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Abstract

We extend various characterizations of scalar-valued lower semicontinuity and determine their
relationship to the continuity of vector-valued convex functions. Order completeness of the range
space is not assumed.
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0. Introduction

The continuity properties of scalar-valued convex functions are well documented
(for example [9], [10]). Motivated by much recent activity in abstract convex
optimization (for example [3], [4], [5], [15]) and vector-valued subdifferential
calculus (for example [12], [13], [14]), this note develops a corresponding theory
for the vector-valued case.

We extend and compare various characterizations of scalar-valued lower semi-
continuity. Vector-valued lower semicontinuity has been considered by Théra
[12], though only with a subdifferential calculus in mind. This requires order
completeness of the range space, a restriction not required in our present context.
Borwein [2], [3] has also considered continuity properties of vector-valued convex
functions, mainly via the medium of multifunctions. Our approach, however, is
more in the spirit of classical convexity-continuity arguments. Indeed, the abstract

© 1984 Australian Mathematical Society 0263-6115/84 $A2.00 + 0.00
404

https://doi.org/10.1017/51446788700025453 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025453

(21 Continuity of convex functions 405

setting helps to elucidate the essential features of the classical arguments. A
crucial result in our development is that a vector-valued convex function on R” is
continuous throughout the relative interior of its effective domain (Corollary 3.2),
a property well known in the scalar case.

The generalized definitions of semicontinuity are given in Section 2, and their
relationship to the continuity of convex functions is discussed in Section 3. In
Section 4 we introduce a topology of uniform convergence which is useful in
many applications (for example, optimization subject to cone constraints), and for
which the results of the preceding sections are considerably simplified.

1. Preliminaries

Throughout this paper X shall denote a (real Hausdorff) topological vector space
(t.vss) and (Y, K) shall denote a partially ordered topological vector space
(p.o.t.v.s.), where K is a closed convex cone in Y and the partial order, =, is
given by y, =g », if and only if y, — y, € K. We denote Y:=YU {00}, where
oo is an abstract maximal element. Adjoining oo permits the consideration of
functions defined on the whole of X rather than just on a subset of X. Accord-
ingly, the (essential) domain of a function f: X - (¥, K) is

dom f:= {x EX:f(x) € Y}.

For aset A C X, co A4, aff A, sp A, int 4, and A shall denote the convex hull,

affine hull, linear hull, interior and closure of A respectively. The relative interior of

dom f, ri(dom f), is the interior of dom f relative to aff(dom f). The intrinsic
core of dom f, icr(dom f'), is defined by

(1) icr(dom f) := {x € X: (Vz € aff (dom f))(@\, > 0)(V|A|< Ay)
x+Az€E€domf}.

It should be noted that many references (for example [2], [10]) use instead the core
of dom f, cor(dom f), which is defined as in (1) except that aff(dom f) is
replaced by X. Usually, however, only aff(dom f) is of any interest, so that the
latter definition is unduly restrictive. Moreover, if dom fis convex then ri(dom f)
= icr(dom f) under any one of the following conditions: (a) ri(ldom f) + &, (b)
X = R", (c) dom fis closed and sp(dom f — dom f), with the topology inherited
from X, is barreled (see [10, page 31)).
A function f: X — (Y, K) is convex (often called K-convex) if

(2) f(}‘xl +(1 _)\)xz) Sk}\f(xl)"'(l = M) f(x;)

whenever x,, x, € dom f and 0 <A < 1. Clearly (2) holds if x, & dom f or
x, & dom f. Also note that dom f is convex if fis convex.
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A p.o.t.v.s. (Y, K) is normal (often said K is normal in Y) if there is a base V of
neighbourhoods of 0 in Y such that
vwweVyw=[v]:=(W¥+K)n(V—-K).
Most commonly occuring cones are normal, so that this is not a severe restriction.
Note that we lose no generality in assuming that each ¥V € Vis symmetric. If Y is
a locally convex space (l.c.s.), we may also assume that each V € Vis closed (see

[8, Chapter 2, 1.5]). There are many equivalences and consequences of normality
for which the reader is referred to [6], [8], [11].

