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On Parseval Wavelet Frames via
Multiresolution Analyses in HE,

A. San Antolin

Abstract. We give a characterization of all Parseval wavelet frames arising from a given frame multires-
olution analysis. As a consequence, we obtain a description of all Parseval wavelet frames associated
with a frame multiresolution analysis. These results are based on a version of Oblique Extension Prin-
ciple with the assumption that the origin is a point of approximate continuity of the Fourier transform
of the involved refinable functions. Our results are written for reducing subspaces.

1 Introduction, Notation and Basic Definitions

We are interested in the study of methods for constructing tight wavelet frames in
reducing subspaces of L?. In this paper, we emphasis on tight wavelet frames can be
constructed via multiresolution analyses and extension principles. Mallat [36] and
Meyer [37] introduced the definition of multiresolution analysis (MRA) as a general
method for constructing wavelets. In order to construct wavelet frames, the require-
ments on the definition of MRA were weakened. In this sense, the notion of a frame
multiresolution analysis (FMRA) was formulated by Benedetto and Li [5] as a natural
extension of MRA. Furthermore, a generalized multiresolution analysis (GMRA) was
first introduced by Baggett, Medina and Merril [3] and Papadakis [39] independently;
see also the paper by de Boor, DeVore and A. Ron [10]. Bownik and Rzeszotnik [9]
show construction procedures for tight framelets and wavelets from a GMRA. The no-
tions of MRA and FMRA in a reducing subspace of L?(R) are introduced by Li and
Lian [31]. On R" see [27]. Relationships of FMRA and MRA in reducing subspaces
L*(R") are studied by Li and Zhang [33]. Li and Zhou [34,35], develop GMRA-based
construction procedures of frame wavelet systems in reducing subspaces of L*(R").
Jia and Li [25] present a refinable function-based construction of affine frames
systems.

Gripenberg [19] and Hernandez and Weiss [24] proved a characterization of all
orthonormal wavelets associated to a multiresolution analysis in terms of its wavelet
dimension function. That any orthonormal wavelet is associated with a generalized
multiresolution analysis was proved by Papadakis [40]. In the paper by Kim, Kim
and Lim [29] (see also Kim, Kim, Lee and Lim [28]), characterizations of the Riesz
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wavelets which are associated with a multiresolution analysis were proved. A gener-
alization of these results is given by Bownik and Garrigds [8]. Note that characteriza-
tions of biorthogonal wavelets from biorthogonal multiresolution analysis are proved
in [29] and [8] (see also Calogero and Garrigés [12]). Zalik [48] introduced the notion
of Riesz wavelet obtained by a multiresolution analysis. Moreover, he gave necessary
and sufficient conditions on a given Riesz wavelet to be obtained by a multiresolution
analysis. Bownik [7] studied both the notion of Riesz basis associated with a gener-
alized multiresolution analysis and Riesz basis obtained by a generalized multireso-
lution analysis and proved that these two notions are equivalent. Characterizations
of Parseval wavelet frames associated with generalized multiresolution analysis are
proved by Baggett, Medina, and Merrill [3] and by Baki¢ [4].

A slightly different point of view for constructing wavelet frames was first pro-
posed in the Unitary Extension Principle (UEP) by Ron and Shen [43] (see also [42]).
The UEP leads to explicit constructions of tight wavelet frames generated by a refin-
able function. A more flexible way for constructing wavelet frames is the so-called
Oblique Extension Principle (OEP). The OEP was introduced by Daubechies, Han,
Ron, and Shen [17]. These extension principles have been developed by Benedetto
and Treiber [6], Petukhov [41], Chui, He and Stockler [14], Chui, He, Stockler, and
Sun [15], Bownik and Rzeszotnik [9], Han [21, 22], Li and Zhou [35], Stavropou-
los [47], Atreas, Melas, and Stavropoulos [1,2], and Li and Zhang [32]. Observe that
in these papers, they proved that the obtained sufficient conditions are also necessary.

Extensive studies on multiresolution analysis and extension principles are enclosed,
for instance, in [13] and [30].

We give a solution to the problem of characterizing all Parseval wavelet frames
arising from a fixed frame multiresolution analysis in reducing subspaces of L*(R").
As a consequence, we obtain a new description of all Parseval wavelet frames asso-
ciated with a frame multiresolution analysis. The proofs of these results are based
on the characterization of the scaling functions in [27] and on a version of Oblique
Extension Principle with no regularity at the origin on the modulus of the Fourier
transform of the involved refinable functions.

