
J. Austral. Math. Soc. 20 (Series B) (1977), 241-253

INVERSE POWER LAW POTENTIALS ABOUT POLYGONAL PRISMS
AND IN POLYGONAL CAVITIES

J. R. PHILIP

(Received 21 July 1977)

(Revised 9 January 1978)

Abstract

The effects on adsorption of the geometry of the solid may be studied through
calculations based on a (distance)"6 (e > 3) intermolecular potential. This
paper establishes the result that the potential due to an infinitely long
polygonal homogeneous solid prism, at position r in the plane of its right
section, is — ££?=i p\~e 2?-i sip; 6tj). Here p( = |r—rt\, where the r( are
the position vectors of the n vertices of the polygon, and 6ti are the angles
r — r< makes with the two sides of the polygon which meet at vertex r(.
The g's are exact functions of Qit. They are, in general, integrals of associated
Legendre functions, but they are elementary for e an even integer. A similar
result holds for the potential within an infinitely long polygonal prismatic
cavity. The analysis involves a systematic superposition schema and the
concept of a supplementary potential with datum within the solid at infinity.
The cases e = 6 and e = 4 are treated in detail and illustrative solutions
given for the following configurations: semi-infinite laminae, deep rectangular
cracks, square prisms, square prismatic cavities and regular n-gonal
prismatic cavities.

1. Introduction

There is need for much further study "to establish quantitatively the way in which
adsorption by solid bodies is dependent upon their separation and orientation" [3].
A recent unitary approach to capillary condensation and adsorption [6] has
enabled investigation of the interaction between these processes for a number of
configurations of the solid. The central concept of the unitary approach is that the
equilibrium liquid-vapour interface is a surface of constant partial specific Gibbs
free energy, 0 = 0^, which satisfies an appropriate differential equation. Here
$.„ is the sum of the capillary potential, C, dependent on the mean curvature of the
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interface, and the adsorptive potential, Y. For an effectively infinite plane solid
surface, *F depends only on v, the normal distance from the surface to the interface
(the "film thickness"), but in general T depends in a more complicated way on
the configuration of the interface relative to the solid. To evaluate the influence of
geometry on adsorption (that is on Y), we need to calculate the adsorptive force
field for various configurations of the solid.

We may do this by integrating the intermolecular potential over the solid
volume. An appropriate form of the intermolecular potential is

dV = h{P)dV, (1)

where d*¥ is the potential of the force field exerted by volume element dV of the
solid at a point at distance p from it. Philip [7] showed that h(p) could be inferred
from experimental data on Y(v) through the relation

p. (2)

We work, in particular, with the inverse power law form

e>3, (3)

with y and e positive constants. We give special attention to the cases e = 6 and
e = 4. To simplify some equations we write fi for iry/6 when e = 6 and A for ny
when e = 4.

Steele and Halsey [10] made the first relevant study. Using (3) with e = 6, that is
the inverse power law of London, they evaluated Y between parallel plates and
gave an integral expression for Y in circular tubes. Van der Waals or dispersion
forces are approximated by e = 6, but electrostatic and other forces are involved
also in adsorption. See, for example, the reviews by Sheludko [9] and Clifford [1].
Philip [6,7] found that experimental data on adsorbed water films in the relative
humidity range 0.70 to 0.99 could be empirically fitted by taking e = 4. He obtained
exact solutions (e > 3) for the following configurations [7]: parallel plates, tubes,
solid cylinders, spherical cavities, solid spheres, wedge-shaped pores and solid
edges.

It was noticed that superposition of various solutions for wedge configurations
would enable evaluation, in exact closed form, of inverse power law potentials
about all homogeneous solid polygonal prisms of effectively infinite length, and
also inside analogous polygonal prismatic cavities within a homogeneous solid.
In this paper we develop a systematic superposition schema which yields general
results embracing the exact solutions to all such problems.

2. Potential outside a solid double wedge

Our point of departure is a variant on the solution given in equations (39)—(41)
of [7]. Using cylindrical coordinates (r, 6,z), we take planes 8 = TT-J8, IT, 2v-f}, 2v
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as the surfaces of the solid double wedge with apical angle jS. The regions
•n—jS^0^7T, 2TT—/J<05S2TT, are occupied by solid. The appropriate integral of
(1), (3) is

e; r,d) = -y f" [ f" + f " 1 f l rg-

(4)
Integration with respect to z is elementary and integration with respect to r0

involves associated Legendre functions [2], which it is convenient to express in
terms of the hypergeometric function, F[, ; ; ]. We thus obtain

T(e; r, 6) = - r 3 -« |J ^ + J^_ JG(e; 60)dd0 (5)

with

(j(e, a) = — y-Zf—. p f(1 — cos a) tet[^e—Z,5 — j e ; %E, J ( 1+COS U)\. (O)

The final two factors of the right-hand side of (6) may be written more simply
(though not more usefully for present purposes) as

Let 8l3 62 be the angles made by any plane d (Q<8<n—fl, IT < 0 <2TT - fi) with
the two adjacent solid surfaces. Then, in view of symmetry, we may write the
integral in (5) as

Also, since P = TT—61-62, the integrals become jg^+jg'61, that is, fgj-*»+jg~e*.
It follows that (5) is of the form

w £ j r, 0) = —r3~e^,g(e; 0A (7)

where

''""'sis; 6)d6. (8)

We now relax restriction of dj to values less than 77 by redefining the dj as the
angles the plane 0 makes with the two solid surfaces, taken directed outward from
the solid. It is readily shown then that when one or both dj are taken as reflex, the
foregoing equation (7) still holds with

TT<dj<2Tr, g{e;dj)=g{E;dj-TT)=\2'"4>'g{e;d)dd. (9)
J 0)—n

For £>2, F[|e-2,2>-\e; | e ; \(\ +cos 0)] is real, positive and finite in 0< 0<TJ-.

