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Abstract

For each positive integer n let N, , denote the variety of all groups which are nilpotent of class at most 2
and which have exponent dividing n. For positive integers m and n, let N; ,,N; , denote the variety of all
groups which have a normal subgroup in N, ,, with factor group in N, ,. It is shown thatif G € N, ,,N; ,,
where m and n are coprime, then G has a finite basis for its identities.

2000 Mathematics subject classification: primary 20E10.

1. Introduction

The finite basis question for a group G asks whether the set of all identities of G is
equivalent to some finite set of identities. (We refer to [13] for terminology and basic
results concerned with varieties of groups, but we use the term ‘identity’ rather than
‘law’.) Between 1970 and 1973 a number of examples were published of groups for
which the answer is negative: see [9] for references covering this period and see [5]
for an account of more recent results. In the majority of these examples, the groups
are metanilpotent (that is, nilpotent-by-nilpotent) and have finite exponent. In the
simplest cases the groups belong to the variety N, 4N, 4: here, for any positive integer
n, N, , denotes the variety of all groups which are nilpotent of class at most 2 and have
finite exponent dividing n, and, for varieties U and V, VU denotes the product variety,
consisting of all groups which have a normal subgroup in V with factor group in U.
However, there are also many positive results. In particular, Lyndon [11] showed that
every nilpotent group has a finite basis for its identities and Krasil’nikov [10] showed,
much more generally, that the same is true for every nilpotent-by-abelian group.
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In the negative examples mentioned above in which G is metanilpotent of finite
exponent there is no bound on the class of the nilpotent subgroups of G. It seems
still to be an open question whether a soluble group of finite exponent, in which the
nilpotent subgroups have bounded class, has a finite basis for its identities. Our main
result gives a positive answer in many simple cases.

THEOREM A. Let G € N, ,,N; , where m and n are coprime positive integers. Then
G has a finite basis for its identities.

A special case of this result was proved by Brady, Bryce and Cossey [2]: they
showed that G has a finite basis for its identities if G belongs to A,,N, ,, where m and
n are coprime positive integers and A, denotes the variety of all abelian groups of
exponent dividing m. Theorem A solves a problem posed by Kovacs and Newman [9].
The method adopted in [2] depends upon an analysis of the irreducible linear groups
in N, ,, in prime characteristic not dividing n, and develops ideas of Higman [8].
However, at about the same time, Cohen [4] introduced a quite different method for
tackling the finite basis question, dependent on the combinatorics of ordered sets.
Cohen used this method to prove that every metabelian group has a finite basis for its
identities, and the method was developed by others in later work such as [3, 10] and
[12]. We apply similar methods here, for which we need the idea of a well-quasi-
ordered set, defined as follows.

A quasi-order on a set W is a binary relation < on W which is reflexive and
transitive. (We do not assume that x < y and y < x imply x = y, as in a partial order.
Furthermore, we give no meaning to <, only to <.) As shown in [6], the following
two properties of a quasi-ordered set (W, <) are equivalent:

(i) for every infinite sequence w;, ws, ... of elements of W there exist i and j
with i < j such that w; < w;;

(ii) for every subset X of W there exists a finite subset Y of X such that for every
element x of X there exists y € Y such that y < x.

If (either of) these conditions hold then (W, <) is said to be well-quasi-ordered. If
the relation < is a total (or linear) order then we obtain the more familiar idea of a
well-ordered set.

We need to apply this idea to bilinear forms. Let K be a non-zero, finite, com-
mutative and associative ring, with identity element, and let S be a finitely generated
K-module. By an S-form we mean a pair (V, 8) consisting of a finitely generated,
non-zero, free K-module V and a K-bilinear mapping 6 : V x V — §. If (V, 6) and
(V', 6") are S-forms we write (V, 8) < (V’, §') if there is a K -module monomorphism
& : V— V' suchthat 8(v,, v;) = 6'(v,, 1,§) for all v, v, € V. The first step in the
proof of Theorem A is the following result (or, to be precise, a more technical version
of this result stated in Section 3).
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THEOREM B. The set of all S-forms is well-quasi-ordered under the relation <.

Strictly speaking, the class of all S-forms is not a set. However, Theorem B can be
rephrased to say that every set of S-forms is well-quasi-ordered under <.

A result like this for trilinear alternating forms over a finite field was obtained by
Atkinson [1] in order to prove a different finite basis result.

The finite basis question for a group G is equivalent to the finite basis question
for the variety V generated by G (see [13]). Furthermore, if F is a free group of
countably infinite rank and V(F) denotes the verbal subgroup of F corresponding to
V then every subvariety of V is finitely based if and only if V is finitely based and
the maximal condition holds for fully invariant subgroups of the relatively free group
F/V(F). Much of the proof of Theorem A is concerned with establishing that the
maximal condition holds in some closely related situations, typically for certain ideals
in group algebras.

Let n be a positive integer and let A be a free group of countably infinite rank
in the variety N,,. Let F be a field of characteristic which does not divide n. Let
W be the set of all endomorphisms of A and, for each positive integer r, let A"
denote the r-th direct power of A. Each element ¥ of W acts ‘diagonally’ on A*"
by (ay,...,a)¥ = (q¥,...,a.¢¥) for all a,...,a, € A, and this action can be
extended to the group algebra F(A*") in the obvious way. Using the version of
Theorem B mentioned above we shall prove the following result.

THEOREM C. For each positive integer r, the maximal condition holds for ¥ -closed
left ideals of F(A™").

If U is a left C-module, for some algebra C, and if there is also an action of W on U,
we call U a (C, ¥)-module. The concepts of (C, ¥)-submodule and homomorphism
of (C, ¥)-modules are defined in the obvious way.

The algebra F(A x A) is isomorphic to FA ® FA (where the tensor product is taken
over ) under the linear map which sends (a, a’) to a ® a’ for all a, a’ € A. We shall
identify these two algebras and write (a, a’) or a ® &’ interchangeably. Let R be the
subspace of F(A x A) spanned by all elements of the forma ®aanda®a’ +ad' ® a
for a,a’ € A. ltis easily verified that R is a subalgebra of F(A x A). Thus we may
regard F(A x A) as a left R-module and, indeed, as an (R, ¥)-module. Clearly R is
an (R, ¥)-submodule of F(A x A). The last main step in the proof of Theorem A is
the following result.

THEOREM D. The maximal condition holds for (R, W)-submodules of F(A x A)
which contain R. '

The vector space F(A x A)/R is isomorphic to the exterior square FA A FA, which
can therefore be given the structure of an (R, ¥)-module. Thus Theorem D gives the
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following result.

COROLLARY. The maximal condition holds for (R, W)-submodules of FA A FA.

Theorems B, C and D will be proved in Sections 3, 5 and 6, respectively. In
Section 2 we show how Theorem A can be derived from Theorems C and D.

2. The derivation of Theorem A

In this section we assume Theorems C and D, and we obtain Theorem A from these
results.

One step in the proof of Theorem A is the special case proved in [2]. We could,
of course, assume this result, but in order to illustrate our method in a comparatively
simple case we first prove this special case.

Let Uand V be varieties of groups. Let A be a free group in U on a free generating set
{x; : i € N} andlet B be afree group in V on a free generating set {y? : i € N, a € A}.
For each i, the element y! is also written as y;. Each element a’ of A induces an
automorphism of B in which y? —> y* forall i € N, a € A. Accordingly we can
form the semidirect product BA, a split extension of B by A in which the original
action of A on B becomes conjugation. We denote this group BA by Fg,,(V, U).
The group has the following universal property implicit in [14] and straightforward to
prove directly.

LEMMA 2.1. Let G be a split extension of a group B, in'V by a group A, inU. Then
every pair of mappings {x; : i € N} - A, {y; : i € N} - B, extends (uniquely) to
a homomorphism Fg, (V,U) — G.

LEMMA 2.2. Let U and V be locally finite varieties of groups of coprime exponents
and write W = Fy (V, U). Let S be a subvariety of VU. Then S is generated by the
group W/S(W), where S(W) is the verbal subgroup of W corresponding to S.

PROOF. Since S is locally finite it is generated by the finite groups it contains. By
the Schur-Zassenhaus Theorem, each such finite group G is a split extension of a
group in V by a group in U. It follows, by Lemma 2.1, that G is a homomorphic
image of W/S(W). Therefore W/S(W) generates S. a

LEMMA 2.3. Let F be a relatively free group and let U be an abelian fully invariant
subgroup of F of exponent dividing a positive integer m. Suppose that U contains an
infinite strictly ascending chain of fully invariant subgroups of F. Then there exists a
prime p dividing m such that U/ UP contains an infinite strictly ascending chain of
Sfully invariant subgroups of F/ UP.
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PROOF. Let Q be the set of all endomorphisms of F, with Q regarded as a set of
operators. If V is any fully invariant subgroup of F then, since the endomorphisms
of F/V are precisely those induced by elements of €2, F/V may be regarded as an
2-group and the 2-subgroups of F/ V are precisely the fully invariant subgroups of
F/V, each being of the form W/ V for some Q2-subgroup W of F containing V.
Observe that if N is an 2-subgroup of U then, since U contains an infinite strictly
ascending chain of Q2-subgroups, either N or U/N contains such a chain.

Since U is abelian of exponent dividing m, we may write U as a finite direct
product U = U, x - - - x U, where each U, is a non-trivial Q-subgroup of prime-power
exponent dividing m. By repeated use of the previous observation and isomorphisms
of Q-groups, we find that there exists i € {1, ..., k} such that U/ [], ., Uj contains an
infinite strictly ascending chain of Q-subgroups. Thus it suffices to prove the lemma
in the case where U has exponent p* for some prime p and positive integer s. By
the same observation applied to the chain U > UP > ... > UP' = {1}, there exists
ref{0,1,...,s— 1} suchthat Ur"/ U™ contains an infinite strictly ascending chain
of Q-subgroups. Thus there are 2-subgroups W, W5, ... of U satisfying

Ut swi< W< < U
Let x : U — U’ be the homomorphism defined by uy = w?’ for all u € U.
Note that x is surjective. Thus U? < Wyx~! < Wox™! < .-+ < U. Itis easily
verified that y is a homomorphism of Q-groups. Thus each W;x~! is an Q-group
and W,x~'/UP < Wox~'/UP < ... is an infinite strictly ascending chain of fully
invariant subgroups of F/ U? contained in U/ UP. O

We shall now obtain the finite basis result of [2]. For any variety V, F(V) denotes
the free group of V of countably infinite rank.

