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On Parseval Wavelet Frames via
Multiresolution Analyses in H2

G

A. San Antolín

Abstract. We give a characterization of all Parsevalwavelet frames arising from a given framemultires-
olution analysis. As a consequence, we obtain a description of all Parseval wavelet frames associated
with a framemultiresolution analysis. hese results are based on a version ofOblique Extension Prin-
ciplewith the assumption that the origin is a point of approximate continuity of the Fourier transform
of the involved reûnable functions. Our results are written for reducing subspaces.

1 Introduction, Notation and Basic Definitions

We are interested in the study of methods for constructing tight wavelet frames in
reducing subspaces of L2. In this paper, we emphasis on tight wavelet frames can be
constructed via multiresolution analyses and extension principles. Mallat [36] and
Meyer [37] introduced the deûnition ofmultiresolution analysis (MRA) as a general
method for constructing wavelets. In order to construct wavelet frames, the require-
ments on the deûnition ofMRA were weakened. In this sense, the notion of a frame
multiresolution analysis (FMRA)was formulated by Benedetto and Li [5] as a natural
extension ofMRA. Furthermore, a generalizedmultiresolution analysis (GMRA)was
ûrst introduced by Baggett,Medina andMerril [3] and Papadakis [39] independently;
see also the paper by de Boor, DeVore and A. Ron [10]. Bownik and Rzeszotnik [9]
show construction procedures for tight framelets andwavelets from aGMRA.heno-
tions ofMRA and FMRA in a reducing subspace of L2(R) are introduced by Li and
Lian [31]. On Rn see [27]. Relationships of FMRA and MRA in reducing subspaces
L2(Rn) are studied by Li and Zhang [33]. Li and Zhou [34,35], develop GMRA-based
construction procedures of frame wavelet systems in reducing subspaces of L2(Rn).
Jia and Li [25] present a reûnable function-based construction of aõne frames
systems.

Gripenberg [19] and Hernández and Weiss [24] proved a characterization of all
orthonormal wavelets associated to amultiresolution analysis in terms of its wavelet
dimension function. hat any orthonormal wavelet is associated with a generalized
multiresolution analysis was proved by Papadakis [40]. In the paper by Kim, Kim
and Lim [29] (see also Kim, Kim, Lee and Lim [28]), characterizations of the Riesz
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wavelets which are associated with a multiresolution analysis were proved. A gener-
alization of these results is given by Bownik andGarrigós [8]. Note that characteriza-
tions of biorthogonalwavelets from biorthogonal multiresolution analysis are proved
in [29] and [8] (see alsoCalogero andGarrigós [12]). Zalik [48] introduced the notion
of Riesz wavelet obtained by amultiresolution analysis. Moreover, he gave necessary
and suõcient conditions on a given Riesz wavelet to be obtained by amultiresolution
analysis. Bownik [7] studied both the notion of Riesz basis associated with a gener-
alized multiresolution analysis and Riesz basis obtained by a generalized multireso-
lution analysis and proved that these two notions are equivalent. Characterizations
of Parseval wavelet frames associated with generalized multiresolution analysis are
proved by Baggett,Medina, andMerrill [3] and by Bakić [4].
A slightly diòerent point of view for constructing wavelet frames was ûrst pro-

posed in theUnitary Extension Principle (UEP) by Ron and Shen [43] (see also [42]).
he UEP leads to explicit constructions of tight wavelet frames generated by a reûn-
able function. A more �exible way for constructing wavelet frames is the so-called
Oblique Extension Principle (OEP). he OEP was introduced by Daubechies, Han,
Ron, and Shen [17]. hese extension principles have been developed by Benedetto
and Treiber [6], Petukhov [41], Chui, He and Stöckler [14], Chui, He, Stöckler, and
Sun [15], Bownik and Rzeszotnik [9], Han [21, 22], Li and Zhou [35], Stavropou-
los [47], Atreas,Melas, and Stavropoulos [1, 2], and Li and Zhang [32]. Observe that
in these papers, they proved that the obtained suõcient conditions are also necessary.
Extensive studiesonmultiresolution analysis and extension principles are enclosed,

for instance, in [13] and [30].
We give a solution to the problem of characterizing all Parseval wavelet frames

arising from a ûxed framemultiresolution analysis in reducing subspaces of L2(Rn).
As a consequence, we obtain a new description of all Parseval wavelet frames asso-
ciated with a frame multiresolution analysis. he proofs of these results are based
on the characterization of the scaling functions in [27] and on a version of Oblique
Extension Principle with no regularity at the origin on the modulus of the Fourier
transform of the involved reûnable functions.

Versions of the OEP without any extra condition on reûnable functions have
already been proved in the literature. he ûrst version of theOEP was proved byHan
[21,22], where the context was in distribution spaces. he assumption at the origin of
the Fourier transformof involved reûnable functions is a limit in the sense of distribu-
tions. In the paper by Li and Zhang [32,heorem 1.2], an OEP for frames in reducing
subspaces of L2(Rd) is proved. he authors use the condition lim j→−∞ ψ̂0(A∗ j ⋅) = 1
for almost every point of Ω, an A∗-invariant set of Rd . Perhaps the main advance
of our paper is the use of the classical notion of approximate continuity. his is why
we emphasize this notion. In particular, this concept helps us to learn a bit of the
behaviour on a neighborhood of the origin of the Fourier transform of reûnable
functions associated with Parseval wavelet frames. To illustrate our results we show
some examples of Parseval wavelet frames where the origin of the Fourier transform
of is not a point of continuity. At the end of this manuscript we will see that
the conditions used by Han, by Li and Zhang and the conditions used here are of
diòerent nature.
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Before formulating our results let us introduce some notation and deûnitions.
he sets of strictly positive integers, integers, real and complex numbers will be

denoted by N, Z, R and C respectively. We let Tn = Rn/Zn , n ≥ 1, and with some
abuse of the notation we consider also that Tn is the unit cube [0, 1)n .