Versions of the OEP without any extra condition on refinable functions have
already been proved in the literature. The first version of the OEP was proved by Han
[21,22], where the context was in distribution spaces. The assumption at the origin of
the Fourier transform of involved refinable functions is a limit in the sense of distribu-
tions. In the paper by Li and Zhang [32, Theorem 1.2], an OEP for frames in reducing
subspaces of L2(R?) is proved. The authors use the condition lim jomoo Yo (A) =1

for almost every point of Q, an A*-invariant set of R?. Perhaps the main advance
of our paper is the use of the classical notion of approximate continuity. This is why
we emphasize this notion. In particular, this concept helps us to learn a bit of the
behaviour on a neighborhood of the origin of the Fourier transform of refinable
functions associated with Parseval wavelet frames. To illustrate our results we show
some examples of Parseval wavelet frames where the origin of the Fourier transform
of is not a point of continuity. At the end of this manuscript we will see that
the conditions used by Han, by Li and Zhang and the conditions used here are of
different nature.
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Before formulating our results let us introduce some notation and definitions.

The sets of strictly positive integers, integers, real and complex numbers will be
denoted by N, Z, R and C respectively. We let T" = R"/Z", n > 1, and with some
abuse of the notation we consider also that T" is the unit cube [0,1)".

We let B,(y) denote {x € R" : |x —y| < r}, and will write B, if y is the origin.
If A:R" — R”" is a linear map, A* will mean the adjoint of A. With some abuse of
the notation, we write A to also denote the corresponding matrix with respect to the
canonical basis. Moreover, d4 = |det A|l. For a Lebesgue measurable set E ¢ R",
E° = R" \ E and the Lebesgue measure of E in R" will be denoted by |E|,,. If x ¢ R"
thenx+E = {x+y:forye E}. We willlet A(E) denote {x e R" : x = A(t) for t € E}.
The volume of E changes under A according to |AE|, = d4|E|,. The characteristic
function of a set E ¢ R" will be denoted by yg, i.e., yp(x) =1ifx € E and yg(x) =0
otherwise.

We write LP(R"), n > 1,1 < p < oo to mean the usual Lebesgue space. We write
f e Lﬁ) (R") to mean the linear space of all measurable functions such that fyx €
LP(R") for every K ¢ R" compact sets.

If we take f € LP(T"), we will understand that f is defined on the whole space R"
as a Z" -periodic function.

A key tool in the study of wavelet frames is the Fourier transform. Here, our con-
vention is that if f € L'(R"), then

f&)= [ fe iy,

where t - x denotes the usual inner product of vectors t and x in R". The definition of
Fourier transform is extended as usual to functions in L*(R").

A linear map A is called expansive if all (complex) eigenvalues of A have absolute
value greater than 1. If A is invertible, we consider the operator D, on L*(R,,) defined
by Daf(t) = d{lﬁ/zf(At). The translation of a function f € L*(R") by b € R" will be
denoted by 7, f(t) = f(t —b). For a subspace S of L?(R%),

DAS:{DQf:feS} and 1,8 ={1pf:f €S}

We write D};! to mean the operator D4-1, DY is the identity map, and D, ¢ € N, is
the ¢-th composition of the operator D4 with itself.

A measurable set E ¢ R" such that AE = E is called an A invariant set or an A-set.
A shift-invariant subspace S ¢ L?(R") is called A-reducing if D4S = S. If G c R" is
an A*-set, we denote by HZ the closed linear subspace of L?(R") defined by

H = (f e LX(R"): F= Fxo).

That S is an A-reducing subspace of L*(R") if and only if S is HZ for an A*-set
G c R" was proved by Dai, Diao, Gu and Han [16].
For a given ¢ € L*(R"), set

[¢,0](t) = 3 lo(t+k)*

keZ"
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and denote
Ny = {teR" : [¢,¢](t) = 0}.

For a measurable function f : R" — C the support of f is defined to be supp(f) =
{teR" f(t) 0}.

The sets are defined modulo a null measurable set and we will understand some
equations as almost everywhere on R” or T". Moreover, in order to shorten the no-
tation, we will consider 0/0 = 0 or 0(1/0) = 0 in some expressions where such an
indeterminacy appears.

