.

Data. The datasets used in this paper is available on https://www.envidat.ch/
dataset/data_wet_aval_model and the scripts on https://gitlabext.wsl.ch/richter/
rfmodel_wetsnow.
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Appendix A

Appendix B

We tuned the hyperparameters of the model using a grid search procedure.
The range hyperparameters explored and the obtained results for RF12
(model trained on dataset 1 and 2) are presented in Table 7.

We reduce the number of features used to train the model using recursive
feature elimination (Guyon and others, 2002). The results of the procedure are
shown in Fig. 11.

Appendix C

As the target variable was binary: Y = 0 (nAvD) or Y = 1 (AvD), metrics used to
optimize and assess model performance were based on the confusion matrix as
defined in Table 8, for more details see e.g. Fawcett (2006). The f1-score f1 is
the harmonic mean between recall R and precision P, i.e.,

f1 = 2
PR

P + R
. (C1)

Table 5. Variables used for training the random forest algorithm

Feature description Unit Feature name Selected

Measured variables
Reflected short wave radiation W/m2 OSWR
Air temperature ◦C TA WP
Snow surface temperature ◦C TSS
Ground temperature ◦C TSG
Relative humidity − RH WP, Daily
Wind velocity m/s VW
Wind direction ◦ DW
Snow height cm HS_meas
Simulated meteorological variables
Incoming long wave radiation W/m2 ILWR Daily
Incoming short wave radiation W/m2 ISWR
Incoming short wave on horizontal W/m2 ISWR_h Daily
Direct incoming short wave W/m2 ISWR_dir Daily
Diffuse incoming short wave W/m2 ISWR_diff WP, Daily
Solid precipitation rate kg/m2/s MS_Snow
24 h height of new snow cm HN24
Rain rate kg/m2/s MS_Rain WP, Daily
Rain energy W/m2 Qr
Simulated snowpack variables
Snow surface temperature ◦C TSS_mod WP, Daily
Bottom temperature ◦C T_bottom
Snow temperature at 0.25 m ◦C TS0
Snow temperature at 0.5 m ◦C TS1
Snow temperature at 1 m ◦C TS2
Sensible heat W/m2 Qs WP, Daily
Latent heat W/m2 Ql WP, Daily
Ground heat at soil interface W/m2 Qg0
Outgoing long wave radiation W/m2 OLWR
Net long wave radiation W/m2 LWR_net
Net short wave radiation W/m2 Qw WP, Daily
Parametrized albedo − pAlbedo WP
24 h snow drift cm wind_trans24
Wind velocity drift m/s VW_drift
Erosion mass loss kg/m2 MS_Wind
Snow water equivalent kg/m2 SWE
Total amount of liquid water kg/m2 MS_Water
Virtual lysimeter kg/s2/h MS_SN_Runoff
Sublimation mass kg/m2 MS_Sublimation Daily
Evaporated mass kg/m2 MS_Evap
Snow height cm HS_mod
Hoar size cm hoar_size
Stability class − Sclass2
Deformation rate stability index − Sd
Depth of deformation rate stability index cm zSd
Natural stability index − Sn WP
Depth of natural stability index cm zSn WP
Sk38 skier stability index − Ss
Depth of Sk38 skier stability index cm zSs
Structural stability index − S4
Depth of structural stability index cm zS4

The three types of features are: Measured (Meas) meteorological variable, modeled (Mod)
meteorological variables by SNOWPACK. The column ’Selected’ indicates the features used
for the model (Section 3), WP refers to variable extracted at the time of the wettest profile,
’Daily’ indicates 24-h average. For further information see Morin and others (2020) and
SNOWPACK (2022).

Table 6. Variables computed from the wettest profiles of the day

Feature description Unit Feature name Selected

LWCindex (Eqn. (1)) − mean_lwc WP, 1,2,3_diff
Sum of LWC over all layers % water WP, 1,2,3_diff
Max of LWC among all layers % max_lwc WP
Depth of the deepest wet layers cm lowest 2,3_diff
Proportion of the snowpack that is wet − prop_wet 3_diff
Proportion of the lowest 30 cm that is wet − prop_base
Sum of LWC in the lowest 30 cm − sum_base

(Continued )

Table 6. (Continued.)

Feature description Unit Feature name Selected

Proportion of the top 15 cm that is wet − prop_up WP
Sum of LWC in the top 15 cm % sum_up WP
Snow height cm HS WP, 1,2,3_diff

The LWC variables are based on Wever and others (2016) and Mitterer and others (2013). In
addition, 1, 2 and 3 days temporal changes are computed for all the listed variables. In the
text these variables are indicated by a subscript _1_diff, _2_diff or _3_diff after the feature
name. The column ’Selected’ indicates the features used for the model (Section 3);
WP refers the value computed from the wettest profile.

Table 7. Hyperparameters explored by the grid search

Hyperparameters Values

number of trees in the forest [100, 1000, 2000]
criterion [gini, entropy]
max depth of the tree [2, 5, 10, 15, 20]
min number of sample required to split [2, 4, 6, 8, 10, 12, 14]
min number of samples required to be a leaf [2, 4, 6, 8, 10, 12, 14]
number of features for best split [none, sqrt, log2]

Bold italic characters indicate the hyperparameters of the best model trained on dataset 1
and 2.

Table 8. Binary confusion matrix, the subscripts p and gt hold for predicted
(model prediction) and ground truth, respectively (target computed from
Eqn. (3))

Predicted class

Yp = 0 Yp = 1

Ground truth Ygt = 0 true neg. (correct rejection) false pos. (false alarm)
Ygt = 1 false neg. (miss) true pos. (hit)

Figure 11. OOB f1-score for AvD obtained with recursive feature elimination for a
model trained with the combined datasets 1 and 2.
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The recall R (or hit rate) is:

R = number of true positives
number of true positives + number of false negatives

. (C2)

Precision (also called positive predictive value), P, is defined as:

PY=1 = number of true positives
number of true positives + number of false positives

, (C3)

True/false and positive/negative are defined according to Table 8.
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