We let Br(y) denote {x ∈ Rn ∶ ∣x − y∣ < r}, and will write Br if y is the origin.
If A∶Rn → Rn is a linear map, A∗ will mean the adjoint of A. With some abuse of
the notation, we write A to also denote the corresponding matrix with respect to the
canonical basis. Moreover, dA = ∣detA∣. For a Lebesgue measurable set E ⊂ Rn ,
Ec = Rn ∖ E and the Lebesguemeasure of E in Rn will be denoted by ∣E∣n . If x ∈ Rn

then x+E = {x+y ∶ for y ∈ E}. Wewill let A(E) denote {x ∈ Rn ∶ x = A(t) for t ∈ E}.
he volume of E changes under A according to ∣AE∣n = dA∣E∣n . he characteristic
function of a set E ⊂ Rn will be denoted by χE , i.e., χE(x) = 1 if x ∈ E and χE(x) = 0
otherwise.

We write Lp(Rn), n ≥ 1, 1 ≤ p ≤ ∞ to mean the usual Lebesgue space. We write
f ∈ Lp

loc(R
n) to mean the linear space of all measurable functions such that f χK ∈

Lp(Rn) for every K ⊂ Rn compact sets.
If we take f ∈ Lp(Tn), we will understand that f is deûned on the whole spaceRn

as a Zn-periodic function.
A key tool in the study of wavelet frames is the Fourier transform. Here, our con-

vention is that if f ∈ L1(Rn), then

f̂ (x) ∶= ∫
Rn
f (t)e−2πit⋅xdt,

where t ⋅ x denotes the usual inner product of vectors t and x in Rn . he deûnition of
Fourier transform is extended as usual to functions in L2(Rn).
A linear map A is called expansive if all (complex) eigenvalues of A have absolute

value greater than 1. If A is invertible,we consider the operatorDA on L2(Rn) deûned
by DA f (t) = d 1/2

A f (At). he translation of a function f ∈ L2(Rn) by b ∈ Rn will be
denoted by τb f (t) = f (t − b). For a subspace S of L2(Rd),

DAS = {D j
A f ∶ f ∈ S} and τbS = {τb f ∶ f ∈ S}.

We write D−1
A to mean the operator DA−1 , D0

A is the identity map, and Dℓ
A, ℓ ∈ N, is

the ℓ-th composition of the operator DA with itself.
Ameasurable set E ⊂ Rn such that AE = E is called an A invariant set or an A-set.

A shi�-invariant subspace S ⊂ L2(Rn) is called A-reducing if DAS = S. If G ⊂ Rn is
an A∗-set, we denote by H2

G the closed linear subspace of L2(Rn) deûned by

H2
G = { f ∈ L2(Rn) ∶ f̂ = f̂ χG}.

hat S is an A-reducing subspace of L2(Rn) if and only if S is H2
G for an A∗-set

G ⊂ Rn was proved by Dai, Diao, Gu andHan [16].
For a given ϕ ∈ L2(Rn), set

[ϕ, ϕ](t) = ∑
k∈Zn

∣ϕ(t + k)∣2
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and denote
Nϕ = {t ∈ Rn ∶ [ϕ, ϕ](t) = 0}.

For ameasurable function f ∶ Rn → C the support of f is deûned to be supp( f ) =
{t ∈ Rn ; f (t) ≠ 0}.

he sets are deûned modulo a null measurable set and we will understand some
equations as almost everywhere on Rn or Tn . Moreover, in order to shorten the no-
tation, we will consider 0/0 = 0 or 0(1/0) = 0 in some expressions where such an
indeterminacy appears.

If A∶Rn → Rn is an expansive linear invertible map such that A(Zn) ⊂ Zn , then
the quotient groups Zn/A(Zn) and A−1(Zn)/Zn are well deûned. We will denote
by ΩA ⊂ Zn and ΓA ⊂ A−1(Zn) a full collection of representatives of the cosets of
Zn/A(Zn) and A−1(Zn)/Zn respectively. Recall that there are exactly dA cosets of
Zn/A(Zn) (see [20]). hus there are exactly dA cosets of A−1(Zn)/Zn .

he theory of frames was introduced by Duõn and Schaeòer [18]. A sequence
{ϕn}∞n=1 of elements in a separable Hilbert space H is a frame for H if there exist
constants C1 ,C2 > 0 such that

C1∥h∥2 ≤
∞

∑
n=1

∣⟨h, ϕn⟩∣2 ≤ C2∥h∥2 , ∀h ∈ H,

where ⟨ ⋅ , ⋅ ⟩ denotes the inner product onH. he constantsC1 andC2 are called frame
bounds. he deûnition implies that a frame is a complete sequence of elements of H.
A frame {ϕn}∞n=1 is tight if we may choose C1 = C2, and if in fact C1 = C2 = 1, we
will call it a Parseval frame. A sequence {hn}∞n=1 of elements in aHilbert spaceH is a
frame sequence if it is a frame for span{hn}∞n=1 .