THEOREM 2.4 ([2]). Letm and n be coprime positive integers. Then the subvarieties
of A,N,, are finitely based.

PROOF. Since AN, , is finitely based by [7], it suffices to show that F(A,N,,,)
satisfies the maximal condition on fully invariant subgroups. Write H = F(A,N3.,)
and U = N,,(H). Thus H/U = F(N,,). By [11], H/ U satisfies the maximal
condition on fully invariant subgroups. Thus it suffices to show that the maximal
condition holds for fully invariant subgroups of H contained in U. By Lemma 2.3,
it suffices to show that for each prime p dividing m the maximal condition holds for
fully invariant subgroups of H/ U? contained in U/ U?. But H/ U? = F(A,Ny,), so
it suffices to show that the minimal condition holds for subvarieties of A,N, , which
contain N ,.

Let W = F,u(A,, N;,) and write W = BA where A = (x; : i € N) = F(N,,)
and B = (y? : i € N, a € A). Thus B is free in A,. By Lemma 2.2, the subvarieties
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of A,N, , which contain N, , are in one-one correspondence with the corresponding
verbal subgroups of W, and these verbal subgroups are contained in B. Thus it suffices
to prove that the maximal condition holds for fully invariant subgroups of W contained
in B. ’

We can write B additively as a vector space over [, the field with p elements, and
B has basis {y! : i € N, a € A}). Let T be the subspace with basis {yf : a € A}.
There is an F,-space isomorphism u : F,A — T satisfying au = y{ forall a € A.
Hence we can give T the structure of a left [, A-module in such a way that p is a
module isomorphism. Let W be the set of all endomorphisms of A. By Lemma 2.1,
each element ¢ of ¥ can be extended to an endomorphism of W by taking y,¢ = y;
for each i. Thus ¥ acts on W. Clearly T is W-closed and the map u : F,A — T is
an isomorphism of (F,A, W)-modules.

For each a € A, let &, be the endomorphism of W satisfying x,;£, = x; for all i,
viéa =y and y;&, = y; forall i > 1. Clearly T is invariant under each £,, and &, acts
on T in the same way as a acts (when T is regarded as a left [, A-module). It follows
that if V is a fully invariant subgroup of W then VN T is an (F,A, ¥)-submodule
of T.

Foreach i, j € N, let §; be the endomorphism of W determined by x,8; = x, for
all k, y;6; = y; and y,6; = 1 forall k € N\ {i}. Let V be a fully invariant subgroup
of W contained in B and let v € V. Then there exists r € N such that v belongs to the
spanof {yf : 1 <i <r,a € A}. Wehave v = vé;18;, +v6812+ - - - + v8,181,, where
v811, V831, ..., V8,1 € VN T. Thus V is generated as a fully invariant subgroup by
VNT.

Suppose that V; < V, < ... is an ascending chain of fully invariant subgroups of
W contained in B. Then VN T < V,NT < -.- is an ascending chain of (F,A, ¥)-
modules. Hence (VN T)u™! < (V,NT)u™! < --. is an ascending chain of W-closed
left ideals of F,A. By Theorem C, this chain becomes stationary. Therefore, so does
VwNT<V,NT <...,and sodoes V; < V, < -.., which completes the proof of
Theorem 2.4. a

PROOF OF THEOREM A. Let m and n be coprime positive integers, and write F =
F(N;,»N3,). By [T}, N, ,N, , is finitely based. Thus it suffices to show that F satisfies
the maximal condition on fully invariant subgroups. Let U be the verbal subgroup of
F corresponding to A,,N, ,. Thus F/ U = F(A,N,,) and, by Theorem 2.4, it suffices
to show that the maximal condition holds for fully invariant subgroups of F contained
in U. By Lemma 2.3 it suffices to show that, for each prime p dividing m, the maximal
condition holds for fully invariant subgroups of F/UP contained in U/ U?. Let V
be the variety of all groups G such that G is nilpotent of class at most two, G has
exponent dividing m and G’ has exponent dividing p. Thus F/U? = F(VN,,). It
suffices to show that the minimal condition holds for subvarieties of VN, , which
contain A, N, ,.
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Let W = F,,(V,N2,) and write W = BA where A = (x; : i € N) = F(N,,)
and B = (y?:i €N, a € A). Thus B is free in V. By Lemma 2.2, the subvarieties of
VN,., which contain A,N, , are in one-one correspondence with the corresponding
verbal subgroups of W, and these verbal subgroups are contained in B’. Thus it
suffices to prove that the maximal condition holds for fully invariant subgroups of W
contained in B’. If B’ = {1} (as occurs when p = 2 and m is not divisible by 4) then
the result is trivial. Thus we may assume that B’ 5% {1}.

We can write B’ additively as a vector space over [, spanned by {[y/, yj‘."] :
i,j € N,a,d € A). Let T, be the subspace spanned by {[y?,y¢] : a,a’ € A}
and let T; be the subspace spanned by {[y¢, y¥] : a,a’ € A}. Thus T, has basis
{[yf, y‘l"] ta,a € A, a > a'}, where > is an arbitrary total order on A, and 7; has basis
{[yf,y§]: a,a’ € A). Thus there are F,-space isomorphisms u, : F,A AF,A > T,
and u, : F,(A x A) — T satisfying (@ Aa)uy = [yf, y;"] and (a®a’)u, = [y}, yf’]
for all a,a’ € A. Hence, with R defined as in Section 1, we can give T; the structure
of a left R-module and T; the structure of a left F,(A x A)-module in such a way that
W, and w, are module isomorphisms. Let W be the set of all endomorphisms of A.
As in the proof of Theorem 2.4, ¥ acts on W. Clearly T; and T, are W-closed, u, is
an isomorphism of (R, ¥)-modules, and y, is an isomorphism of (F,(A x A), ¥)-
modules.

For a € A, let &, be the endomorphism of W satisfying x;&, = x; for all i,
vi€, =yjand y;£, = y; foralli > 1. Fora, a’' € A, let§,,, be the endomorphism of
W satisfying x;&,40 = x; forall i, y,&,,» = y?y? and y;&,,» = y; forall i > 1. Thus
T, is invariant under each &, and under each £,,,.. Furthermore, §, acts on T in the
same way as a @ a acts, while &,,, acts on 7, in the same way as (a + a') @ (a + @)
acts. Itis easily verified that R is spanned by the elements a ® a and (a+a') ® (a+a’)
fora, a’ € A. It follows that if V is a fully invariant subgroup of W then VN 7 is an
(R, ¥)-submodule of T,.

. Fora,a € A, let§, , be the endomorphism of W determined by x;&, ., = x; for all
i, Yifow = Y], Yoo = y;‘/ and y;£, » = y; forall i > 2. Clearly T, is invariant under
each &, . Furthermore, &, , acts on 7, in the same way as a ® a’ acts. It follows that
if V is a fully invariant subgroup of W then VN T is an (F,(A x A), ¥)-submodule
of T.

For each i,j € N, let §; be the endomorphism of W determined by x;8; = x;
for all k, y;6; = y; and y,6; = 1 for all k € N\ {i}. Foreach i, j,i,j’ € N with
i #j,leteg; ;. bethe endomorphism of W determined by x;¢; ;;» = x; for all k,
Yi€iv jjr = Yi, Yj€iwjjr = ¥j and ye&ip ;5 = 1 forallk e N\ {i, j}.

Let V be a fully invariant subgroup of W contained in B’ and let v € V. Then, for
some r € N, we can write v = v, + v, where v, is in the span of {[y{, y,f"] 1 <i<
r, a,a € A}and v, is in the span of{[y,f’,yj‘.‘/] :1<i<j<r a,d €A} Thenitis
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easily verified that v; = ) _, v8;8;; and

V— U =V = E V2€i1,j2€1i2j -
L

lsi‘<j5r

Here v6;; € VN T, for all i and v,¢;,j, € VN T for all i, j. It follows that V is
generated as a fully invariant subgroup by (VN T)) U (V N Ty).

Suppose that V| < V, < --. is an ascending chain of fully invariant subgroups
of W contained in B’. Then VN T, < V, N T} < --. is an ascending chain of
(R, W)-submodules of 7; while ViNT, < V,N T, < ... is an ascending chain of
(F,(A x A), ¥)-submodules of 7;. Hence (Vi N T)u;' < (N Ty < -+ isan
ascending chain of (R, ¥)-submodules of F,A A F,A and

MND)p;' < (MNTpy' < -

is an ascending chain of W-closed left ideals of F,(A x A). By Theorem C and
the Corollary to Theorem D, both of the last two chains become stationary. Hence
VinT)uviNnh) <(\LNT)HU((V,NT) < --- becomes stationary. Therefore
Vi £V, < ... becomes stationary, which proves Theorem A. a

3. Bilinear forms

Let K be a non-zero, finite, commutative and associative ring, with identity
element 1. Unless otherwise stated all K-modules are finitely generated (therefore
finite). Let S be a K-module. An S-form is a pair (V, ) consisting of a non-zero free
K-module V and a K-bilinearmap 8 : Vx V — §. A K-linearmap £ : V — V',
where (V, 8) and (V', 6') are S-forms, is said to be a homomorphism of S-forms if
6(vy, v) = 0’ (1€, 1y€) for all vy, v, € V. We write & : (V,60) — (V',0'). The
terms isomorphism and monomorphism are defined in the obvious way. We define
a quasi-order < on the set of all S-forms by defining (V,8) < (V', &) if there is a
monomorphism £ : (V, 8) — (V’, #’). The main result of this section is the following.