If A:R" — R" is an expansive linear invertible map such that A(Z") c Z", then
the quotient groups Z"/A(Z") and A™(Z")]Z" are well defined. We will denote
by Q4 c Z" and T4 ¢ A™}(Z") a full collection of representatives of the cosets of
Z"|A(Z") and A7 (Z")]Z" respectively. Recall that there are exactly d4 cosets of
Z"|A(Z") (see [20]). Thus there are exactly d4 cosets of A™(Z")/Z".

The theory of frames was introduced by Duffin and Schaeffer [18]. A sequence
{pn}2, of elements in a separable Hilbert space H is a frame for H if there exist
constants C;, C, > 0 such that

Cl\thsZ (hy ) < Cy|h|*, VheH,

where (-, - ) denotes the inner product on H. The constants C; and C, are called frame
bounds. The definition implies that a frame is a complete sequence of elements of H.
A frame {¢, } 72, is tight if we may choose C; = C,, and if in fact C; = C, = 1, we
will call it a Parseval frame. A sequence {h, }°2; of elements in a Hilbert space H is a
frame sequence if it is a frame for span{h, }32,.

Let A : R" — R" be an expansive linear map such that A(Z") ¢ Z" and G c R"
bean A*-set. Let ¥ = {y1,...,yn} c L*(R") be a set of functions, we call

(L1) Xy = {Ditaye: jeZ, keZ, 1< <N}

the affine system generated by W. The set of functions ¥ is called a wavelet frame
associated with A for HE, if the affine system (1.1) is a frame for H. In this case,
the affine system (1.1) is usually called an affine frame. When the context is clear we
do not write “associated with A for H3” If this affine system is a tight frame for HZ
then ¥ is called a tight wavelet frame or tight framelet for H. In particular, a tight
wavelet frame with frame bounds equal to 1 is usually called a Parseval wavelet frame
or a Parseval framelet for H é The functions y,, £ =1,..., N are called the generators
of the wavelet frame.

Given a linear invertible map A and G c R" as above, by a frame multiresolution
analysis associated with the dilation A in Hé (Hé—FMRA) we mean a sequence of
closed subspaces V;, j € Z, of the Hilbert space HZ that satisfies the following condi-
tions:

(i) Vjc Vi, forevery j e Z;
(i) feVjifandonlyif Dsf € Vj, for every j € Z;
(i) Ujez Vj = He;s
(iv) there exists a function ¢ € V,, called a scaling function, such that V; = span
{T k¢ ke Zn}
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When the system {7x¢ : k € Z"} is an orthonormal basis for Vp, then the Hg-
FMRA is called an orthonormal multiresolution analysis, or simply multiresolution
analysis, in Hg, (H:-MRA).

One of the possible ways for constructing an Hz-FMRA is to start with a scaling
function ¢ € H. A function ¢ € HZ generates an H5-FMRA if V, = span{ti¢ : k¢
7"} and the subspaces

V= span{ D), nupsk e 2"}, jeZ

of the Hilbert space HZ satisfy the conditions (i) and (iii).
If ¢ € HE generates an H5-FMRA, then ¢ € V, c V;. Thus,

1.2) ¢ = Z axDatc¢, ax€C,
keZn

where the convergence is in L*(R"). Taking the Fourier transform, we can write
¢(A*t) = H(t)p(t) ae.onR”

where H is a Z" -periodic measurable function. A function that satisfies an equality
such as (1.2) is called refinable.

Given a multiresolution analysis, the following describes a standard procedure for
constructing wavelet frames. If { V;} jz ¢ Hg, is an Hg,-FMRA, we denote by W; the
orthogonal complement of V;in Vj;. Thus, by condition (i) we have Vj,; = W; @ V.
Moreover, condition (iii) implies that Vj,; = @®y; Wi and Hg = @ ez W;. Observe
that if {7y, : k € 7%1< €< N } is a Parseval frame for W, then the system
{DiTkll/e :jeZ, keZ 1< €< N} isaParseval frame for HZ.

Definition 1.1 Let {V;};z ¢ H¢ be an Hg-FMRA. A Parseval wavelet frame ¥ =
{y1,..., ¥n} for HE is said to be associated with { V;} jez if {rxye : k € Z9,1< € < N}
is a Parseval frame for W, = V; © V. We say that a Parseval wavelet frame is an H é—
FMRA wavelet frame if ¥ is Parseval wavelet frame associated with some HZ-FMRA.