2. Semicontinuity and quasicontinuity

A function f: X — (¥, K) is lower semicontinuous (1.s.c.) at a, relative to a set
A C X containing a, if for each neighbourhood V of 0 in Y there is a neighbour-
hood N of 0 in X such that

3) flla+ N)ynd)cf(a)+ V+K;

if A = X, reference to A4 shall be omitted. We shall say that f is lower quasicontinu-
ous (1.q.c.) if there is a base “Vof neighbourhoods of 0 in Y such that

(4) L(y,V):={x:f(x) Ey+V—K} isclosedin X,
for each y € Y and each V € V. Corresponding definitions of upper semicontinu-
ity (u.s.c.) and upper quasicontinuity (u.q.c.) are obtained by replacing K by X in
(3) and (4) respectively.

We shall also say that f satisfies property (E) if it has a closed epigraph, that is,
(E) epi f:= {(x, y): f(x) <xy} isclosedin X X Y;
and that f satisfies property (L) if it has closed (sub-) level sets, that is,
(L) L(y):= {x:f(x) <x Y} isclosedin X,
foreachy € Y.

The definitions of ls.c., (E) and (L) are immediate extensions of lower
semicontinuity for scalar-valued functions. The motivation for l.q.c. is less ap-
parent and will be made clearer in Section 3 (see Theorem 3.5). For the moment

it will suffice to observe that l.s.c., 1.q.c., (E) and (L) are all equivalent in the
scalar case. More generally, we have the following implications.

THEOREM 2.1. (i) I.g.c. = (E) = (L).
(ii) If Y has a neighbourhood base Y in which each neighbourhood possesses a
majorant of itself, then (E) = l.q.c.
(iii) If K has non-empty interior, then (L) = (E).
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(iv) If K is normal and has non-empty interior, then
l.g.c.=(E) «(L).
) Ls.c. (at each x € X) = (E).

ProOOF. (i) [l.q.c. = (E)] Let {(x,, y,)} Cepif and (x,, y,) —'(x, y); here
{(x,, ¥o)} denotes a net, indexed by a. Fix ¥ € V. There exists a, such that
Yo €Ey + V, and hence

for all @« = a,. Then f(x) €y + V' — K by lLq.c. Since V is arbitrary and K is
closed, it follows that f(x) € y — K, so that (x, y) € epi f.

[(E)=(L)] Let y€ Y, {x,} CL(y) and x, — x. Then (x,, y) E epi f, so
that (x, y) € epi fby (E); thus x € L(y).

(i) Fixye Yand V€ V. Let {x,} CL(y,V)and x, > x. Let b€ V' be a
majorant of V. Then

fix,)Ey+V—-—KCy+v—K,

sothat(x,, y + ©) € epi f. Then(x, y + ©) € epi fby (E),sothatx € L(y, V).

(iii) Let {x,, y,} C epi fand (x,, ,) = (x, ¥). Fix k, € int K and let V be a
symmetric neighbourhood of 0 in Y such that k, -+ V' C K. Then there exists a,
such that y, € y + V, and hence

f(x)Ey,—KCy+V—K=y+ky—(kg+V)—K
Cy+ky—K,

for all a = a,. Thus f(x) €y + k, — K by (L). Since k is arbitrary and K is
closed, it follows that f(x) € y — K, so that (x, y) € epi f.

(iv) The proof depends on the fact that the hypothesis in (ii) is satisfied, and is
best deferred until the end of Section 4.

(v) Let {(x, y,)} Cepif and (x,, y,) = (x, ). Fix ¥V €V and choose a
circled neighbourhood U of 0 in Y such that U + U C V. Using l.s.c. at x, there
exists a, such that f(x,) € f(x) + U+ K and y, € y + U for all a = a,. Then,
since f(x,) € y, — K, it follows that

f(x)ey, +tU~KCy+U+U—KCy+V—K.

Then since V is arbitrary and K is closed, we have f(x) €y — K, so that
(x,y) Eepi f.