Let A ∶ Rn → Rn be an expansive linear map such that A(Zn) ⊂ Zn and G ⊂ Rn

be an A∗-set. Let Ψ = {ψ1 , . . . ,ψN} ⊂ L2(Rn) be a set of functions, we call

(1.1) XΨ ∶= {D j
Aτkψℓ ∶ j ∈ Z, k ∈ Zd , 1 ≤ ℓ ≤ N}

the aõne system generated by Ψ. he set of functions Ψ is called a wavelet frame
associated with A for H2

G , if the aõne system (1.1) is a frame for H2
G . In this case,

the aõne system (1.1) is usually called an aõne frame. When the context is clear we
do not write “associated with A for H2

G”. If this aõne system is a tight frame for H2
G

then Ψ is called a tight wavelet frame or tight framelet for H2
G . In particular, a tight

wavelet frame with frame bounds equal to 1 is usually called a Parseval wavelet frame
or a Parseval framelet for H2

G . he functions ψℓ , ℓ = 1, . . . ,N are called the generators
of the wavelet frame.

Given a linear invertiblemap A and G ⊂ Rn as above, by a framemultiresolution
analysis associated with the dilation A in H2

G (H2
G-FMRA) we mean a sequence of

closed subspaces Vj , j ∈ Z, of theHilbert space H2
G that satisûes the following condi-

tions:
(i) Vj ⊂ Vj+1 for every j ∈ Z;
(ii) f ∈ Vj if and only if DA f ∈ Vj+1 for every j ∈ Z;
(iii) ⋃ j∈Z Vj = H2

G ;
(iv) there exists a function ϕ ∈ V0, called a scaling function, such that V0 = span

{τkϕ ∶ k ∈ Zn}.
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When the system {τkϕ ∶ k ∈ Zn} is an orthonormal basis for V0, then the H2
G-

FMRA is called an orthonormal multiresolution analysis, or simply multiresolution
analysis, in H2

G (H2
G-MRA).

One of the possible ways for constructing an H2
G-FMRA is to start with a scaling

function ϕ ∈ H2
G . A function ϕ ∈ H2

G generates an H2
G-FMRA if V0 = span{τkϕ ∶ k ∈

Zn} and the subspaces

Vj = span{D j
Aτkϕ;k ∈ Zn}, j ∈ Z

of theHilbert space H2
G satisfy the conditions (i) and (iii).

If ϕ ∈ H2
G generates an H2

G-FMRA, then ϕ ∈ V0 ⊂ V1. hus,

(1.2) ϕ = ∑
k∈Zn

akDAτkϕ, ak ∈ C,

where the convergence is in L2(Rn). Taking the Fourier transform, we can write

ϕ̂(A∗t) = H(t)ϕ̂(t) a.e. on Rn

where H is a Zn-periodic measurable function. A function that satisûes an equality
such as (1.2) is called reûnable.

Given amultiresolution analysis, the following describes a standard procedure for
constructing wavelet frames. If {Vj} j∈Z ⊂ H2

G is an H2
G-FMRA, we denote byWj the

orthogonal complement of Vj in Vj+1. hus, by condition (i) we have Vj+1 =Wj ⊕Vj .
Moreover, condition (iii) implies that Vj+1 = ⊕k< j Wk and H2

G = ⊕ j∈ZWj . Observe
that if {τkψℓ ∶ k ∈ Zd , 1 ≤ ℓ ≤ N} is a Parseval frame for W0, then the system
{D j

Aτkψℓ ∶ j ∈ Z, k ∈ Zd , 1 ≤ ℓ ≤ N} is a Parseval frame for H2
G .

Deûnition 1.1 Let {Vj} j∈Z ⊂ H2
G be an H2

G-FMRA. A Parseval wavelet frame Ψ =
{ψ1 , . . . ,ΨN} forH2

G is said to be associatedwith {Vj} j∈Z if {τkψℓ ∶ k ∈ Zd , 1 ≤ ℓ ≤ N}
is a Parseval frame for W0 = V1 ⊖ V0. We say that a Parseval wavelet frame is an H2

G-
FMRAwavelet frame ifΨ is Parsevalwavelet frame associatedwith someH2

G-FMRA.

A slightly more �exible type of Parseval wavelet frame is the following.

Deûnition 1.2 Let {Vj} j∈Z ⊂ H2
G be anH2

G-FMRA.We say that Ψ = {ψ1 , . . . ,ΨN} ⊂
H2

G is a Parseval wavelet frame arising from {Vj} j∈Z if Ψ ⊂ V1 and the associated
aõne system (1.1) is a Parseval wavelet frame for H2

G . Sometimes it is said that Ψ =
{ψ1 , . . . ,ΨN} ⊂ H2

G is an H2
G-FMRA based wavelet frame if Ψ is a Parseval wavelet

frame arising from some H2
G-FMRA.

he following deûnitions were introduced in [27].

Deûnition 1.3 Let A∶Rn → Rn be an expansive linear map and let G ⊂ Rn be an
A∗-set. It is said that x ∈ Rn is a point of (A,G)-density for ameasurable set E ⊂ Rn ,
∣E∣n > 0, if for any r > 0,

lim
j→∞

∣E ∩ [(G ∩ A− jBr) + x]∣n
∣G ∩ A− jBr ∣n

= 1.
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Deûnition 1.4 Let A∶Rn → Rn be an expansive linear map and let G ⊂ Rn be an
A∗-set. Let f ∶Rn Ð→ C be ameasurable function. It is said that x ∈ Rn is a point of
(A,G)-approximate continuity of the function f if there exists E ⊂ Rn , ∣E∣n > 0, such
that x is a point of (A,G)-density for the set E and

lim
y→x
y∈E

f (y) = f (x).