A slightly more flexible type of Parseval wavelet frame is the following.

Definition 1.2 Let{V;};z, ¢ Hg bean Hg,-FMRA. We say that ¥ = {y,..., ¥y} c
Hg, is a Parseval wavelet frame arising from {V;};ez if ¥ ¢ V; and the associated
affine system (1.1) is a Parseval wavelet frame for Hz. Sometimes it is said that ¥ =
{y1,...,¥n} c HE is an H-FMRA based wavelet frame if ¥ is a Parseval wavelet
frame arising from some HZ-FMRA.

The following definitions were introduced in [27].

Definition 1.3 Let A:R"” — R” be an expansive linear map and let G ¢ R” be an
A*-set. It is said that x € R" is a point of (A, G)-density for a measurable set E c R",
|E|, > 0, if for any r > 0,

E A7IB, "
i EOL(G N ATTB) +x]l,
joo |G N A7iB,|,

https://doi.org/10.4153/50008439519000341 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000341

162 A. San Antolin

Definition 1.4 Let A:R" — R” be an expansive linear map and let G ¢ R” be an
A*-set. Let f:R" — C be a measurable function. It is said that x € R" is a point of
(A, G)-approximate continuity of the function f if there exists E ¢ R", |E|, > 0, such
that x is a point of (A, G)-density for the set E and

lim £(y) = f(x).

y=x
YeE

Observe that if G = R” and A = al, where a > 1and I is the identity map on R”,
then the definition of a point of (A, G)-approximate continuity coincides with the
well-known definition of approximate continuity (cf. [11,38]).

This paper is structured as follows. In Section 2, we present the main results of
this paper with their proofs. In Section 3, we show some examples of Parseval wavelet
frames. Section 4 is devoted to comparing conditions on the Fourier transform of
involved refinable functions in different versions of Extension Principles.

2 Main Result

We present the main results of this paper. In what follows, we fix A:R" — R" an
expansive linear map such that A(Z") c Z". Let us fix Ts» = {pk}Z:gl, where pg = 0,
a full collection of representatives of the cosets of (A*)™'Z" /ZZ". Moreover, we fix an
A*-set G c R" and the subspace HZ. In order to shorten the notation, if we write a
wavelet frame we mean a wavelet frame for HZ, associated with the dilation A.

The following result characterizes all Parseval wavelet frames for some reducing
subspace that can be constructed via the Oblique Extension Principle.

Theorem 2.1 Let ¢ € HE such that

(A1) = Hy(1)§(t), a.e,
where Hy € L™ (T"). Let Hy, ..., Hy € L(T") and define y, ..., yn € L*(R") by

Te(A*t) = Hy(O)$(t) ae, €=1,...,N.

Then the following are equivalent.

(i) 'The set of functions {y, : € = 1,..., N} is a Parseval wavelet frame associated
with A for HZ,.
(ii) There exists S, a non-negative 7" -periodic measurable function such that \/S|¢| €
HE and also
(a) the origin is a point of (A*, G)-approximate continuity for S|¢|?, provided
SO0 = 1
(b)

N
(2.1) S(A*t)[Ho()[* + " [He(t)] = S(1), ae teR"~Ng
=1

(c) the equality
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(2.2) S(A"t)Ho(t)Ho(t+ pi) + ZHz JHe(t+pi) =0
e=1
holds for a.e. t € R" N5 and for any pi, k = 1,...,d4 — 1, such that
t+px€ R" N'(;

To prove (ii) implies (i) in Theorem 2.1 we need the following result.

Lemma 2.2 Let ¢ € H2 such that |$(t)| < 1a.e. and the origin is a point of (A*, G)-
approximate continuity of ||, provided |$(0)| = 1. Let g € L*(R") such that § is
continuous and compactly supported. Consider f € L>(R") defined by f = gxc. Then
for any & > 0 there exists ] € N such that

(2.3) (-9lfl3< X Kf:-Dhng)P < IfI5 VizJ.

keZ"

Proof According to the hypotheses, supp(f) c By for a fixed R > 0 and there exists
K > 0 such that |f(t)| < K for every t € R". By Parseval’s formula,

(2.4) > K Dhng)’ = 3 [ Dhneg)P = Y. (D) fo )

keZ" keZ" keZ"

>

kez?