The following examples show that the hypotheses made in Theorem 2.1 cannot
in general be removed.
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EXaMPLE 2.2. Let Y=1' and K = {y € I': (Vi € N)y,=0)}. For n €N, let
e, = (y,) wherey, = §,,, and define f: R - Y by

f(x) = {e,,, if | x|= 1/n,

o0, otherwise.

in>

Then f satisfies (E) (note that (0, y) & epi f for any y € Y) but f is not lower
quasicontinuous. For example, if V' is the unit ball in Y, then 1/n € L(0, V') but
0 & L(0, V). This example shows that (ii) can fail without the ‘majorant’ hy-
pothesis.

ExamPLE 2.3. Let Y = R? and K = R, X {0). Define f: R - Y by
0,x), ifx>0,
o= { @)

00, otherwise.
Then f is K-convex and satisfies (L) (if y = (y,, »,), then L(y) = {»,} if y, =0
and y, > 0, otherwise L(y) = &) but f does not satisfy (E). For example,
(1/n,(0,1/n)) € epi f but (0,(0,0)) & epi f. Thus (iii) can fail without the ‘non-
empty interior’ hypothesis.

ExaMPLE 2.4. Let X = Y = {(x,): x; = 0 for all but finitely many i € N} and
let K={x € X: (Vi € N)x;=0}. Norm X by |jx|| = sup;|x,|. Let C= {f:
n € N} where f,: X — X is defined by

£(x) = (x,2x5,...,nx,,0,...).
If x € X then x = (x,,...,Xx,,;0,...) for some m = m(x). Hence
£(x) <gkllxli(1,2,...,m,0,...)

so that {f(x): n € N} is majorized for each x € X. Since (X, K) is order
complete [8, Chapter 1, Example 1.6] we can define a function f: X — X by

f(x) = sup f,(x).

It is routine to check that f is K-convex and lower quasicontinuous, and hence
that f satisfies (E) and (L). However f is not continuous, and hence not lower
semicontinuous. For example, n7'e, = 0 but f(n'e,) = e, » 0= f(0). This
example shows that the reverse implication in (v) need not be true.

If X is locally convex and f is K-convex, it is evident that (E) and (L) are
preserved when passing to the weak topology on X (for closed convex sets in a
locally convex space are weakly closed). The same is true for lower quasicontinu-
ity if, in addition, Y is locally convex (for then each L(y, V') is convex). These
observations lead to the following variation of Theorem 2.1 (ii).
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THEOREM 2.5. If Y is locally weak compact ( for example, if Y is a reflexive
Banach space) and f is K-convex, then (E) = l.q.c.

PRrOOF. Fix y € Y and V € % (we may assume that V is weak compact). Let
{x,} CL(y,V) and x, — x. Hence, for each a, there exists v, € V such that
(x,, ¥ +v,) € epi f. By passing to a subnet of {v,}, if necessary, we may assume
that v, - v € V (weakly). Then (x, y + v) Eepi f by (E) and the remarks
preceding the theorem, so that x € L(y, V).

If (Y, K) is normal, then upper and lower semicontinuity jointly characterize
continuity, though this is not necessarily the case for upper and lower quasicon-
tinuity (whence our notation).

Note also that upper semicontinuity, expressed in another way, is just the
condition that the multifunction H;: X - 27, defined by Hi(x):= f(x) + K, is
lower semicontinuous (see, for example, [1], [3]). This prompts the warning that
function and multifunction semicontinuity are not equivalent notions. In the
present context we shall only be concerned with functions so that no confusion
should arise.

Finally, we recall that scalar-valued lower semicontinuity has also a “limit
inferior” characterization. The vector-valued case, however, 1s much less tractable.
A particular problem is that the infimum (or supremum) of a set need no longer
be “topologically” close to the set. In the case where (Y, K') is order complete,
and assuming a certain compactness property, Penot has managed to define a
limit inferior which is the infimum of cluster points [7, Definition 24 and
Proposition 29). Using this it is possible to show that a function f satisfies
property (L) if and only if

(Vx € X)f(x) <k liminf f(z).