Observe that if G = Rn and A = aI, where a > 1 and I is the identity map on Rn ,
then the deûnition of a point of (A,G)-approximate continuity coincides with the
well-known deûnition of approximate continuity (cf. [11,38]).

his paper is structured as follows. In Section 2, we present the main results of
this paperwith their proofs. In Section 3,we show some examples of Parsevalwavelet
frames. Section 4 is devoted to comparing conditions on the Fourier transform of
involved reûnable functions in diòerent versions of Extension Principles.

2 Main Result

We present the main results of this paper. In what follows, we ûx A∶Rn → Rn an
expansive linear map such that A(Zn) ⊂ Zn . Let us ûx ΓA∗ = {pk}dA−1

k=0 , where p0 = 0,
a full collection of representatives of the cosets of (A∗)−1Zn/Zn . Moreover, we ûx an
A∗-set G ⊂ Rn and the subspace H2

G . In order to shorten the notation, if we write a
wavelet frame wemean a wavelet frame for H2

G associated with the dilation A.
he following result characterizes all Parseval wavelet frames for some reducing

subspace that can be constructed via the Oblique Extension Principle.

heorem 2.1 Let ϕ ∈ H2
G such that

ϕ̂(A∗t) = H0(t)ϕ̂(t), a.e.,

where H0 ∈ L∞(Tn). Let H1 , . . . ,HN ∈ L∞(Tn) and deûne ψ1 , . . . ,ψN ∈ L2(Rn) by

ψ̂ℓ(A∗t) = Hℓ(t)ϕ̂(t) a.e., ℓ = 1, . . . ,N .

hen the following are equivalent.

(i) he set of functions {ψℓ ∶ ℓ = 1, . . . ,N} is a Parseval wavelet frame associated
with A for H2

G .
(ii) here exists S, a non-negativeZn-periodicmeasurable function such that

√
S∣ϕ̂∣ ∈

H2
G and also

(a) the origin is a point of (A∗ ,G)-approximate continuity for S∣ϕ̂∣2, provided
S(0)∣ϕ̂(0)∣2 = 1;

(b)

(2.1) S(A∗t)∣H0(t)∣2 +
N

∑
ℓ=1

∣Hℓ(t)∣2 = S(t), a.e. t ∈ Rn ∖Nϕ̂ ;

(c) the equality
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(2.2) S(A∗t)H0(t)H0(t + pk) +
N

∑
ℓ=1

Hℓ(t)Hℓ(t + pk) = 0

holds for a.e. t ∈ Rn ∖ Nϕ̂ and for any pk , k = 1, . . . , dA − 1, such that
t + pk ∈ Rn ∖Nϕ̂ .

To prove (ii) implies (i) in heorem 2.1 we need the following result.

Lemma 2.2 Let ϕ ∈ H2
G such that ∣ϕ̂(t)∣ ≤ 1 a.e. and the origin is a point of (A∗ ,G)-

approximate continuity of ∣ϕ̂∣, provided ∣ϕ̂(0)∣ = 1. Let g ∈ L2(Rn) such that ĝ is
continuous and compactly supported. Consider f ∈ L2(Rn) deûned by f̂ = ĝ χG . hen
for any ε > 0 there exists J ∈ N such that

(2.3) (1 − ε)∥ f ∥2
2 ≤ ∑

k∈Zn
∣⟨ f ,D j

Aτkϕ⟩∣
2 ≤ ∥ f ∥2

2 , ∀ j ≥ J .

Proof According to the hypotheses, supp( f̂ ) ⊂ BR for a ûxed R > 0 and there exists
K > 0 such that ∣ f̂ (t)∣ ≤ K for every t ∈ Rn . By Parseval’s formula,

∑
k∈Zn

∣⟨ f ,D j
Aτkϕ⟩∣

2 = ∑
k∈Zn

∣⟨ f̂ , D̂ j
Aτkϕ⟩∣

2 = ∑
k∈Zn

∣⟨D j
A∗ f̂ , τ̂kϕ⟩∣

2

= ∑
k∈Zd

∣∫
(A∗)− jBR

D j
A∗ f̂ (t)ϕ̂(t)e

2πk⋅t dt∣
2

.

(2.4)

Since A∗ is expansive, there exists j0 ∈ N such that if j ≥ j0, then (A∗)− jBR ⊂
[−1/2, 1/2]d . For those j, the sum over k ∈ Zn in (2.4) may be interpreted as the
sum of the squares of the moduli of the −k-th Fourier coeõcients of the function
DA∗ j f̂ (t)ϕ̂(t). hus

(2.5) ∑
k∈Zn

∣⟨ f ,D j
Aτkϕ⟩∣

2 = ∫
(A∗)− jBR

∣DA∗ j f̂ (t)∣2 ∣ϕ̂(t)∣2 dt ∀ j ≥ j0 .

Since ∣ϕ̂(t)∣ ≤ 1 a.e., the right inequality of (2.3) follows. Now we prove the le� in-
equality of (2.3).