7 2
v 1y, P FOF ™

Since A* is expansive, there exists jo € N such that if j > jo, then (A*) /By c
[-1/2,1/2]¢. For those j, the sum over k € Z" in (2.4) may be interpreted as the
sum of the squares of the moduli of the —k-th Fourier coefficients of the function

D4+ f(t)(t). Thus

@3 LU= [ D FOPBOF V> o

keZ" (A*)7/Br

Since |$(t)| < 1a.e., the right inequality of (2.3) follows. Now we prove the left in-

equality of (2.3).

ALet 0 < ¢ < 1and take the set A, = {t € G : [$(t)] < 1- ). Since |6(0)] = 1,

|¢(t)| < 1a.e. and the origin is a point of (A*, G)-approximate continuity of | @],
|(Gn(A*)7Br) nAY|,

lim - =1
j—oo |G N (A*)7IBgla

This implies that there exists ] > jq such that if j > J, we have

[(A")7(GnBrnAYAL)], = [(G N (A")/Br) N A <

T

Thus, if j > J

(2.6) |G Br N A Agln < = || f3-

2K2
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According to (2.5), if j > ] we obtain

LMD > (123) [ IDw TP

keZ" 2

> (1-2) 17~ [ o RO

Furthermore, by the inequality (2.6), if j > J we have

. 8 *,
> [(f. Dhm) > (1= =) If13 - K°1G n Br n A% A,
keZ" 2

> (1- ) IfB- K 13 = (- o)l B

2K?
This finishes the proof. ]

Proof of Theorem 2.1 We prove (i) implies (ii). Without loss of generality, we can
assume that He(t) = 0,a.e.t € N, £=0,1,..., N. The function

2 S *M g\ |2 m-l *ke\(2

2.7) O(t) = 3 > [He(A™" )" TT [Ho(A™0)[*,

m=0 ¢=1 k=0

with the convention [T;L, |Qo(A**t)|? = 1, is usually called the fundamental function
associated with Hy, ..., Hy. Let us mention that we have assumed H,(t) =0 a.e. t €
N3 to avoid problems with the measurability of ®. Note that fundamental functions
were introduced in [43].

We will see that the conditions in (ii) hold when we consider ® instead of S. Ac-
cording to Lemma 2.3 and Lemma 2.10 in [32], we know that

1:]lim O(AYY)|p(AY? ae teG.

Thus, that the origin is a point of (A*, G)-approximate continuity of ®|¢|?, if we set
©(0)|$(0)|? = 1, follows by [46, Lemma 2.5].

The remainder is proved in [32] (e.g., see also [2]).

We prove (ii) implies (i). First, we prove this implication in the particular case
when S(t) = 1. This case is usually called the Unitary Extension Principle.

Our starting point is Lemma 2.2. Afterwards, the proof may be finished following
the strategy by Benedetto and Treiber [6] (see also [32], [30]).

When § is a general function described in (ii), consider ¢ € HZ defined by ¢(t) =

\/S(t)¢(t). Observe that
AT = VSADFAD) = VSADH (OF() = Q(OF(1) ace.

and

o 1 _ N

Pe(A*t) = %He(t)\/s(typ(t) = Q(t)p(t), aef=1...,N,
where Qp, Q1, ..., Qy are Z"-periodic measurable functions defined by
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Qo(t) = Sé?:)t)Ho(t)’ Qe(t) =4/ %Hg(t), ¢=1,...,N.

According to our hypotheses, the origin is a point of (A*, G)-approximate continuity
for @, provided that (0) = 1. Analogously to the proof of Proposition 1.11 in [17], we
getthat ¢, ¥, Qo and Qp, € =1,. .., N, satisfy the Unitary Extension Principles. Then
the statement follows. ]

The following result gives a characterization of all Parseval wavelet frames for an
HE, arising from a fixed Hg-FMRA.

Theorem 2.3 Let {V;}ez ¢ Hg be an HE-FMRA with a scaling function ¢. Let
¢ € H% defined by g(t) = ¢(t)/[¢,d]V2(t). Let ¥ = {yy,...,yn} c HZ. The
following are equivalent.
(i) The set of functions ¥ is a Parseval wavelet frame for Hg, arising from {V;} jez.
(ii) ‘There exist Hy, Hy, ..., Hy € L (T") such that
(a)
9(A™t) = Ho(t)9(t), ae., §p(A*t) = Ho(t)9(t) ae., £=1,..., N,

and

(b) there exists a non-negative S € L= (T") such that the origin is a point of
(A*, G)-approximate continuity for S if we set S(0) = 1, and the equalities
in (2.1) and (2.2) are satisfied.