THEOREM B. The set of all S-forms is well-quasi-ordered under the relation <.

Let (V, 9) be an S-form. For any subset U of V we define P(U) to be the subset of
S@ S givenby P(U) = {(0(vy, v2), (v, v1)) : vy, vy € U}, and we define Q(U) C §
by Q(U) = {8(v,v) : v € U}. Also, for U, U C V we define 6(U, U') C S by
(U, U)={0(u,u'):ue U, u e U}. Subsets U and U’ are said to be orthogonal
ite(U, U) =6(U, U) = {0}.
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LLEMMA 3.1. Let V be a free K-module and let v,,...,v; € V. Then there are
free K-submodules Uy, U, of V such that V = U, ® U,, rank(U)) < |K|l, and
Viy..., 0 € Ul.

PROOF. Take elements x,, ..., x,, of V where m is minimal such that {x, ..., x,,}
is contained in a K-basis of V and v, belongs to the submodule (x|, ..., x,). Write
v = Z:"=1aix,- where each «; is an element of K. If m > |K]| then there exist
distinct j, k € {1, ..., m} such that &; = a, and we may replace x; and x; by x; + x;,
contrary to the minimality of m. Thus m < |K|. Let W be a free K-submodule of
Vsuch that V = (x;,...,x,) ® Wand, fori = 2, ..., [, write v; = v] + w; where
v; € (x1,...,X,) and w; € W. The result follows by applying an inductive argument
tow,,...,w; in W, O

LEMMA 3.2. Let (V,8) be an S-form. Suppose that W is a free K -submodule of
Vandletv,,...,v; € V. Then there are free K -submodules W,, W, of W such that
W =W, & W, rank(W,) < 2|S|l and W, is orthogonal to {v, ..., v}.

PROOF. We assume that ] = 1 since the general case follows easily. We shall
find free submodules U;, U, of W such that W = U, & U,, rank(U;) < |S| and
0({v}, U7) = {0}. A similar argument gives U, = U’ @ U” with rank(U’) < |S| and
8(U", {v,}) = {0}. The result follows with W, = U, @ U’ and W, = U".

Take basis elements x,, ..., x,, of W where m is maximal subject to 6(v,, x;) = 0
fori =1,...,m. Let{x,, ..., xs} be abasis of W containing {x,, ..., x,)}). fd—m >
|S| then there exist distinct j, k € {m + 1, ..., d} such that (v, x;) = 6(v;, x;) and
we may extend {xi, ..., x,} to {xy, ..., Xm, X; —x;}, contrary to the maximality of m.
Thus d — m < |S| and we may take U} = (xXppy1s-..,x4), U = (X1, ...y X)- O

Let N be a positive integer and define N, for each non-negative integer i, by
NO = 0and N = N+ N*+..-+ N fori > 0. Let (V,6) be an S-form
and let {x,,...,xs} be a K-basis of V. We shall assume, in such notation, that
the elements x; are distinct (that is, d = rank(V)) and that the basis is ordered
as shown, corresponding to the ordered d-tuple (x;,...,x,). Let m be the non-
negative integer which satisfies N'™! < d < N™+Uand write V; = (x|, ..., xym), ...,
Ve = (Xntmigry oo, Xym)y Vg1 = (Xnimyq, ..., %q). Thus rank(V;) = N’ for
i=1,...,mand 0 < rank(V,4;) < N™*!', Fori = 1,...,m + 1, write V' =
V.- @& Vny. We say that (V, 0) is N-regular with respect to the ordered basis
(xi,...,xg} if P(V) = P(VH fori=1,....,m+1, Q(V) = QV) fori =
1,...,m+1, and V,_; and V,-L are orthogonal for i = 2,..., m. A decomposition
V=W®&-:- & V,, with these properties, which is obtained from some ordered
basis in the way described, is called an N -regular decomposition of V. Note that V,
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and V, are orthogonal whenever [i — j| > 2. Also P(V)) 2 P(V32) 2 - 2 P(Vuy1)
and Q(V)) 2 Q(V2) 2 -+ 2 (Vo).

LEMMA 3.3. Let N > |K|Q2|S|? + |S|). Then every S-form is N-regular with
respect to some basis.

PROOF. Write s = |S|. Let (V, 8) be an S-form. Let d = rank(V) and define m
by N"! < d < N+ Suppose we can find free modules V;*, v, V;', V3, ..., Vi,
V., V1., with the following properties: V" = V;fori=1,...,m, V* = V,® V?,,
rank(V)) = N, P(V) = P(V,-+) and Q(V)) = Q(V*);and, fori = 2,...,m, Vi,
and V¥, are orthogonal. Then, taking V.1 = V,/,,,weseethat V=V, & - @ V14
and (V, 6) is N -regular with respect to a basis of V composed of basesof V}, ..., V4.
We construct the required free modules inductively.

First define V;* = V. If rank(V;*) < N then m = 0 and we have finished. So
suppose that rank(V;*) > N. Since |P(V;")| < s* and | Q(V}*)| < s we can choose

elements vy, ..., Va4, of V;™ (not necessarily distinct) such that

{(BWaicr, v2), O (v, v2i0)) 1B =1, .., 32} = P(VI+),
{0, v):i=28"+1,...,25% + 5} = Q(V}").

By Lemma 3.1, we can find free submodules U, and U, of V;* such that V" = U, & U,

Vi, .., Vagqs € Uy and rank(U;) < |K|(25® + s) < N. Choose free modules V; and
V;t such that V' = V, @ V;', rank(V}) = N and V; 2 U,. By the choice of
Vi, -y Vagns, We have P(V) = P(V{") and Q(W) = Q(V})).

Suppose that for some k with 1 < k < m we have found free modules V;*, V;, V;*,
...» Vi, Vi, with the required properties for these modules. If rank(V;,;) < N**!
then m = k and we have finished. So suppose that rank(V;%,) > N**'. By the method
used in the first part of the proof we may find free submodules U and W of V,%, such
that V{, = U@ W, P(U) = P(V,)), Q(U) = Q(V},) and rank(U) = N. By
Lemma 3.2, there are free submodules W, and W, of W suchthat W = W, @ W,, W,
and V, are orthogonal and rank(W;) < 2sN*. Then

rank(U @ W)) < N + 2sN* < (1 4+ 25)N* < N¥,

Choose free modules Vi and V!, suchthat Vi, = Vi @ Vi, rank(Viy,) = N*+,
Viss1 2 U® Wy and Vi, C W,. Then Vi, and V, have the required properties. [

LEMMA 3.4. Let (V, ) be an S-form which has an N -regular decomposition V =
‘/1 @ - @ Vm+l-

(i) Let k € {1,...,m — 1}. Suppose that P(V;) = P(Viy,) and Q(V;) =
Q(Viy2). Then P(V,) is an additive subgroup of S ® S and Q(V,) is an additive
subgroup of S.
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(ii) Let ¢ be a positive integer and let r(1) and r(2) be integers such that 1 <
r(l)y < r(2) < m+ 1. Suppose that

PVy)=P(V,qyr) = =P(V,)) =PSB S,
o2V.y) = 0(V,ay+) == Q(V,) = Q C S,

and r(2) —r(1) > c(c+ 1)+ 2. Write W = V,4j32 ® -+ ® V,oy_2. For all
i,j ef{l,....c}withi < jletp; € Pandforalli € {1,...,c}let g € Q.
Then there exist w,, ..., w. € W such that (6(w;, w;), 6(w;, w;)) = py, for all
i,jel{l,...,c}withi < j, and 6 (w;, w;) = q;, foralli € {1,...,c}.

PROOF. (i) Let p,p’ € P(V,). Then there exist v,w € V, and v/, w’ € Vi,
such that (6(v, w),6(w,v)) = p and BV, w'),8(w',v")) = p’. Write V! =
Vi® - ® Vi1 Since V; and V;,, are orthogonal,

p+p =0@+v,w+w)0w+w,v+v)) € P(V,") = P(V).

Hence, since P(V,) is finite, it is a group. Similarly Q(V,) is a group. )

(ii) By (i), P and Q are additive groups. There are c¢(c + 1)/2 modules in the
set {Viy+2o Viy+as - - - » Vry+ee+ny} and so these modules can be relabelled as U; for
l <i<cand Uj forl <i < j < c. These modules are pairwise orthogonal
submodules of W such that P(U;) = P(U;) = P and Q(U,) = Q(Uy) = Q for all
i,j.Fori,j e(l,...,c}withi < j choose u;, v; € U; such that

(9(141';', V), 0(v;, u;)) =py.

Then foreach i € {1, ..., c} choose u; € U; such that

Oui, w) = qi — Y _ 0y, uy) — ) 0(v;i, vj)-

Jiu>i Jij<i

Finally, fori = 1,..., ¢, define w; = u; + 3., uy + 2, ; vji- Itis easy to check
that these elements have the required properties. O

For each S-form (V, 6) we need to fix an ordered basis of V. Thus we define an
S-triple to be a triple (V, 8, X) where (V, ) is an S-form and X is an ordered basis
of V.

Let (V,0,X) and (V', 6, X’) be S-triples, where rank(V) = d, rank(V’) = d’,
X={x,...,xs}and X' = {x{, ..., x,}. Wesaythat (V,0,X) and (V',6', X') are
isomorphic if d = d’ and there is an S-form isomorphism § : (V,6) — (V',8')
such that x;§ = x;fori =1,...,d. We write (V,0,X) < (V',6',X") if there is a
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one-one order-preserving map ¢ : {1,...,d} — {l1,..., d'} together with an S-form
homomorphism & : (V,0) — (V’,6') such that, fori =1,...,d,

3.1 xi§ =xj,+z, forsome z € (x{,x5,...,x/,_ )

Clearly < is a quasi-order on the set of all S-triples. Also, if £ satisfies (3.1) then &
is a monomorphism. Hence (V, 6, X) < (V', 6, X’) implies (V,0) < (V’,6). An
S-triple (V, 8, X) is said to be N-regular if (V, ) is N-regular with respect to X.