Let 0 < ε < 1 and take the set Λε = {t ∈ G ∶ ∣ϕ̂(t)∣ ≤ 1 − ε
2}. Since ∣ϕ̂(0)∣ = 1,

∣ϕ̂(t)∣ ≤ 1 a.e. and the origin is a point of (A∗ ,G)-approximate continuity of ∣ϕ̂∣,

lim
j→∞

∣ (G ∩ (A∗)− jBR) ∩ Λc
ε ∣ n

∣G ∩ (A∗)− jBR ∣n
= 1.

his implies that there exists J ≥ j0 such that if j ≥ J, we have

∣(A∗)− j(G ∩ BR ∩ A∗ jΛε)∣n = ∣ (G ∩ (A∗)− jBR) ∩ Λε ∣ n <
ε

2K2d j
A

∥ f ∥2
2 .

hus, if j ≥ J

(2.6) ∣G ∩ BR ∩ A∗ jΛε ∣n <
ε

2K2 ∥ f ∥
2
2 .
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According to (2.5), if j ≥ J we obtain

∑
k∈Zn

∣⟨ f ,D j
Aτkϕ⟩∣

2 ≥ ( 1 − ε
2
) ∫

G∩(A∗)− jBR∩Λc
ε

∣DA∗ f̂ (t)∣2 dt

≥ ( 1 − ε
2
)∥ f ∥2

2 − ∫
G∩BR∩A∗ jΛε

∣ f̂ (t)∣2 dt.

Furthermore, by the inequality (2.6), if j ≥ J we have

∑
k∈Zn

∣⟨ f ,D j
Aτkϕ⟩∣

2 ≥ ( 1 − ε
2
)∥ f ∥2

2 − K2∣G ∩ BR ∩ A∗ jΛε ∣n

≥ ( 1 − ε
2
)∥ f ∥2

2 − K2 ε
2K2 ∥ f ∥

2
2 = (1 − ε)∥ f ∥2

2 .

his ûnishes the proof. ∎

Proof of Theorem 2.1 We prove (i) implies (ii). Without loss of generality, we can
assume that Hℓ(t) = 0, a.e. t ∈ Nϕ̂ , ℓ = 0, 1, . . . ,N . he function

(2.7) Θ(t) =
∞

∑
m=0

N

∑
ℓ=1

∣Hℓ(A∗mt)∣2
m−1
∏
k=0

∣H0(A∗kt)∣2 ,

with the convention∏−1
k=0 ∣Q0(A∗kt)∣2 = 1, is usually called the fundamental function

associated with H0 , . . . ,HN . Let us mention that we have assumed Hℓ(t) = 0 a.e. t ∈
Nϕ̂ to avoid problems with themeasurability of Θ. Note that fundamental functions
were introduced in [43].

We will see that the conditions in (ii) hold when we consider Θ instead of S. Ac-
cording to Lemma 2.3 and Lemma 2.10 in [32], we know that

1 = lim
J→−∞

Θ(A∗Jt)∣ϕ̂(A∗Jt)∣2 a.e. t ∈ G .

hus, that the origin is a point of (A∗ ,G)-approximate continuity of Θ∣ϕ̂∣2, if we set
Θ(0)∣ϕ̂(0)∣2 = 1, follows by [46, Lemma 2.5].

he remainder is proved in [32] (e.g., see also [2]).
We prove (ii) implies (i). First, we prove this implication in the particular case

when S(t) = 1. his case is usually called the Unitary Extension Principle.
Our starting point is Lemma 2.2. A�erwards, the proofmay be ûnished following

the strategy by Benedetto and Treiber [6] (see also [32], [30]).
When S is a general function described in (ii), consider φ ∈ H2

G deûned by φ̂(t) =√
S(t)ϕ̂(t). Observe that

φ̂(A∗t) =
√

S(A∗t)ϕ̂(A∗t) =
√

S(A∗t)H0(t)ϕ̂(t) = Q0(t)φ̂(t) a.e.,

and

ψ̂ℓ(A∗t) =
√

1
S(t)Hℓ(t)

√
S(t)ϕ̂(t) = Qℓ(t)φ̂(t), a.e. ℓ = 1, . . . ,N ,

where Q0 ,Q1 , . . . ,QN are Zn-periodicmeasurable functions deûned by
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Q0(t) =
¿
ÁÁÀS(A∗t)

S(t) H0(t), Qℓ(t) =
√

1
S(t)Hℓ(t), ℓ = 1, . . . ,N .

According to our hypotheses, the origin is a point of (A∗ ,G)-approximate continuity
for φ̂, provided that φ̂(0) = 1. Analogously to the proof of Proposition 1.11 in [17], we
get that φ, ψℓ , Q0 and Qℓ , ℓ = 1, . . . ,N , satisfy theUnitary Extension Principles. hen
the statement follows. ∎

he following result gives a characterization of all Parseval wavelet frames for an
H2

G arising from a ûxed H2
G-FMRA.

heorem 2.3 Let {Vj} j∈Z ⊂ H2
G be an H2

G-FMRA with a scaling function ϕ. Let
φ ∈ H2

G deûned by φ̂(t) = ϕ̂(t)/[ϕ̂, ϕ̂]1/2(t). Let Ψ = {ψ1 , . . . ,ψN} ⊂ H2
G . he

following are equivalent.
(i) he set of functions Ψ is a Parseval wavelet frame for H2

G arising from {Vj} j∈Z.
(ii) here exist H0 ,H1 , . . . ,HN ∈ L∞(Tn) such that

(a)

φ̂(A∗t) = H0(t)φ̂(t), a.e., ψ̂ℓ(A∗t) = Hℓ(t)φ̂(t) a.e., ℓ = 1, . . . ,N ,

and
(b) there exists a non-negative S ∈ L∞(Tn) such that the origin is a point of

(A∗ ,G)-approximate continuity for S if we set S(0) = 1, and the equalities
in (2.1) and (2.2) are satisûed.