We mention this only in passing, however, for it will have no direct bearing on
our present work.

3. Continuity of convex functions

The classical condition (necessary and) sufficient for continuity of scalar-valued
convex functions is that of being “bounded above on an open set” (see, for
example, [10, Theorem 8)). In the vector-valued case, this suggests the existence of
y € Y and an open set N C X such that

) f(N)cy-K
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(see {2, Corollary 2.4(a)]). This assumption, however, is far too strong, especially
in the case where int K = @. For example, if X =Y = R? and K = R, X {0},
then f(x,, x,) = (0, x,) is a continuous linear function which does not satisfy (5).
As another example, the identity map on /? (1 < p < c0) does not satisfy (5).
Before giving the appropriate modification of (5), we give a special case which
motivates the transition.

THEOREM 3.1. Let X be a t.v.s., let (Y, K) be a normal p.o.t.v.s., let f:
X - (Y, K) be K-convex, let a € X. If there is a (topologically) bounded set C C Y
and an open set N C X containing a such that
(6) f(N)cC-K,

then f is continuous at a.

PRrROOF. Without loss of generality we may assume that a = 0, f(0) = 0 and that
N and C are symmetric. Let 0 <A < 1. If x € AN then, by convexity of f,
f(x)e (1 =A)f(0) +Af(x/A) —KCAXC—K), and
f(x) € (1 +A)f(0) —Af(-x/A) + KCAMC +K),
so that
) fAAN) cA((C+ K)Nn (C—K))=A[C]

Since K is normal and C is bounded, [C] is bounded by [6, 3.2.6]. Hence, for each
neighbourhood V of 0 in Y, there is A > 0 such that A[C] C ¥V which, together
with (7), shows that f is continuous at 0.

COROLLARY 3.2. Let (Y, K) be a normal p.o.t.v.s., let f: R* - (Y, K) be convex.
Then f is continuous, relative to aff(dom f), throughout ri(dom f) = icr(dom f).

PRrOOF. If rildom f) = @ there is nothing to prove. If ri(ldom f) & then it
contains m + 1 affinely independent points x;, i = 1,2,...,m + 1, where m is the
dimension of sp(dom f —~ dom f). Then (6) is satisfied by

C=co{f(x;):i=12,....m+1} and N =rico{x;:i=12,....,m+ 1}.

Moreover, if a € ri({dom f), the points x; can be chosen so that a € N.

Corollary 3.2 generalizes a well-known scalar result (see, for example, [10,
Corollary 8A]). One important consequence is that a convex function is always
continuous along any “line” in the relative interior of its effective domain. An
alternative proof of this, based on monotone convergence properties in normally
ordered spaces, has been given by us in [15, Proposition 3.3].

We are now in a position to show that upper semicontinuity (that is, (3) with K
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replaced by —-K) is the appropriate modification of (5). Note that (6) is a strong
way of ensuring upper semicontinuity.

THEOREM 3.3. Let X be a t.v.s., let (Y, K) be a normal p.o.t.v.s., let f:
X - (Y, K) be convex, let a € X. Then f is continuous at a if (and only if) f is
upper semicontinuous at a. In this case f is actually continuous throughout int(dom f).

PrROOF. The necessity of upper semicontinuity is immediate. Conversely, sup-
pose that f is upper semicontinuous at a. As before we may assume that a = 0,
f(0) =0, and that each V and N (in the definition of u.s.c.) are symmetric. If
x € N then

f(-x)eK—f(x) CK—-(V—-K)=V+K
by convexity and upper semicontinuity of f. Hence, since X is normal,
fINC(V+K)N(V—K)=V,
so that f is continuous at 0.

Now let x € int(dom f); then there is A, > 0 such that Ax € dom f for all
|A — 1|< A,. Fix ¥V € Vand choose a circled neighbourhood U of 0 in Y such
that U + U C V. By the continuity of f at 0, there is a neighbourhood M of 0 in X
such that f(M) C U. Then, by the convexity of f,

1x+ 25 = ) A0 + (31008) = 1)) - &

CU+U—-KCV—-K

for A sufficiently close to 1, noting that lim, _, f(Ax) = f(x) by Corollary 3.2.
Thus f is upper semicontinuous, and hence continuous, at x.