PROPOSITION 3.5. The set of all N-regular S-triples is well-quasi-ordered under
the relation <.

PROOE. Let Y, Y@, Y® .. be an infinite sequence of N-regular S-triples. It
suffices to show that there exist integers i and j with i < j such that Y < YO,
For each i, let Y® = (V®, 0%, X) where V® has N-regular decomposition V" @
@ VO 1 d() = rank(V®) and XD = (xP, ..., x{) If (m(1), m(2),...)
is bounded then there are only finitely many isomorphism types in the sequence
YO, y® y® . and the result is clear. Thus we assume that {m(1), m(2), ...} is
unbounded. By passing to an infinite subsequence we may assume that m(i) > 1 for
all i > 1. There are only finitely many possibilities for the values 6“)():}.("), x"y for
j.k € {1,..., N}, Thus, by passing to an infinite subsequence, we may assume
that, for all j, k € {1,..., NI}, the value 0(‘)(x;‘),x,ﬁi)) is independent of i. Then,
by passing to an infinite subsequence, we may assume that m(i) > 2 for all i > 2
and that, for all j, k € {1,..., N}, the value 69 (x;”, x;”) is independent of i for
all i > 2. Continuing in this way we may pass to an infinite subsequence with the
following property for all n € N:

m(i) > n forall i >n and,

forall j,ke{l,...,N"},09(x", x{") isindependent of i forall i > n.

Let V be a free K-module with countably infinite basis X = {x, X,, ... }. Define
a K-bilinear map § : V x V — S by taking 8(x;,X,) to be the limiting value
of §® (xf” ,x?).  Furthermore, for each positive integer n, let P, and Q, be the
limiting values of P(V{) and Q(V!”), respectively. Since P, 2 P, 2 --- and
0120, 2+, thereexist P C SP S, Q C §, and a positive integer r, such that

P=P,=---=Pand Q, = Q,;; =---= Q. By Lemma 3.4, P and Q are
additive groups.

For each i, let r(i) be the largest integer belonging to {1, ..., m(i)} such that
09", x"y = 0(x;,%) for all j,k € {1,...,NU'®!}. By construction, the set

{r(1), r(2), ...} is unbounded. Hence, by passing to an infinite subsequence, we may
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assume that r < r(1) < r(2) < ---. Let

a(i) = NUO-1 rank(V,‘” ® B K((i’))_l)’
b(i) = NUOl = rank (VI(” DB Vr((l,))) =a(i) + N

We may pass to an infinite subsequence so that, for each i, we have

d(i)—a(i)<d(i+1)—a(i+1) and

33
¢ r(i+1) —r@) =2 @d@) —a@))(d@) —a@ +1) + 2.

We now focus on YV and Y® and show that Y 5 Y@ By the choice of r(1) and
r(2), we have

P(Vr(<ll)>) P(Vr((21)>) P(V,((Z,))H) == P(Vfé))) =P,
Q( Vr((li)>) Q( Vr((7i)>) Q(Vr(<21)>+l) = Q(Vr((zz))) =0,

and
oD (x", x") = 6P (x?,x?) forall i,j e (l,...,b(1)).

Since a(1) < a(2) and d(1) — a(1) < d(2) — a(2) there exists a one-one order-
preservingmap ¢ : {1,...,d(1)} - (1,...,d(2)} such that i¢ =i for i=1, ..., a(l)
and {a(1) +1,. d(l)}d) - {a(2) +1,...,d2)}.
Write W = V((Zl)) 2® V(z) , as in Lemma 3.4. Note that, for i € {a(1) +
., d(1)},

9(1)( :(l)’x(”) € Q(V((ll)) & Vn(:l()1>+1) Q(";(<11))) =0,
and
9(2)( t(:)* (2)) € Q(Vr((zz)) ® & V»(IZ(;)H) = Q( (<22))) =

Similarly,
(9(1)( (1) (1)) 9(1)()‘(1)! (l))) € P, (9(2)( '(423’ (2)) 9(2)(“‘1(?’ (2))) €P,

foralli,j € {a(1)+ 1,...,d(1)} withi < j. Hence, by Lemma 3.4, we can choose
elements Wy(y41, - - - » Waay of W satisfying

-0 (x3 x for i € {a(l)+1,...,b(1)};

62 (w;, w;)) =
) OV (x ", x") — 0@ (xD, xy) for ie{b(1)+1,...,dD)}
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and

(9(2)(wi, w;), 9(2)(101 ) wi))
(0", 5"). 605, 87) = (0 (e 3). 6253, 53),
fori <j withie{a(l)+1,...,b(D},j e{b(1)+1,...,d(1)};
—(6®(xig ). 6 (x5, x)).
fori <j withi,j € {a(1)+1,...,b(1)};
OO 1), 606 5) - (676 52), 67653, 2)
fori < j withi,j e (b(1)+1,...,d(1)}.

Then we define a K-linear map & : V) — V@ by
x? for i € {1,...,a(D)};

xVE = ‘2’+w,+x‘2’ for i € {a) +1,..., b(1)};
w; +xy for i € {b(1)+1,...,d(1)}.

Note that, in these equations, x® ¢ V@ @ --- & V,((Z,)), while w;, € W and x,(:) €

((22)) d---D V,f,a) +1» Where VPe...@ V,((zl)), W and V,((zz)) ®---® V,,‘,(z) +1 are pairwise
orthogonal. It is straightforward to check that 8@ (x "¢, x“)E) =60V, (”) in all
the various cases for i and j. Hence & is a homomorphism of S-forms. Clearly & has
the form required in (3.1). Thus we have YV 5 Y@, as required. O

PROOF OF THEOREM B. Take any positive integer N suchthat N > |K|(2|S]>+|S]).
Then, by Lemma 3.3, for each S-form (V, 6) there exists an ordered basis X (v 4, of
V such that (V, 0, X(v,)) is an N -regular S-triple. If (V, 8) and (V’, ') are S-forms
such that (V, 8, X(ve) < (V', 6, X(v4,) then (V,0) < (V’',6). Hence the result
follows by Proposition 3.5. O

To prove our result about varieties of groups we need, in fact, not Theorem B itself
but the assertion stated below as Proposition 3.7.

Let T be any non-empty finite set. We consider finite sequences (t,...,1,) of
elements of T and write (t;,...,%) < (#,...,t,) if (1,...,1,) is a subsequence
of (¢,...,t,), that is, if there is a one-one order-preserving map ¢ : {1,...,n} —
{1,...,n'} such that ¢, = tyfori =1,...,n Clearly X is a quasi-order (in fact a
partial-order). The following result is a special case of [6, Theorem 4.3].

LEMMA 3.6. The set of all finite sequences of elements of T is well-quasi-ordered
under the relation <.
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We define an (S, T)-form to be a quadruple (V, 8, X, t) where (V, 6, X) is an S-
triple and t is an ordered d-tuple (¢4, ..., t;) of elements of T, with d = rank(V). We
say that (S, T)-forms (V, 6, X, t) and (V', 0, X', t') are isomorphic if the S-triples
(V,0,X)and (V’, 0’, X’) are isomorphicand t = t'. Letrank(V) = d, rank(V’) = d’,
X={x;,....,xqs}and X' = {x{,...,x,}. Write (V, 0, X, t) K (V',0', X', t') if there
is a one-one order-preserving map ¢ : {1,...,d} — {l1,...,d’} together with an
S-form homomorphism & : (V,0) — (V’,6") suchthat,fori =1,...,d,t, = t{¢ and

(3.4) xiE =xj,+z, forsomez € (x{,x5, ..., x}, ).

Clearly < is a quasi-order on the set of all (S, T)-forms, and we observe that
(V,0,X,t) x (V',0', X', t) implies (V, 6, X) < (V',6', X").

An (S, T)-form (V, 0, X, t) is said to be N-regular if the S-triple (V, 0, X) is N-
regular. For given S, T and N we write Z for the set of all N-regular (S, T)-forms.

PROPOSITION 3.7. The set (%, X) is well-quasi-ordered.

PROOE. Let ZV, Z® Z® .. be an infinite sequence of N-regular (S, T)-forms.
It suffices to show that there exist integers i and j with i < j such that Z® < Z0),
Foreachi,let Z% = (V® g® X t9) and use further notation for (V®, g® X )
exactly as in the proof of Proposition 3.5. Also, write t? = (1", ..., £y\}).

As in the proof of Proposition 3.5, we may assume that {m(1), m(2),...} is un-
bounded and we may pass to a subsequence with the property (3.2) for all n € N.
But, for each n and each k € {1, ..., N"!}, there are only finitely many possibilities
for ¢{”; thus we may also assume that, for all k € {1, ..., N"}, 1 is independent of
iforalli > n.

Define V, X, 0, P, Q and r as before. Also, for each k € N, define 7, to be the
limiting value of t,ﬁ“. Then define r(i) as before, but with the additional requirement
that 1’ =7, forall k € {1,..., NV},

Define a(i) and b(i) as before and pass to an infinite subsequence with property (3.3)
for each i. Also, define t; = (£, ,, 1 ., ..., 13, for each i. By Lemma 3.6, there
exist i and j with i < j such that t; is a subsequence of t;. Hence, by passing to
an infinite subsequence of Z‘V, Z®, ..., we may assume that t, is a subsequence
of t,. Thus there is a one-one order-preserving map ¢ : {a(l) +1,...,d(1)} —
{a)+1,...,d(Q2)) such that £ = t3 for i = a(1) +1, ..., d(1). We may extend
¢ to a one-one order-preserving map ¢ : {1,...,d(1)} — {1,...,d(2)} by defining
ig=ifori=1,...,a(l).