Proof We see that (i) implies (ii). here exist H0 ,H1 , . . . ,HN some Zn-periodic
measurable functions such that

φ̂(A∗t) = H0(t)φ̂(t) a.e., and ψ̂ℓ(A∗t) = Hℓ(t)φ̂(t), ℓ = 1, . . . ,N a.e.,

because {ψ1 , . . . ,ψN} ⊂ V1. Since {φ( ⋅ − k) ∶ k ∈ Zn} is a Parseval frame for V0, we
have∑k∈Zn ∣φ̂(t−k)∣2 = 1 a.e. t ∈ Tn ∖Nφ̂ . hus H0 can be taken in L∞(Tn). Indeed,
it can be assumed that Hℓ(t) = 0, ℓ = 0, 1, . . . ,N , a.e. on Nφ̂ .

Let Θ be the fundamental function associated with H0 ,H1 , . . . ,HN deûned as
in (2.7). Since Ψ is a Parseval frame for H2

G , we have already said that Θ satisûes
the condition (ii) in heorem 2.1 if we consider Θ instead of S. It remains to see that
Θ, H1 , . . . ,HN are in L∞(Tn) and the origin is a point of (A∗ ,G)-approximate con-
tinuity for Θ if we set Θ̂(0) = 1.

We know that Θ(t)∑k∈Zn ∣ϕ̂(t − k)∣2 ∈ L∞(Tn) (e.g., see (2.4) in [2] or proof of
Lemma 2.12 in [32]). Furthermore, since ∑k∈Zn ∣φ̂(t − k)∣2 = 1 a.e. t ∈ Tn ∖Nφ̂ and
bearing in mind that Θ(t) = 0 a.e. on Nφ̂ , we conclude that Θ is in L∞(Tn). Hence
H1 , . . . ,HN can be taken in L∞(Tn).
By (ii) in heorem 2.1 we know that the origin is a point of (A∗ ,G)-approximate

continuity for Θ∣φ̂∣2 is we set Θ(0)∣φ̂(0)∣2 = 1. By heorem 3.1 in [27], the origin is a
point of (A∗ ,G)-approximate continuity for φ̂ is we set φ̂(0) = 1. Hence, the origin
is a point of (A∗ ,G)-approximate continuity for Θ is we set Θ(0) = 1 follows.

We check that (ii) implies (i). By (a) we know that Ψ ⊂ V1. In addition, by he-
orem 2.1, we conclude that Ψ is a Parseval wavelet frame for H2

G . Hence the proof is
ûnished. ∎
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he following is a characterization of all Parseval wavelet frames associated with a
ûxed H2

G-FMRA.

Corollary 2.4 Let {Vj} j∈Z ⊂ H2
G be an H2

G-FMRA with a scaling function ϕ. Let
φ ∈ L2(Rn) deûned by φ̂(t) = ϕ̂(t)/[ϕ̂, ϕ̂]1/2(t). Let Ψ = {ψ1 , . . . ,ψN} ⊂ H2

G . he
following are equivalent.

(α) he set of functions Ψ is a Parsevalwavelet frame for H2
G associatedwith {Vj} j∈Z.

(β) he condition (ii) in heorem 2.3 holds and also

(2.8)
dA−1

∑
k=0

H0(t + pk)Hℓ(t + pk) = 0, for a.e. t ∈ Rn ∖Nϕ̂ , ℓ = {1, 2, . . . ,N}.

Proof First, observe that condition (2.8) means that the ψ i are orthogonal to the
subspace V0 (e.g., see the proof ofheorem 2.4.3 in [30]). herefore, by heorem 2.3,
(2.8), and the deûnition ofWj , j ∈ Z, the statements follow. ∎

3 Examples

hemain results in thisnote focus onParsevalwavelet frameswithno regularity of the
Fourier transform at the origin. Here, we give some examples to illustrateheorems
2.1 and 2.3.

he following example exhibits orthonormal wavelets whose Fourier transforms
are not continuous at the origin.

Example 3.1 Let A∶Rn → Rn be an expansive linear map such that AZn ⊂ Zn and
G = Rn . Our starting point is ϕ ∈ L2(Rn), the scaling function of a multiresolution
analysis associatedwith A that is constructed in [44,heorem 2.2]. his function ϕ is
deûned by ϕ̂ = χE , where E ⊂ Rn is a boundedmeasurable set satisfying

(i) the origin is a point of A∗-density for E and 0 ∈ E;
(ii) ∑k∈Zn χE(t) = 1;
(iii) (A∗)−1E ⊂ E;
(iv) for any open neighborhood of the origin, U , there exists an open set included

in Ec ∩U .

By condition (ii),we have that {ϕ(⋅−k) ∶ k ∈ Zn} is an orthonormal system. Acording
to (ii) and (iii),

H0(t) = ∑
k∈Zn

χE(A∗(t + k))
χE(t + k)

is a well-deûned Zn-periodic function that satisûes the following reûnable equation

ϕ̂(A∗t) = H0(t)ϕ̂(t).