Proof We see that (i) implies (ii). There exist Hy, Hy, ..., Hy some Z"-periodic
measurable functions such that

9(A™t) = Ho(t)g(t) ae,and v,(A"t)=H,(t)g(t), €=1,...,N ae,

because {y1,...,¥n} c V5. Since {¢(- — k) : k € Z"} is a Parseval frame for Vj, we
have Yy [@(t—k)[> =1a.e. t € T" \ Ng. Thus Hy can be taken in L (T"). Indeed,
it can be assumed that He(t) = 0,£=0,1,...,N, a.e. on Ng.

Let ® be the fundamental function associated with Hy, Hj, ..., Hy defined as
in (2.7). Since ¥ is a Parseval frame for HZ, we have already said that ® satisfies
the condition (ii) in Theorem 2.1 if we consider ® instead of S. It remains to see that
®, Hy,...,Hy are in L (T") and the origin is a point of (A*, G)-approximate con-
tinuity for @ if we set ©(0) = 1.

We know that ©(t) Yyezn [6(t - K)[> € L=(T") (e.g., see (2.4) in [2] or proof of
Lemma 2.12 in [32]). Furthermore, since ¥z [¢(t —k)|* = 1a.e. t € T" \ N and
bearing in mind that ©(t) = 0 a.e. on Ng, we conclude that ® is in L*°(T"). Hence
Hji, ..., Hy can be taken in L (T").

By (ii) in Theorem 2.1 we know that the origin is a point of (A*, G)-approximate
continuity for ®||? is we set ©(0)|9(0)|* = 1. By Theorem 3.1 in [27], the origin is a
point of (A*, G)-approximate continuity for ¢ is we set (0) = 1. Hence, the origin
is a point of (A*, G)-approximate continuity for ® is we set ©(0) = 1 follows.

We check that (ii) implies (i). By (a) we know that ¥ c V;. In addition, by The-
orem 2.1, we conclude that ¥ is a Parseval wavelet frame for H5. Hence the proof is
finished. ]
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The following is a characterization of all Parseval wavelet frames associated with a
fixed Hg-FMRA.

Corollary 2.4  Let {V;}jez ¢ Hg be an HG-FMRA with a scaling function ¢. Let
¢ € L3(R") defined by $(t) = ¢(t)/[$, $]2(t). Let ¥ = {y1,...,wn} c H:. The

following are equivalent.

(a) The set of functions ¥ is a Parseval wavelet frame for Hg, associated with { V;} jez,.
(B) The condition (ii) in Theorem 2.3 holds and also
da-1

(28) Y Ho(t+pi)He(t+px) =0, foraeteR" Ny €={1,2,...,N}.
k=0

Proof First, observe that condition (2.8) means that the y; are orthogonal to the
subspace Vj (e.g., see the proof of Theorem 2.4.3 in [30]). Therefore, by Theorem 2.3,
(2.8), and the definition of Wj, j € Z, the statements follow. [

3 Examples

The main results in this note focus on Parseval wavelet frames with no regularity of the
Fourier transform at the origin. Here, we give some examples to illustrate Theorems
2.1and 2.3.

The following example exhibits orthonormal wavelets whose Fourier transforms
are not continuous at the origin.

Example 3.1 Let A:R” - R" be an expansive linear map such that AZ" c Z" and
G = R". Our starting point is ¢ € L?(R"), the scaling function of a multiresolution
analysis associated with A that is constructed in [44, Theorem 2.2]. This function ¢ is
defined by ¢ = yg, where E c R" is a bounded measurable set satisfying

(i) the origin is a point of A*-density for E and 0 € E;

(i) Ykezr xe(t) = 1
(iii) (A*)'EcE;
(iv) for any open neighborhood of the origin, U, there exists an open set included

inE‘nU.
By condition (ii), we have that {¢(-—k) : k € Z"} isan orthonormal system. Acording
to (ii) and (iii),
XE A* (t + k)
Ho(t) — Z Q
ez xe(t+k)

is a well-defined Z" -periodic function that satisfies the following refinable equation

$(A™t) = Ho(1)$(1).