As in the proof of Proposition 3.5, there is a homomorphism of S-forms & :
(VO g0y —» (V@ 9Py such that £ has the form required in (3.4). For i =

o 1 2
1,...,a(1), we have 1V = 1® =17, since a(1) < NV® < NU'® and so 1 = £,
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since i = i¢. Also, fori = a(l) + 1,...,d(1), we have t,»“) = t,-(j) by the choice of
¢. Thus ZW < Z@, g

An alternating S-form is an S-form (V, 8) such that (v, v) = Oforall v € V.
Consider now the case where S = K. An alternating K-form (V, 6) is called standard
with respect to the ordered basis {x;,...,xs} of V if 6(x;,x;) = 0 for all i, j such
thatl <i<j <dand (i,j) ¢ {(1,2),(3,4),...,(2[d/2] — 1, 2[d/2])}.

LEMMA 3.8 (compare [2]). Let ng be an integer, with ny > 2, and let K = Z/nyZ.
Let (V, 0) be an alternating K -form. Then there is a K -basis {x,, ..., x4} of V such
that (V, 0) is standard with respect to {x,, ..., X4}.

PROOF. Choose u;, u, € V such that the additive cyclic subgroup (0 (u,, u,)) of K
has largest possible order. Let x; be an element of V of order ng such that 4, € (x,).
Note that x, belongs to some basis of V. By maximality, (6 (u;, uy)) = (6(xi, u)).
Hence we may replace u; by x,. Let U be asubmodule of V suchthat V = (x;)® U. If
U = {0} then {x,} is the required basis, so suppose U # {0}. Write u; = u}, + u where
u, € {x;)and u € U. Clearly we may replace u, by u. Then, as before, we may replace
u by an element x, which belongs to a basis of U. Thus {x, x;} is contained in a basis
of V.Set W={w e V:0(x,w)=0(x,;, w) =0}. Letv € V. The choice of x; and
x, shows that 8(x,, x,) is a generator of the cyclic group {#(x,, u) : u € V}. Hence
there exists A € K such that 6 (x;, v) = A0(x|, x,). Similarly there exists 4 € K such
that 0 (v, x3) = pub(x,, x;). It follows that v — ux, —Ax, € Wandsov € {x;, x;)+ W.

Therefore V = (x;, x;) + W. Thus we may find a basis {x;, x;, wy, ..., ws_2} of V
with wy, ..., wy_, € W. The lemma follows by an inductive argument applied to
(wi, ..., wa_a). (W

4, Direct powers of finite groups

In this section we shall obtain some results which will be useful for both Theorem C
and Theorem D.

Let G be a finite group and let D be the (restricted) direct product D = [,y G:
where G; = G for all i. Thus the elements of D may be regarded as sequences of the
form (g, g2, ...) where g; € G for all i and where {i : g; # 1} is finite.

Let ¢ : N — N be a one-one order-preserving function. Let X be a finite subset
of N\ N¢ andlet 0 : X — N¢ be a function such that j < jo forall j € X. Given
such ¢, X and o, let & be the endomorphism of D defined by

(81,82 .- )6 =1(81, 8- )
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where g; = g;if j = i¢, g; =1ifj ¢ NpUX,and g; = g}, if j € X. Let E be the
set of all such endomorphisms of D (for all possible choices of ¢, X and o).

Let < be a total order on G which is arbitrary except that 1 < g forall g € G.
Then the set D may be ordered lexicographically from the right: if d, d’ € D where
d=1(g,8,...)andd = (g}, 8;,...), we setd < d’ if there exists [ € N such that
g < g butg =g foralli > I Clearly (D, <) is well-ordered, and it is easy to
prove the following result.

LEMMA 4.1. Letd,d' € Dandlet& € E. Ifd < d' then d§ < d'E.

Ford € D, where d = (g, g3, - .. ), write
span(d) = {g € G\ {1} : g = g; for some i},

and, for g € span(d), let i, (d) denote the largest i such that g; = g.

Let d and d’ be elements of D, where d = (g1, 8,...) and d’ = (g}, 85, ...).
Write d < d’ if span(d) = span(d’) and there is a one-one order-preserving function
¢ : N > N such that g = 8,"¢ for all i and iy(d)¢ = i (d’) for all g € span(d).
Clearly (D, <) is quasi-ordered (in fact, partially-ordered).

LEMMA 4.2. The set (D, ) is well-quasi-ordered.

PROOF. Let m = |G \ {1}| and assume m > 1 (the result is trivial for m = 0).
Write G\ {1} = {a;,...,a,}. Ford € Dand k = 1, ..., m, define p,(d) = i,,(d)
if a, € span(d) and p,(d) = 1 otherwise, so that we obtain an m + 1-tuple s(d) =
(P1(d),...,pm(d),d). Letd,d" € D,whered = (g, 82,...)andd = (g, &, ...).
Following the notation of [3], we write s(d) <¢ s(d’) if there exists a one-one order-
preserving map ¢ : N — N such that g; = g;, for all i and p;(d)¢ = p:(d’) for
i=1,...,m. By[3, Lemma 3.2], the set of m + 1-tuples s(d) is well-quasi-ordered
under <¢. But s(d) <¢ s(d') implies d < d’. The result follows. ]

Let F be any field. Then each non-zero element u of the group algebra FD can
be written (uniquely) in the form u = Ady + --- + A, d, where d,,...,d, € D,
dy>--->d,and Ay, ..., A, € F\ {0}. The largest group element d, is called the
leading group element of u and we write d, = lead(#). Since every endomorphism
of D extends to FD, each element of E acts on FD. For § C FD we write (S)z for
the E-closed subspace of FD generated by S.

LEMMA 4.3. Let u and v be non-zero elements of FD with lead(u) < lead(v).
v*

Then there exists v* € FD such that {(u,v)s = (u, v*)g and either = 0 or
lead(v*) < lead(v).

https://doi.org/10.1017/51446788700008478 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008478

72 R. M. Bryant and A. N. Krasil’nikov [18]

PROOF. Write u = Aydy + --- + A,d, and v = A{d| + - - - + A\d, where the d; and
d; are elementsof D, d; > -+ > d,, d; > --- > d;, and the A; and A; are elements
of F\ {0}. Write d = d, = lead(x) and d' = d| = lead(v). Thus d < d’. Let
d=1(81,8,...)andd = (g], 8, ...),and let ¢ : N — N be as in the definition of
d<d. LetX ={j :j ¢ N¢ and g; # 1}. By the definition of d < d’ we have
ig(d’) € N¢ for all g € span(d’). For each j € X let jo = i,(d") where g = g;.
Let & be the element of E corresponding to ¢, X and ¢. Then it is easy to check that
d& = d'. Hence, by Lemma 4.1, lead(u¢) = d’ = lead(v). Let v* = v — A’lkf’(us).
Then the result follows. a

PROPOSITION 4.4. The maximal condition holds for E-closed subspaces of FD.

PROOF. Let U be a E-closed subspace of [ D. It suffices to prove that U is finitely
generated as a E-closed subspace. By Lemma 4.2, there exists a finite subset § of
U \ {0} such that for all v € U \ {0} there exists u € § such that lead(x) < lead(v).
We claim that U = (S)z. Suppose, in order to get a contradiction, that there exists
v € U such that v ¢ (S)z, and choose such v so that lead(v) is as small as possible
in the well-ordered set (D, <). There exists u € S such that lead(x) < lead(v). By
Lemma 4.3, there exists v* € FD such that (u, v)z = (u, v*}z and either v* = 0 or
lead(v*) < lead(v). Since v ¢ (u)z, we have v* # 0. Since v* € (u, v)z C U, the
choice of v gives v* € (S)z. Hence v € (u, v*)z € (S)z, and we have the required

= =

contradiction. O

Let n be a positive integer and let E be a free group of countably infinite rank in
the variety A,. Let T" be the set of all endomorphisms of E.

PROPOSITION 4.5. For each positive integer r, the maximal condition holds for
I"-closed subspaces of F(E™").

PROOF. Clearly we may assume n > 1. Let {x;, x5, ...} be a free generating set
for E. For each i € N, let G; be the subgroup of E*" generated by the elements
(i, L..., D, (4,x;,1,...,D,...,(,...,1,x;). Write G = G,. Thus G is a finite
group. Clearly E*" is the direct product of the groups G; and, for each i, there is an
obvious isomorphism from G to G;. Thus we may identify £*" with the direct power
D of G considered above. The result will follow from Proposition 4.4 if we can show
that every element of = is induced by some elementof I'. Let & € E and suppose that
£ is associated with ¢, X and o, in the notation used before. Define a homomorphism
Y E—> Ebyx;y =xig[];ex jouip*i, for each i, where the product is taken over
all those values of j, if any, which lie in X and satisfy jo = i¢. It is straightforward
to verify that y induces £. a
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5. Proof of Theorem C

We use the notation of Section 1. In particular, » is a positive integer, A is a free
group of N, , of countably infinite rank, ¥ is the set of endomorphisms of A and F
is a field of characteristic not dividing n. We shall describe the proof of Theorem C
only in the case r = 2. The proof for general r is essentially the same, but greater
notational complexity is required for r > 2.

Let T be the algebraic closure of F. If I is a W-closed left ideal of F(A x A) then
F ®¢ I is a W-closed left ideal of F(A x A), and I = F(A x A) N T ®; I. Therefore
we may assume that F = F. We write F* for the multiplicative group F \ {0}.

Let {x; : i € N} be a free generating set of A and, for each positive integer k, let
A, be the subgroup (x|, ..., x;}. Define ng by ny = nif nis odd and ny = n/2 if n
is even. For all a, b € A we have (ab)” = 1 and hence [a, b]™ = [a™, b] = 1. Thus
(A)"™ = {1} and A™ is central in A. It is easily verified that the relations x!' = 1
and [x;, x;}* =1, forall i,j € {1,...,k}, imposed on the free nilpotent group of
class 2 on free generators x,, ..., x, give a group of exponent n, which is therefore
isomorphic to A,. It follows that A} is a free abelian group of exponent n, with basis
{[xi,x;]: 1 =i <j <k} If n <2, then A is the free group of countably infinite
rank in the variety A,, and, in this case, Theorem C follows from Proposition 4.5.
Thus we assume that n > 2, so that ng > 1.