It may often occur that int(dom f) = & while icr(dom f) # @. In this event it
is useful to consider the continuity of f relative to aff(dom f). Indeed the proof of
Theorem 3.3 still applies and we obtain:

COROLLARY 3.4. Under the assumptions of Theorem 3.3, f is continuous at a,
relative to aff(dom f), if (and only if ) f is upper semicontinuous at a, relative to
aff(dom f). In this case f is actually continuous, relative to aff(dom f), throughout
icr(dom f).

The assertions of Theorem 3.3 are essentially also proved by Borwein [2,
Corollary 2.4] and [3, Lemma 4], though via a multifunction approach which
necessitates a slightly more complicated form of (3). Our proofs highlight the
significance of upper semicontinuity, and also the “line” continuity of convex
functions remarked at the end of Corollary 3.2.
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It is well known in the scalar case that lower semicontinuous convex functions
with barreled domain space are continuous (see, for example, [10, Corollary 8B]).
More generally, lower quasicontinuity is the appropriate hypothesis, as is shown
below.

THEOREM 3.5. Let X be a l.c.s., let (Y,K) be a normal p.o.l.cs., let f:
X - (Y, K) be convex, let g(dom f— dom f) be barreled (with the topology
inherited from X). If f is lower quasicontinuous then [ is continuous, relative to
aff(dom f), throughout icr(dom f).

PROOF. Let a € icr(dom f) and fix V € V. Then L( f(a), V) is a closed convex
subset of aff(dom f) containing a (closed since f is 1.q.c., convex since f is convex
and V is convex). Let d € aff(dom f); thenlim, 4 f(a + Ad) = f(a) by Corollary
3.2. Hence there is A, > 0 such that @ + Ad € L(f(a), V') for all |A|< A, so that
L( f(a),V)isradial at a. Then

N =(L(f(a),V) —a) 0 (a—L(f(a),V))
is a barrel, and hence a neighbourhood of 0, in sp(dom f — dom f ) satisfying
fla+ N)cCf(a)+ V—K.

Thus f is upper semicontinuous, and hence continuous (by Corollary 3.4), at a
relative to aff(dom f).

Theorem 3.5 should be contrasted with [3, Corollary 9] which shows that (E)
characterizes continuity for convex functions when X is barreled and (Y, K) is a
normal Fréchet space. Example 2.4 shows that Theorem 3.5 and [3, Corollary 9]
need not be true if X is not barreled.

4. A topology of uniform convergence

Throughout this section (Y, K ) is a p.o.l.c.s. (not necessarily normal) and K is a
pointed cone (that is, K N (-K') = {0}). We denote the (topological) dual space of
Yby Y, and K* = {y' € Y": (Vy € K)y'(y) =0} is the dual cone of K. We
shall also assume that int, K # &, where int, K denotes the interior of K when Y
is given the Mackey topology, 7(Y, Y’), that is, the topology of uniform con-
vergence on weak* compact convex circled subsets of Y’ (see [11]). We show that
there is a topology on Y for which the results of the preceding sections are
considerably simplified.

Fix ky € int_ K. Then B = {y’ € K*: y'(k,) = 1} is a weak* compact convex
base for K*, that is, 0 &€ B and K* = {Ab: b € B, A = 0} (see [4, Lemma 2.3]).
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Let G =ext B, where ext B is the set of extreme points of B. As in [15], we define
a norm on Y, called the G-norm, by
Vi := sup |y (¥)I;
yeas
if K is not pointed then || - ||; is only a seminorm. The reason for using G rather
than B is that || - || collapses in standard cases to familiar norms. For example, if
(Y, K)=(R",R" )and k, = (1, 1,...,1), then

IVl = max |y,]
I<i<n

is the /*-norm. If Y = C(T'), the space of continuous real-valued functions on a
compact set T, and ky(¢) = 1, then

lyllg = sup [y(2)]
teT

is the usual supremum norm.