If {pk}Zigl, where pp = 0, is a full collection of representatives of the cosets of

(A*)'Z"|Z", define

Te(A*t) = Ho(t+pe)d(t), Ce{l,....ds—1).
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It is not hard to prove that ¥ = {yy,...,y4, 1} c L*(R") is a set of orthonor-
mal wavelets in L*(IR") associated with A. In addition, according to conditions (iii)
and (iv), some of the ¥, are not continuous at the origin.

For any Hg where G is open, we construct Parseval wavelet frames where the
Fourier transform of some generators is not continuous at the origin.

Example 3.2 Let A:R"” - R” be an expansive linear map such that AZ" c Z" and
G c be an open A*-set.

Since A* is expansive, there exists R > 0 such that U2o(A*)/Bg ¢ [-3,3)"
Let F := Gn U]f’zo(A*)‘jBR and observe that the set F can be written as F = G n
U;ﬁi o(A*) "I Bg, where jo € N is such that if j > jo then (A*)™/Bg c Bg. This j, exists
because A* is an expansive linear map. Further, the set F \ (A*)7!(F) is an open
measurable set, because the set F is an open measurable set and A is a continuous
map. Moreover, since A* is expansive, it is clear that |F ~ (A*)™(F)|, > 0.

Now let F; = (A*)'F~ (A*)"7'F, 1 € {0,1,2,...}. Observe that the measurable
sets Fj are disjoint. Moreover, F \ {0} = U2, F;. If x € F\ {0}, thenx « (G a
(A*)7/Bg) for some j € {0,1,2,...}. Let ji be the biggest number in {0,1,2,...}
suchthatx € (G n (A*)™Bg). Thusx € Fj, = (A*)"F \ (A*)™7'F.

Furthermore, observe that there exists yo € R"” and r > 0 such that B, +y, c Fy.

Let

E= U Fj~[(A") /By, +y0).

C38

0

J

It is easy to see that the set E satisfies |E|, > 0, E c [-3, )", (A*)™'E c E, and for any
open neighborhood of the origin, U, there exists an open set included in E° n U. In
addition, that the origin is a point of (A*, G)-density for E can be proved as in Step 2
of the proof of Theorem 2.2 in [44].

From this set E, we continue our construction as in Example 1 to obtain ¥ =
{v1,...,Wa,.1} © HE, a set of Parseval wavelet frames for HZ, where the restriction

on the set G of some {; are not continuous at the origin.

The purpose of the following example is to show visually how the previous exam-
ples work.

Example 3.3 Let M be the linear map in R* such that M* (x, y) = (2x +2y,2y). It
is easy to see that

{Po=(0,0), p1=(50), p2=(03), ps=(53)}

is a full collection of representatives of the cosets of (M*)™'Z*/Z>.

Take the set E = [-1, 3]~ {(x,y) € (-3, 3)*: x, > 0}. The function ¢ € L&)
defined by ¢ = y is a scaling function of a frame multiresolution analysis associated

with M.
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=

=
x
W=
N

M*1E

8]
t
=
Ll

N

=

Define H, as the Z*-periodization of yy«-1z. Then {y1, 2, v3} defined by

Pe(M*t) = Ho(t+pe) (1) $(1)

is a Parseval wavelet frame for L?(R?*) associated with the dilation M.

Observe that in Theorem 2.1 the condition that the origin must be a point of ap-
proximate continuity of the Fourier transform of the involved refinable function when
the function takes the value 1 at the origin, is not assumed. Then Theorem 2.1 provides
a more flexible way for constructing wavelets frames than the different versions of the
Oblique Extension Principle that appear in the literature. To show this fact, we give
the following example.

Example 3.4 With the same notation as in Example 1, let C € (0, 00) \ {1}. We take
the function ¢ := C¢. Itis clear that the origin is a point of A* -approximate continuity
of ¢ with $(0) = C and

P(A"t) = CH(A™t) = CHo(1)$(1) = Ho (1) (1).

Moreover, for £ € {1,...,d4 — 1} we can write

FeA") = ZHa(t+ p)P(D) = Qu(VF().

where Q,(t) = %HO (t + pe). Therefore, the hypotheses and condition (ii) in Theo-
rem 2.1 hold for @, y,, the filters Hp, Qp, and S(t) = 5.