Let K = Z/nyZ and let w be a primitive no-th root of unity in F. Thus * is
well-defined for all A € K, and {w* : A € K} is the cyclic subgroup of F* consisting
of all ny-th roots of unity in F.

Let Q, be the set of all ordered pairs (i, j) with 1 < < j <k, and let A; be the
set of all functions § : @, — K. For each § € A, there is a group homomorphism
Xs + A, = F* determined by x;([x;, x;]) = &*@ for all (i,j) € Q. Since the
elements [x;, x;] form a basis for A}, every homomorphism A, — [F* arises in this
way from some §. We extend X, by linearity to a function x; : FA, — F. In
the language of representation theory, the functions x; are the characters afforded
by the irreducible representations of the abelian group A; over [, all of which are
one-dimensional.

For each § € Ay, let e; be the element of FA;} defined by

1
(5.1) &= a2 Xa(a a.

,
a€A;

The elements e; have the following properties, which may be verified by elementary
representation theory or direct calculation.

5.2) wes = X;(w)e; forall 6 € Ay and all w € FA,.
(5.3) xs(es) =1 and e = e; forall § € A,.
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(5.4) Xs(e;) =0 and esey =0 forall 3,8 € A, with § #£8'.
(5.5) Z e = 1.
5€Ak.

Thus the elements e¢; are pairwise orthogonal idempotents. They form a basis
of FA, and each e; spans a one-dimensional ideal of FA,. Within the larger group
algebras FA, and FA, the ¢; are central idempotents. For each 4§, let I; = (FA,)e;.
Thus I; is the (two-sided) ideal of FA, generated by e;. By (5.3), (5.4) and (5.5),

seDh

It follows from (5.6) and (5.2) that FA; is spanned by all elements of the form
xy'-o-xpte; withd € Ay and o; € Z/nZ fori = 1,..., k. It is easily checked that
there are exactly |A,| such elements. Hence they form a basis for FA, and, for fixed
8, the elements x| - - - x;* ¢; form a basis for I;.

If v : A, —> A, is a homomorphism, where k,I € N, then ¥ extends to a
homomorphism FA, — [FA,, which we also denote by . In particular, ¢ : A, > A,
extends to ¢ : FA; — FA,.

For each k, write A, = Ay/AL(AL)™ and, for a € Ay, write a = aAj(A)™ € A;.
Thus Ay is a free abelian group of exponent no with basis {¥),...,%). We shall
usually think of A, in additive notation: thus we may regard it as a free K -module.

If ¢ : Ay > A, is a homomorphism, we write ¥ for the induced homomorphism
from A; to A;. In particular, if n € Aut(A;) then 7} € Aut(A,).

For each § € A, let 6; be the alternating K-form on A~k satisfying 65(x;, X;) =
8(i, j) for all (i, j) € Q. Clearly every alternating K-form on Xk arises in this way
from some 8. Since x;([x;, x;]1) = &*@/) it is straightforward to verify that

(5.7 xs(la, @]) = 0*@® forall ay, a; € Ay.

LEMMA 5.1. Let § € A, and n € Aut(Ay). Then esn = e, where € € Ay and
0:(ay, @) = Os(ayii™", @.n") for all ay, a; € Ax.

PROOF. The map a > x;(an™") is a homomorphism from A, to F*. Hence there
exists & € Ay such that x.(a) = xs(an™!) for all a € A}. By direct calculation we
obtain e;n = e,. Also, for all a;,a, € A, (5.7) gives 0*@® = x_([a;, a;]) =

51

xs(ay, aln™) = xs([ain™", a;n™']) = w»@7"@7™)_ The result follows. a
LEMMA 5.2, Let § € Ay and e € A, wherek,l € N. Let Vv : Ay > A, be a

homomorphism which induces a homomorphism of K -forms from (Ax, 65) to (A, 6,)
(that is, 65(ay, @) = 6.(a\ V¥, axy) for all a;, a, € Ay). Then (esy)e, = e,.
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PROOF. For all a, a; € A4,

xs(ay, @) = *@® = @by — Xs([a¥, ;a¥]) = x. (a1, &1¥).
It follows that x;(w) = x . (wy) for all w € FA). Therefore, by (5.2) and (5.3),

(eﬂw)ee = Xe(eﬁw)ee = Xa(es)ee = €. |

For each k, we consider F(A; x A;), identified with FA, ®; FA;. If ¢ : A, — A,
is a homomorphism, then v yields homomorphisms ¢ : A, x A, - A; X A; and
Vv FA x AY) = F(A, x A)). For 8,8’ € A;, we write e; ® ey as esy and Is @ Iy
as I;y. Thus, by (5.6),

(5.8) F(A, X Ay) = @ Ls.

8,8'eAy

Also, I,y is the ideal of F(A; x A,) generated by the central idempotent es5, and
25'5, €55 = 1

For 8,8’ € A4, let 85 be the alternating K @ K-form on A~k determined by
b5 (X;, %;) = (05(X;, X;), 05 (%, %;)) for all (i, j) € Qx. Every alternating K & K-
form on A arises in this way from some §, &'.

The following two results are easily deduced from Lemma 5.1 and Lemma 5.2,
respectively.

LEMMA 5.3. Let 8,8 € Ay and n € Aut(A;). Then es3n = e, where £, € A,
and 0, (@, @) = Oss(@17~", a,7~") for all ay, a; € Ay

LEMMA 5.4. Let 5,8’ € Ay and e, &’ € Ay, wherek,l € N. Let i : Ay — A, be
a homomorphism which induces a homomorphism of K @ K -forms from (Ay, 0s5) to
(A4, 985')‘ Then (eJJ’w)eee’ = €.

Let N = no(2n} + n?). By Lemma 3.3, every K & K-form is N-regular with
respect to some basis. For §, 8’ € A,, we say that 6;; is regular if it is N -regular with
respect to the basis {X;, ..., X} of A;.

LEMMA 5.5. Let 6,8’ € A;. Then there exists n € Aut(A;) such that esyn = e,y
where €, &’ € A, and 0, is regular.

PROOF. By Lemma 3.3, there is a basis {ay, ..., a;} of A, such that (Ay, 655) is
N -regular with respect to this basis. It is easily verified that there exists a generating
set {y,...,ye}of Ay suchthaty; = a;, fori =1, ..., k. Since A; is a finite relatively
free group of rank £, it follows that {y;, ..., y:} is a free generating set. Let n be the
automorphism of A, satisfying y;n = x; fori = 1,..., k. By Lemma 5.3, ¢;51m = e,
where 6. (X, X;) = 055 (¥;, ¥;) for all (i, j) € Q. Thus 6, is regular. O
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LEMMA 5.6. Let 5,8 € Ayand e, e € A, where k,l € N, and consider I;5 and
L. as subsets of F(A x A). Then Is3 NI, = {0} unlessk =1,6 =8 ande = ¢'.

PROOF. Suppose that k < 1. It is easily verified that ([x,_, x,]J® Dw ¢ F(A, X Ay)
for all w € F(Ay x A) \ {0}. On the other hand, for all v € I, the element
([xi=1, ;1 ® D is a scalar multiple of v by (5.2). Thus Iss N I, = {0}. If k = [ then
Isy N I, # {0} implies § = §' and & = ¢’ by (5.8). O

A non-zero element w of F(A x A) will be called regular if w € I5; for some k and
some §, 8’ € A, such that 655 is regular. (By Lemma 5.6, k, & and &’ are then unique.)

LEMMA 5.7. Every W-closed left ideal of F(A x A) is generated, as a V-closed
vector space, by regular elements.

PROOF. Let J be a W-closed left ideal of F(A x A) and let J, be the vector space
spanned by all elements vy where v is aregular element of J and ¢ € W. Itsuffices to
show that J = J,. Clearly J, € J. Letw € J. Then w € F(A, x A,) for some k, and
we have w = (X5 yea, €5)W = Y5 ea, (€s5W), Where esyw € J N Iy, It suffices
to show that e;5 w € Jp. Clearly we may assume that e;5w # 0. By Lemma 5.5, there
exists n € Aut(A;) such that (e;» w)n is regular. But (e;5w)n € J, since n extends to
an automorphism of A. Thus essw = (esyw)nn~" € Jy. d

Let 8,8’ € A,. Since the elements x;" - - - x;*es with «; € Z/nZ form a basis of I,
the elements

’ o
(5.9) (x;!l "'x:k ®x‘:l "'.xkk)e‘gsr,

with o;, o] € Z/nZ, form a basis of Iss.

An element of F(A x A) will be called a monomial if it has the form (5.9) for some
k and some 8, 8' € Ay, and a regular monomial if s is regular. We write .# for the
set of all monomials, .#* for the set of all regular monomials, and .#;s for the set of
all monomials of I .

Let T = Z/nZ x Z/nZ, that is, the Cartesian square of the set Z/nZ. With the
monomial (5.9) we associate the k-tuple (¢, £, ..., &) where ¢, = (a;, &) € T for
i=1,...,k. Let < be atotal order on T which is arbitrary except that (0, 0) < ¢ for
allt € T. Thenthe set of all k-tuples of elements of T can be ordered lexicographically
from the right: if t = (¢, ..., %) and t' = (¢, ..., #;) are two such k-tuples, we set
t < t'ifthereexists g € {1,...,k} suchthatt, < ¢ buty;, = s fori=q+1,... k.
Hence, for 8, 8’ € A, we obtain an order < on the finite set .#; .