If {pk}dA−1
k=0 , where p0 = 0, is a full collection of representatives of the cosets of

(A∗)−1Zn/Zn , deûne

ψ̂ℓ(A∗t) = H0(t + pℓ)ϕ̂(t), ℓ ∈ {1, . . . , dA − 1}.
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It is not hard to prove that Ψ = {ψ1 , . . . ,ψdA−1} ⊂ L2(Rn) is a set of orthonor-
mal wavelets in L2(Rn) associated with A. In addition, according to conditions (iii)
and (iv), some of the ψ̂ℓ are not continuous at the origin.

For any H2
G where G is open, we construct Parseval wavelet frames where the

Fourier transform of some generators is not continuous at the origin.

Example 3.2 Let A∶Rn → Rn be an expansive linear map such that AZn ⊂ Zn and
G ⊂ be an open A∗-set.

Since A∗ is expansive, there exists R > 0 such that ⋃∞j=0(A∗)− jBR ⊂ [− 1
2 ,

1
2 )

n .
Let F ∶= G ∩ ⋃∞j=0(A∗)− jBR and observe that the set F can be written as F = G ∩
⋃ j0

j=0(A∗)− jBR , where j0 ∈ N is such that if j ≥ j0 then (A∗)− jBR ⊂ BR . his j0 exists
because A∗ is an expansive linear map. Further, the set F ∖ (A∗)−1(F) is an open
measurable set, because the set F is an open measurable set and A∗ is a continuous
map. Moreover, since A∗ is expansive, it is clear that ∣F ∖ (A∗)−1(F)∣n > 0.

Now let Fl = (A∗)−lF ∖ (A∗)−l−1F, l ∈ {0, 1, 2, . . .}. Observe that themeasurable
sets Fl are disjoint. Moreover, F ∖ {0} = ⋃∞l=0 Fl . If x ∈ F ∖ {0}, then x ∈ (G ∩
(A∗)− jBR) for some j ∈ {0, 1, 2, . . .}. Let j1 be the biggest number in {0, 1, 2, . . .}
such that x ∈ (G ∩ (A∗)− j1BR) . hus x ∈ F j1 = (A∗)− j1F ∖ (A∗)− j1−1F.
Furthermore, observe that there exists y0 ∈ Rn and r > 0 such that Br + y0 ⊂ F0.
Let

E =
∞

⋃
j=0
F j ∖ [(A∗)− jB2− j r + y0].

It is easy to see that the set E satisûes ∣E∣n > 0, E ⊂ [− 1
2 ,

1
2 )

n , (A∗)−1E ⊂ E, and for any
open neighborhood of the origin, U , there exists an open set included in Ec ∩ U . In
addition, that the origin is a point of (A∗ ,G)-density for E can be proved as in Step 2
of the proof ofheorem 2.2 in [44].
From this set E, we continue our construction as in Example 1 to obtain Ψ =

{ψ1 , . . . ,ψdA−1} ⊂ H2
G , a set of Parseval wavelet frames for H2

G , where the restriction
on the set G of some ψ̂ℓ are not continuous at the origin.

he purpose of the following example is to show visually how the previous exam-
ples work.

Example 3.3 Let M be the linear map inR2 such that M∗(x , y) = (2x + 2y, 2y). It
is easy to see that

{p0 = (0, 0), p1 = ( 1
2 , 0), p2 = (0, 1

2 ), p3 = ( 1
2 ,

1
2 )}

is a full collection of representatives of the cosets of (M∗)−1Z2/Z2.
Take the set E = [− 1

2 ,
1
2 ]

2 ∖ {(x , y) ∈ (− 1
2 ,

1
2 )

2 ∶ x , y > 0}. he function ϕ ∈ L(R2
)

deûned by ϕ̂ = χE is a scaling function of a framemultiresolution analysis associated
with M.
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Deûne H0 as the Z2-periodization of χM∗−1E . hen {ψ1 ,ψ2 ,ψ3} deûned by

ψ̂ℓ(M∗t) = H0(t + pℓ)(t)ϕ̂(t)

is a Parseval wavelet frame for L2(R2) associated with the dilation M.

Observe that in heorem 2.1 the condition that the origin must be a point of ap-
proximate continuity of the Fourier transformof the involved reûnable functionwhen
the function takes the value 1 at the origin, is not assumed. henheorem 2.1 provides
amore �exibleway for constructingwavelets frames than the diòerent versions of the
Oblique Extension Principle that appear in the literature. To show this fact, we give
the following example.

Example 3.4 With the same notation as in Example 1, let C ∈ (0,∞)∖{1}. We take
the function φ ∶= Cϕ. It is clear that the origin is a point of A∗-approximate continuity
of φ̂ with φ̂(0) = C and

φ̂(A∗t) = Cϕ̂(A∗t) = CH0(t)ϕ̂(t) = H0(t)φ̂(t).

Moreover, for ℓ ∈ {1, . . . , dA − 1} we can write

ψ̂ℓ(A∗t) =
1
C

H0(t + pℓ)φ̂(t) = Qℓ(t)φ̂(t),

where Qℓ(t) = 1
CH0(t + pℓ). herefore, the hypotheses and condition (ii) in heo-

rem 2.1 hold for φ, ψℓ , the ûlters H0, Qℓ , and S(t) = 1
c2 .