Let Y; denote Y equipped the G-norm topology, that is, the topology of
uniform convergence on G. It is clearly coarser than 7(Y, Y’), but it is not
necessarily a topology of the dual pair (Y, Y’) (see the remarks following
Theorem 4.1). As G completely specifies K, in the sense that k£ € K (respectively
k € int_K) if and only if y’(k) = 0 (respectively y’(k) > 0) for each y’ € G, the
G-norm topology is often the most convenient topology for Y. This is especially
so in problems of optimization where the feasible set is related to the cone X (see,
for example, [15]).

The following result collects some fundamental properties of Y.

THEOREM 4.1 {15, Proposition 3.1].
(i) K is normal in Yg;
() K* —K*=(Y;) CVY,
(iii) int; K = int, K (¥ @), where int; K denotes the G-norm interior of K;
(iv) (Kg)* = K*, where (K;)* denotes the dual cone of K taken in (Y;)'.

ProoF. Statement (i) follows directly from the definition of normality. Since
the G-norm topology is coarser than 7(Y, Y”), (ii) (C) and int; K C int_ K are
evident. Conversely, if y €int, K then inf, .;y'(y) >0 (since G is weak*
compact and 0 & G), whence y € int; K; this completes (iii). Now each positive
linear form on Y is continuous for every topology on Y for which K has
non-empty interior [11, V.5.5); this combined with (iii) proves (iv). Finally, (i1)
(=) follows from (i), (iv) and [8, Chapter 2, 1.21].

It is natural to compare Y; to Y in the case where Y is itself a Banach space.
Since K is normal precisely when Y’ = K* — K* [11, V.3.3 and V.3.5}, (i1) of
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Theorem 4.1 shows that Y;; is a topology of the dual pair (Y, Y") precisely when
K is normal, in which case Y; must be equivalent to Y. A direct proof of this, with
equivalence constants, is given below.

THEOREM 4.2. If (Y, K') is a normal normed space, with norm || - ||, then || - || and
|| - llg are equivalent norms.

PROOF. Since B =co G is convex and weak* compact, B is bounded [11,
IV.5.1]. Thus there is @ > 0 such that||y’||' = a for all y’ € G. Hence

iyl = sup |y'(y)1= sup ¥ 1y (¥)|= alylig-
yl=1 Yy Eeaq

Since K is normal, {11, V.3.4] and [8, Chapter 2, 1.12] show that there is 8 > 0
such that each y’ € Y’ with ||y]| <1 has a decomposition y’ = A, y{ — A, y;,
where y/ € B =co G and ||A,y/]| < B (i = 1,2). Since

1y1= sup [y"(»)1= likoll ™" ¥ (ko)1= [IKoll™
i<

for all y’ € B, it follows that | A, |< B||k,l| (i = 1,2) and that

Iyil= sup |y’ (¥)I< 2Blkoll sup 1y’ (¥) 1= 2BlkolllI¥llg-
Iyli=t y'EB

Hence
al g <Il-1I<2Blkolll - llg-

Theorem 4.1 shows that the normality hypotheses in the results of Section 3 can
be omitted if Y is given its G-norm topology. Moreover, since Y satisfies the
hypothesis of Theorem 2.1 (ii), it follows that lower quasicontinuity, (E) and (L)
are all equivalent. Immediate consequences are a proof for Theorem 2.1 (iv) and a
simpler version of Theorem 3.5:

PrROOF OF THEOREM 2.1 (iv). Now follows from the above remarks and
Theorem 4.2, noting that ¥ must be normable [8, Chapter 2, Proposition 1.10}
and that K must be pointed [11, V.3.1].

COROLLARY 4.3. Let X be a l.c.s., let (Y, K) be as above, let f: X — (Y, K) be

K-convex, let sp(dom f — dom f) be barreled. If epi f is closed then f is continuous,
relative to aff(dom f), throughout icr(dom f).
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