Each non-zero element f of I;5 can be written (uniquely) in the form f = A w; +
<o+ Aw, where w, ..., w, € My, w; > -+ > wy,and Ay, ..., A, € F\ {0}. The
largest monomial w is called the leading monomial of f , and we write w, = lead(f ).
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We shall now define a quasi-order on .#. Let 5,8’ € A; and ¢,&' € A;. Let
v € Msy and w € A, , where

v=(xptxpt ®x ---x,‘:;)ew, w= (xf‘ coxl el '-'x,ﬂ’,)ew.
We write v < w if there is a one-one order-preserving map ¢ : {1,...,k} —
{1,...,1} together with a homomorphism ¥ : A; — A; with the following three
properties.
(i) Fori=1,..., k, wehave x;¥y = z;x;, for some z; € {x, ... ,xi¢_~1).

(i) ¥ induces a homomorphism of K @ K -forms from (A, 8s55) to (A}, 6..).

(iii) Fori=1,...,k,wehaveo; = B,y and o] = ﬂ,fd,.
It is straightforward to check that (.#, <) is a quasi-ordered set. Thus (#*, X) is
quasi-ordered. Let Z be the set of all N-regular (K & K, T)-forms as defined in
Section 3 with S = K & K. Thus, by Proposition 3.7, (Z, <) is well-quasi-ordered,
where < is as defined in Section 3. Let v € .#*, where

v=(x"x ! ® x5 e xg)esy,
with 8, 8’ € Ay and 655 regular. Then we can define Z(v) € & by

Z(U) = (A.'kv ess’a {ilv o vik}y t)’

where t = ((ay, a)), ..., (o, a)). It is straightforward to verify that if v and w are
elements of .#* such that Z(v) < Z(w) then v < w. Hence Proposition 3.7 gives
the following resuit.

PROPOSITION 5.8. The set (A*, X) is well-quasi-ordered.

If S is any set of elements of F(A x A) we write Ly (S) for the W-closed left ideal
generated by S.

LEMMA 5.9. Let f € Iy \ {O}and g € I, \ {0} where §,8' € Ayand e, e’ € A,
Suppose that lead(f ) < lead(g). Then there exists g* € I such that Ly{f, g} =
Ly(f, g*} and either g* = 0 or lead(g*) < lead(g).

PROOF. Write f = A v+ --+A,v,, where v; € .#;5 and A; € F\ {0} forall i, and
where v; < v forall i > 2. Similarly, write g = g w; +- - -+ s, w,, where w; € A,
and u; € F\ {0} for all i, and where w; < w, forall i > 2. Write v = v, = lead(f)
and w = w, = lead(g). Thus v X w. We use the notation for v and w given in the
definition of <. Let ¢ and v be as in that definition. Let &, and k, be the elements of
F(A; x A,) defined by

D S e
hl=(x‘l"‘..x,‘:;@xﬁ;...x:;)((x‘l"...x:‘*®x;”'...x;’*) ,p)
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and b, = l_[JGC 7 ®[1jcc; ,where C={1,...,}\{1¢,..., k¢). Then

hi(u) = (x5 x5 @ xfs - - xps ) (ess V),
and so, by Lemma 5.4,

B B B B
hi(v¥)e.e = (x1 -« - Xeh ®x, x,m,)ees/ = (X Xy ® X)) Xy )ees.

Therefore hyhy(vyr)e, = (xf' ~--x,ﬂ’ ® x,; ---xf;)(a ® a')e,, where a,a’ € Aj.
By (5.2), (a ®@ a’)e,; = Le.r where A € [\ {0}. Hence

hohy(v¥)eee = A(xP - xP @ xP - xP) e = 2w

Now let u be an element of .#;5 such thatu < v. Write u = (x]" - - - x;* ®xf; . -x,f‘/)e‘w.
Thus there exists g € {1, ..., k} such that (y,, yq’) < (ag, a;) but (yi, ¥/) = (a;, a))
fori=q+1,...,k. Wecan write

(y! - ® xi »--Jc,‘fi)—l(xfl cexr@xll y‘)
(xlyl .. .xkk—ak ® xlyll_a,l .. '.x:;‘—a;)(b ® bl)
where b, b’ € A,. By (5.2), (b ® b)Y e, = ve, where v € [\ {0}. Hence
Ry (u) e = V(S - X @ X xp ) ()™ X! @ X T L x Y)e,
=v(xjy - Xgp ®x1 xkd,)((x""“‘ ERE S ®x/T XN e,, .

From the properties of ¥ we calculate that

i—a Y~ v —a; y‘; _al/l
((xl crrXg ® x T Xy )Vf) Ceer

S DO Y TS O P,,.l Yooy
=V (xl K- 1xq¢ ®x Xq6-1%4¢ )eﬂ’
where v/ € F\ {0} and py, ..., Pgo—1, P15 - -» ;4,_1 € Z/nZ. Hence h,(uy)e,, has
the form
n{. o bt +1 761 L LA
U CHRE 3% S IRTRS 47 ®x; - S ¢x<q+|)¢ - Xyg)ece

where v" € F\ {0} and oy, ...,044-1,0y,...,0,, | € Z/nZ. Therefore hohi(uyr)e..
is a non-zero scalar multiple of a monomial of the form

T 'qol Bao+i q¢1 Y ﬂqou B
(x T Xgg— 1xq¢xq¢+l ®x T Xge—1%geX g1 T Xy Jece

Where Ty, ..., Typ-1, T), - s Tpg_y € Z/nZ. Since (vg, ¥,) < (g, o)) = (Byy, Byy)s
this monomial is smaller than w.

Since hhi(f¥)er = Ahyhi(viy)ee + -+ + A hahi(v,¥)e., we see that
hyh (f ¥)e. has leading monomial w with coefficient A, A. Also, since ¥ extends to
an element of W, we have hoh (f ¥)e..€Ly{f }. Let g*=g—ulkf'A"h2hl(fw)eee,.
Then g* has the required properties. O
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Now we are in a position to complete the proof of Theorem C. Let J be a ¥-closed
left ideal of F(A x A). It suffices to prove that J is finitely generated as a W-closed left
ideal. By Proposition 5.8, there exists a finite set S of regular elements of J such that
for every regular element g of J there exists f € S such that lead(f) < lead(g). We
claim that J = Ly (S). By Lemma 5.7, it suffices to show that every regular element
of J belongs to Ly (S). Suppose, in order to get a contradiction, that this is not so, and
let g be aregular element of J such that g ¢ Ly (S). Suppose g € I.... Choose g with
the given properties such that lead(g) is as small as possible in the finite set (A, <).
There exists f € S such that lead(f ) < lead(g). By Lemma 5.9, there exists g* € I,
such that Ly{f, g} = Ly¢{f, g"} and either g* = 0 or lead(g*) < lead(g). Since
g ¢ Ly{f}, we have g* # 0. Since g* € Ly{f, g} C J, the choice of g gives that
g* € Ly(S). Hence g € Ly{f, g*} S Ly(S) and we have the required contradiction.

6. Proof of Theorem D

Letn, A, ¥, F and R be as in Section 1, where [ is a field of characteristic not
dividing n. Let F be the algebraic closure of F. The subalgebra F®f R of F(A x A)
corresponds to R in F(A x A). If M is an (R, ¥)-submodule of F(A x A) which
contains R, then F ®¢ M is an (F ®; R, ¥)-submodule of F(A x A) which contains
F®¢ R, and M = F(A x A) NF ® M. Therefore, to prove Theorem D, we may
assume that F = F.

We shall use the notation of Section 5. If n < 2, then Theorem D follows from
Proposition 4.5. Thus, as in Section 5, we assume that n > 2, so that ny > 1.

Let P be the subgroup of A x A defined by P = {(c,c™!) : ¢ € A’} and let
H = (A x A)/P. Note that P is a W-closed subgroup of A x A, so each element of
V¥ induces endomorphisms of H and FH. For i, j € N, let ¢; be the element of H
givenby ¢; = ([x;, x;], DP = (1, [x;, x; D P.

For each positive integer k, let H; be the subgroup of H generated by the elements
(x;, )P and (1, x;)P for i = 1,..., k. Itis easily verified that H, is a free abelian
group of exponent no with basis {c; : 1 < i < j < k}. Furthermore, there are
isomorphisms from A; to H, and from FA; to FH, given by [x;, x;] +> ¢; for all
i,j. f¢ : A, > A, is a homomorphism, where k,!/ € N, then the associated
homomorphism ¥ : A, x Ay — A; x A, yields homomorphisms ¥ : H, — H, and
W : ﬂ:Hk - IFH[

Let K = Z/nyZ, and let Q, and A; be as in Section 5. For each § € Ay, let x;
and e; be defined as in Section 5, but with respect to H, rather than A,. Thus x; is
a character of H, and ¢; is an idempotent of FH,. Results (5.2)~(5.5) apply just as
before. For 6 € A, we define J; = ([FH,)e;. Thus J; is the ideal of F H, generated by
es, and we have FH, = D4, Js-
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For each k we write Q9 = Qi \ {(1,2), (3,4),...}. Anelement § of A, will be
called standard if 8 (i, j ) = O (equivalently, x;(c;) = 1) forall (i, j) € Q. We write
A for the set of all standard elements of A, and A} = A\ A}

For each § € A, let 65 be the alternating K-form on A, defined as in Section 5.
Thus (f{ x» 85) is standard with respect to {X,, . . ., X} (in the terminology of Section 3)
if and only if § is standard, that is, § € Aj.

LEMMA 6.1. Let § € Ay. Then there exists n € Aut(A;) such that, for the induced
automorphism 7 : FH, — FH,, we have e;] = e, where € € A},

PROOF. By Lemma 3.8 there is a basis {a;, ..., @} of A,‘ such that (A~k, 6s) is
standard with respect to this basis. As in the proof of Lemma 5.5, there is a free
generating set {y;,..., y«} of Ay such that y; = a; fori = 1,..., k. Let n be the
automorphism of A, satisfying y;n = x; for i = 1,...,k. Note that n acts on
A}, just as i acts on H;. Thus Lemma 5.1 shows that e;7 = e, where ¢ € A,
and 6.(x;, x;) = 65(y;,y;) for all i,j. Thus (Ay, 6,) is standard with respect to
{X1, ..., X}, thatis, € € A]. O

Since FH' is a subalgebra of FH, we may regard FH as a left FH'-module.
Following the terminology of Section 1, we shall consider (FH’, ¥)-submodules of
FH. A non-zero element w of FH will be called standard if w € Js for some k and
some § € Aj.