4 On Conditions at the Origin of the Fourier Transform of the
Refinable Function

In this last section,wewill make some comments on the conditions at the origin of the
Fourier Transform of an involved reûnable function in Extension Principles assumed
byHan [21,22], by Li andZhang [32] and the condition used in this note. In particular,
we will see that those conditions are not equivalent.

he linear space of all compactly supportedC∞(Rn) (test) functionswith theusual
topology will be denoted by D(Rn). For g ∈ D(Rn) and f ∈ L1

loc(R
n), with some

abuse in the notation, we will write

⟨ f , g⟩ = ∫
Rn
f (t)g(t) dt.
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According to our context, the condition used by Han may be written as follows.
Given f ∈ L1

loc(R
n), the following identity holds in the sense of distributions:

(4.1) lim
j→∞

∣ f (A− jt)∣ = 1.

More precisely,
lim
j→∞

⟨∣ f (A− jt)∣, g⟩ = ⟨1, g⟩, ∀g ∈D(Rn).

Let f be the function in L1
loc(R) deûned by

f (x) = χ[−1,1](x) +
∞

∑
ℓ=0

2ℓ+2 χ(2−ℓ−1 ,2−ℓ−1+2−2ℓ−2)(x).

We will see that the origin is a point of approximate continuity of f but (4.1) is not
satisûed with A = 2.
Denote F = [−1, 1] ∖⋃∞ℓ=0(2−ℓ−1 , 2−ℓ−1 + 2−2ℓ−2). Since

lim
j→∞

∣2− j[−1, 1] ∩ F∣
∣2− j[−1, 1]∣

=1 − lim
j→∞

∣2− j[−1, 1] ∩ (⋃∞ℓ=0(2−ℓ−1 , 2−ℓ−1 + 2−2ℓ−2)) ∣
∣2− j[−1, 1]∣

=1 − lim
j→∞

∣⋃∞ℓ= j(2−ℓ−1 , 2−ℓ−1 + 2−2ℓ−2)∣
∣2− j[−1, 1]∣ = 1,

the origin is a point of density for the set F. It follows rapidly that the origin is a point
of approximate continuity of f .

Nowwe see that the function f does not satisfy the condition (4.1)with A = 2. Take
g ∈ D(R) such that g is nonnegative, with value 1 on the interval [−1, 1], supported
on [−2, 2], increasing on [−2,−1], and decreasing on [1, 2]. We have the inequalities

lim
j→∞

⟨∣ f (2− j t)∣, g⟩ ≥ lim
j→∞∫

1

−1
f (2− j t) dt = lim

j→∞
2 j ∫

2− j

−2− j
f (y) dy

= 2 + lim
j→∞

2 j ∫
2− j

−2− j

∞

∑
ℓ=0

2ℓ+2 χ(2−ℓ−1 ,2−ℓ−1+2−2ℓ−2)(y) dy

= 2 +
∞

∑
k=0

2−k = 4 > ⟨1, g⟩.

his implies that (4.1) does not hold.
By a second look at this example, we can conclude that the origin is a point of

approximate continuity of f but the origin is not a point of Lebesgue of f . In addition,
the origin is a point of M∗-approximate continuity of the function χE in Example 3
and the origin is not a point of Lebesgue of χE .

he condition used by Li and Zhang [32] on a neighborhood of the origin of the
Fourier transform of a reûnable function can be written as

(4.2) lim
j→∞

∣ f (A− jt)∣ = 1 a.e. on G ⊂ Rn , some A-set.

We have already used that the condition (4.2) implies that the origin is a point of
(A,G)-approximate continuity of f , provided that f (0) = 1, see [46, Lemma 2.5].
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he converse implication may be false, as is proved in [45, Proposition 2], where is
shown an example of a function for which the origin is a point of approximate conti-
nuity but the condition (4.2) does not holdwhen A is the dyadic dilation andG = Rn .

One more diòerence is the following. It is well known that there exist functions
f ∶R → [0,∞) such that lim j→∞ f (4− j t) = 1 for all t ∈ R but lim j→∞ f (2− j t) does
not exist. In contrast to this, we have the following.

Proposition 4.1 Let m ∈ {2, 3, . . .}, let A be an expansive linear map on Rn and let
G ⊂ Rn be an A-set. Let f ∶Rn → Rn be ameasurable function such that the point x is a
point of (Am ,G)-approximate continuity of f . hen x is a point of (A,G)-approximate
continuity of f .

Proof Without loss in generality we assume that x = 0. Since the origin is a point of
(Am ,G)-approximate continuity of f , there exists an E ⊂ Rn such that the origin is a
point of (Am ,G)-density for E.

Let r > 0. We consider j ∈ N of the form j = mp + k with p ∈ {0, 1, . . .} and some
ûxed k ∈ {0, . . . ,m−1}. By the continuity of the linearmap A, there exists 0 < rk < Rk
such that Brk ⊂ A−kBr ⊂ BRk . hen we have

∣E ∩ [(G ∩ A−(mp+k)Br)]∣n
∣(G ∩ A−(mp+k)Br)∣n

=1 − ∣Ec ∩ [(G ∩ A−(mp+k)Br)]∣n
∣(G ∩ A−(mp+k)Br)∣n

≥1 − ∣AmpEc ∩ [(G ∩ BRk)]∣n
∣(G ∩ BRk)∣n

∣(G ∩ BRk)∣n
∣(G ∩ Brk)∣n

→ 1,

as p →∞, because the origin is a point of (Am ,G)-density for E. hus the origin is a
point of (A,G)-density for E and the statement follows. ∎

Acknowledgement he authorwould like to thank the anonymous referees for pro-
viding interesting references related to this manuscript.
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