CZ

4 On Conditions at the Origin of the Fourier Transform of the
Refinable Function

In this last section, we will make some comments on the conditions at the origin of the
Fourier Transform of an involved refinable function in Extension Principles assumed
by Han [21,22], by Li and Zhang [32] and the condition used in this note. In particular,
we will see that those conditions are not equivalent.

The linear space of all compactly supported C*° (R") (test) functions with the usual
topology will be denoted by D(R"). For g € D(R") and f € L} (R"), with some
abuse in the notation, we will write

(f.8)= [ fOg(0)at
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According to our context, the condition used by Han may be written as follows.
Given f € L} _(R"), the following identity holds in the sense of distributions:

loc

(4.1) lim |f(A7/t)] = 1.
]—>00

More precisely,
Jim (If(A™0)]. ¢) = (Lg),  vge DRT).
Let f be the function in L} _(R) defined by

loc
F(x) = X () + 20272y e pe a2 (%),
£=0

We will see that the origin is a point of approximate continuity of f but (4.1) is not
satisfied with A = 2.
Denote F = [-1,1] ~ U2, (27671, 27571 + 272672) Since
277[-1,1]nF
lim P10 F . InF|
PR L]
|277[-1,1] n (Uge (27871, 2767 + 272672)) |

=1- lim -
j=eo 277 [-11]|
Uoi 2—€—1) 2—€—1 + 2—2€—2
=1—lim| =) : )|=1,
j=oo 1277 [-L1]|

the origin is a point of density for the set F. It follows rapidly that the origin is a point
of approximate continuity of f.

Now we see that the function f does not satisfy the condition (4.1) with A = 2. Take
g € D(R) such that g is nonnegative, with value 1 on the interval [-1,1], supported
on [-2,2], increasing on [-2, 1], and decreasing on [1, 2]. We have the inequalities

. 1 . o2
lim (f(27/0)).g)> lim [ tyde=lim2 [ f(y)dy
j—oo j—oo J-1 j—oo -2~

) 27 oo
=2+ lim 2/ [ 2y grpaeny (1) dy

j—oo 2-J )
=2+ 2% =4>(1g).
k=0

This implies that (4.1) does not hold.

By a second look at this example, we can conclude that the origin is a point of
approximate continuity of f but the origin is not a point of Lebesgue of f. In addition,
the origin is a point of M*-approximate continuity of the function yg in Example 3
and the origin is not a point of Lebesgue of yg.

The condition used by Li and Zhang [32] on a neighborhood of the origin of the
Fourier transform of a refinable function can be written as

(4.2) lim [f(A7/t)|=1 ae. onG cR", some A-set.
j—oo

We have already used that the condition (4.2) implies that the origin is a point of
(A, G)-approximate continuity of f, provided that f(0) = 1, see [46, Lemma 2.5].
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The converse implication may be false, as is proved in [45, Proposition 2], where is
shown an example of a function for which the origin is a point of approximate conti-
nuity but the condition (4.2) does not hold when A is the dyadic dilation and G = R".

One more difference is the following. It is well known that there exist functions
f:R = [0, 00) such that lim;_,e f(47/t) = 1forall f € Rbutlim;.e f(27/t) does
not exist. In contrast to this, we have the following.

Proposition 4.1 Let m € {2,3,...}, let A be an expansive linear map on R" and let
G c R" be an A-set. Let f:R" — R" be a measurable function such that the point x is a
point of (A™, G)-approximate continuity of f. Then x is a point of (A, G)-approximate
continuity of f.

Proof Without loss in generality we assume that x = 0. Since the origin is a point of
(A™, G)-approximate continuity of f, there exists an E c R" such that the origin is a
point of (A™, G)-density for E.

Let r > 0. We consider j € N of the form j = mp + k with p € {0,1,...} and some
fixed k € {0, ..., m—1}. By the continuity of the linear map A, there exists 0 < r; < R
such that B,, c A*B, c Bg,. Then we have

[En[(GnA™ (OB )],
(G AP 0IB,)],
L EA[(Gnahp ),
B |(GnA-(mpR)B )],
|A™PE® 0 [(G n Br,)]ln [(G 1 Bg, )

B (G N Bg)ln (GAB)lw
as p — oo, because the origin is a point of (A™, G)-density for E. Thus the origin is a
point of (A, G)-density for E and the statement follows. ]
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