LEMMA 6.2. Every (FH’, W)-submodule of FH is generated, as a V-closed vector
space, by standard elements.

PROOF. This is similar to the proof of Lemma 5.7, with Lemma 6.1 taking the place
of Lemma 5.5. [

Let C be the subgroup of H generated by all elements c; for which i < j and
(i,7) ¢ {(1,2),(3,4),...}. Let p be the natural homomorphism p : H - H/C. We
also denote by p the associated homomorphisms H; — H/C and FH, — F(H/C).
Clearly the kernel of p : Hy — H/C is the subgroup of H; generated by all ¢; for
which (i, j) € QF. Thusthekemelof p : FH; — F(H/C) isthe ideal generated by the
elementsc; —1for (i, j) € QF. We write (FHy)* = D;e; Js and (FHL)° = D po Jis-

LEMMA 6.3. The kernel of p : FH, — F(H/C) is (FH)°.
PROOEF. Let 8§ € AY. Then x;(c;) # 1 for some (i, j} € Q% By (5.2), (c; — 1)es

is a non-zero scalar multiple of e;. But clearly (¢; — 1)es € ker(p). Thus e; € ker(p).
It follows that J; € ker(p) and so (FH,)° € ker(p).
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Let (i,j) € Q). Then, for ¢ € A}, we have (¢; — l)e, = (Xe(cy) — De, = 0.
Hence c;j — 1= (c; — 1) Yoscn, € = (c5 = 1) 35 50 €5. Hence c;; — 1 belongs to the
ideal (FH,)°. Since this holds for all (i, j) € Qf we obtain ker(p) < (FH;)°. O

For k € N, let ¥ be the endomorphism of A defined by x4, = 1 for i > k and
x;¥r, = x; for i < k. Also write ¥, for the induced endomorphisms of H and FH.

LEMMA 6.4. Let u € (FH,)* and let | > k. Then there exists v € (FH))* such that
vy = u and vp = up.

PROOF. Let B be the subgroup of H| generated by all elements c¢; for (i, j) €
0\ Q). Letv = u(|B|™' Y,z h). Clearly vy, = u and vp = up. To prove that
v € (FH,)* it is enough to show that ve, = O for all ¢ € AY.

Let ¢ € AY. Then there exists (i, j) € Qf such that x,(c;) # 1. We consider two
cases. Suppose first that (i, j) € Q9. Then the restriction of x, to H] has the form
Xy for some 8’ € AY. Then for all § € A} we have e;e, = x5 (e5)e. = 0, by (5.2) and
(5.4). Hence ue, = 0 and so ve, = 0. Suppose secondly that (i, j) € Q?\ QF. Then
2 sep B canbe written as w(l +c¢; + -+ + cg") for some w € FH|. Since x.(c;)isa
non-trivial ng-throot of unity, x . (1+c; +- - -+c;°) = 0. Thus (14+c;; +- - -+c;)e. =0

4
and so ve, = 0. O

LEMMA 6.5. Suppose that M| and M, are (FH’, ¥)-submodules of FH such that
Mp = Myp. Then M|, = M,.

PROOF. Suppose, in order to get a contradiction, that M; # M,. Without loss of
generality we may assume that M, € M,. By Lemma 6.2 there exist k and § € A}
such that M, N J; € M,. Hence there exists u € (FH)* such that u € M, \ M,. By
hypothesis there exists w € M, such that up = wp. Choose [ > k such that w € FH,.
Then w = w*+ w® where w* € (FH))* and w® € (FH,)°. Since M, is an F H'-module,
w* € M,. Also up = wp = w*p. By Lemma 6.4 there exists v € (FH,)* such that
v, = u and vp = up. Thus vp = w*p. By Lemma 6.3, this gives v = w* € M,.
Hence u = vy, € M,, which is a contradiction. O

Now we return to the group H/C. Recall that H = (A x A)/P. For each
i € N, let G; be the subgroup of H/C generated by the four elements ((xy;_1, 1) P)p,
(A, x2i_)P)p, ((x2:, DP)p and ((1, x5;,)P)p. Write G = G,. Thus G is a finite
group. It is easily verified that H/C is the direct product of the groups G, and,
for each i, there is an obvious isomorphism from G to G,. Thus we may identify
H/ C with the direct power D of G considered in Section 4. Let E be the set of
endomorphisms of D defined in Section 4.
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LEMMA 6.6. Let M be a V-closed subspace of FH. Then Mp is a E-closed
subspace of FD.

PROOF. Let & € E and suppose that & is associated with ¢, X and o in the notation
of Section 4. It suffices to show that there exists an endomorphism ¥ of A such
that the induced endomorphism of H leaves C invariant and induces £ on H/C. To
simplify the notation we rewrite the generators of A by setting y; = x,;_; and z; = x;
for all i € N. We define a homomorphism ¢ : A — A by

Yi¥ = yip I—[ Vi, ¥ =2z 1—1 Zj,
jeX jeX
jo=i¢ jo=ip
for each i. The products are taken over all those values of j, if any, which lie in X and
satisfy jo = i¢, and the terms y; and z; are taken in increasing order of j (this is an
arbitrary choice). It is straightforward to verify that ¥ has the required properties. O

By Proposition 4.4 together with Lemma 6.5 and Lemma 6.6 we obtain

LEMMA 6.7. The maximal condition holds for (FH', W)-submodules of FH.

Consider the natural homomorphism 7 : A x A — H with kernel P, and let I be
the kernel of the corresponding homomorphism 7 : F(A x A) —» FH.

LEMMA 6.8. The maximal condition holds for (R, V)-submodules of F(A x A)
which contain I.

PROOF. By Lemma 6.7 it suffices to show that if M is an (R, ¥)-submodule of
F(A x A) which contains I then Mx is an (FH', ¥)-submodule of FH. It is clear
that M is W-closed, by definition of the action of W on FH. Also, M is a left Rx-
submodule of FH. Thus it suffices to show that H' € Rsr. Since R is an algebra, it
suffices to show that ¢; € R for all i, j. Note that ([x;, x;] ® [x;, x; 7w = cf] and
(xi, x;1® 1 4+ 1 ® [x;, x; ) = 2¢;. Hence ¢ € Rx and 2¢; € Rx. If ng is odd
then c?j € R gives ¢; € Rm. Butif ng is even then F does not have characteristic 2
and 2¢; € Rm gives c; € Rm. O

In the notation of Section 5, we can write F(A; x Ay) = @; 4, Iss- Note that
(s @ )r = (1 @ e;)m = ¢5 € FH,.

Hence, for § # &', we have e;4m = ese5 = 0 and so Iy C ker(r) = I. It is easily
checked that B, a, 1ss and FH; have the same dimension. Hence

6.1) INFAx A) = EP I

8.8'eA;
548
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LEMMA 6.9. Let M be an (R, V)-submodule of F(A x A) suchthat RNl C M C I,
and let T be the largest V-closed left ideal of F(A x A) contained in M. Then
M=T+(RNI).

PROOF. Let L be the subspace of M spanned by all elements of M which have
the form wess where w € F(A x A) and 8,8 € A, for some k, with § # §'. Let
wesy be such an element of M. Let v € W and a,a’ € A. Choose | > k so that
esV, esy € FA]. Since esy and ey are idempotents, we can write es = ), €,
and ey = Y ..., € Where A, A’ C A,. But (es¢)(es¥) = (ese5)y = 0. Thus A
and A’ are disjoint. Fore € A and ¢’ € A/,

((a ® a,)eee’ + (a, ® a)ez’s)(ww)(eéé"‘lf) € M’

because M is an (R, ¥)-module. However, e;3 ¢ = ZM, ev- Hence e, (e569) =0
and e, (€55 ) = e,. Therefore (a® a’)(wir)e,, € M, andso (a@a')(wy)e. € L.
Since this holds for all ¢, £’, we have (a ® a’)(wy)(e;s) € L. Therefore L is a
Y-closed left ideal of F(A x A). We next prove that M = L + (R N I), which will
give the required result.

Let u € M and choose k so that u € F(A; x A;). Since M C I we can use (6.1) to
write u = Y w;y €55, Where the sum is over all 8,8’ € A, with § # §’ and each w;y
belongs to F(A, x A;). Leté, 8’ € A, with § # &'. Since M is an R-module,

(ess + es5)u = Wsyesy + wyseys € M.

Write v = wyy and v’ = wg;. Then it suffices to show that vesy +v'eys € L+ (RNI).
Let T be the involutory automorphism of F(A x A) satisfying (a ® a')t = a' ®a
foralla,a’ € A. Then w + wt € R forall w € F(A x A). We can write

(6.2) vesy + Vegs = (v —V'T)esy + Vews + (VT)esy.
Here

Veys + (V'T)esy = vegs + (Vegs)t € RN L.

Since RNI € M, (6.2) gives (v — v't)ess € M, and so (v — v'1)ess € L. Therefore,
by (6.2), vess + v'eys € L + (R N I), as required. O

To complete the proof of Theorem D, let M, € M, < ... be an ascending chain
of (R, ¥)-submodules of F(A x A) which contain R. By Lemma 6.8 the chain
M,+1C M+ 1 C--- becomes stationary. Thus it suffices to show that the chain
M,NI € M,NI C ... becomes stationary. For each i, let T; be the largest W-closed
left ideal of F(A x A) contained in M; N I. By Lemma 6.9 it suffices to show that the
chain T} € T, C --- becomes stationary. But this holds by Theorem C.
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