The one singularity in (7(0) in 0 ̂  0 < n arises therefore from the term
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[Kl-costf)]1-*8, which behaves like 02~e as 6-+0+. For e>3, g(e; 6), which in
view of (8) is an odd function of 8—\n, approaches +oo as 6-+0+ and approaches
— oo as 6->n— ; and, in view of (9), it approaches +oo as 6->TT+ and approaches
—oo as 6-*2TT—.

When e is an even integer (>4), F reduces to a polynomial of finite degree and
integration of G to secure g is elementary. We thus find that

T(6 ;r,6) = - fir~3 £ [cot3 0,+f cot 6A (10)
3 = 1

Y(4; r, 6) = - A/-1 £ cot fl,. (11)
3 = 1

It will be noted that g{6; 6) and g(4; 0) exemplify the behaviour of g(e; 6) deduced
above.

3. Inside a solid double wedge: the supplementary potential *F*

For our present purposes we require also to evaluate the distribution of potential
inside the double wedge, that is in the regions n—fi<d<n, 2TT—/?< 0<2TT. In
this connection we encounter the difficulty that, in these 0-ranges, the integral in (4)
is divergent. In physical terms, this arises because the work done by the adsorptive
field on a test particle which moves across the wedge surface from outside the solid
to inside it is infinite.

We may, nevertheless, introduce a potential which is finite and well defined in
the regions TT—^<9<TT, 2TT-/S< 0<2TT. We define the supplementary potential
vP*(e; r, 6) as the work per unit mass required to move a test particle from a point
at infinity within the solid double wedge [that is from (oo, 6*), with TT—/?<0*<TT

or 2ir-P<8*<2w] to the point (r, 0). [The ordinary potential Y(e; r, 6) is of
course the work per unit mass required to move a test particle from a point at
infinity outside the solid.]

We observe that the case j8 = n corresponds to occupation of the whole of
three-dimensional space by the solid. In this case the net force on the test particle,
for all (r, &), is zero, so that

W*{e;r,6)=0. (12)

Here, and in what follows, the suffix to T* denotes the value of the apical angle.
We may now evaluate W% for 0 < /? < TT. In this case the solid double wedge is

equivalent to solid three-dimensional space minus a second solid double wedge
0<6<n—l3,iT<d<2TT—p. Accordingly, the supplementary potential Y | is equal
to *F* minus the work per unit mass required to move the particle from (oo, 0*)
to (r, 8) against the force field due to the second solid double wedge. Since W* = 0,
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we find, analogous to (5),

,), (13)) ,
3 = 1

where ̂ ^ a r e the angles the plane 6 makes with the two adjacent solid surfaces
of the second double wedge. If we now write 0,- for either n—#,- or 2ir—ftp (13)
becomes

g i ) , (14)
3 = 1

since — g(e; 8) = g(e; TT—6) = g(e; 2TT— 6). We observe that the expressions (14)
for T* and (7) for T are identical; and we note further the consistent definition
of 6j which holds in both (7) and (14), namely that the 6t are the angles the plane
0 makes with the two solid surfaces, taken directed outward from the solid.

4. Potential inside a polygonal prismatic cavity

Consider now an arbitrary polygonal prismatic cavity, infinite in the z-direction,
and surrounded by homogeneous solid occupying the remainder of three-
dimensional space. On any plane z = constant, the cross-section of the cavity is
the n-gon defined by the n vertices with position vectors rt(i= 1,2, ...,ri). We
proceed to establish a general expression for the potential within this cavity when
the inverse power law (3) holds.

In view of Theorem 2 of the Appendix, superposition of the double wedges
associated with the exterior angles of the n-gon doubly fills three-dimensional space,
other than the cavity, which is left empty.

The potential within the cavity due to the surrounding solid is therefore exactly
half that due to this superposition of double wedges. It therefore follows from (7)
that within this cavity,

Y(£;r) = -i£p?-*£g(£;0y). (15)
i i=i }=\

Here r is the position vector of the point considered in the plane z = constant,
Pi = |r—Tt\, and di} are the angles r—rf makes with the two sides of the n-gon
which meet at the vertex rf. The 8ti are outward directed from the solid surface.

It follows, similarly that the supplementary potential at a point in the surrounding
solid is exactly half the sum of the supplementary potentials due to the two double
wedges which include the point and of the potentials due to the («-2) double
wedges which exclude the point. We therefore have, from (14) and (7), that within
the surrounding solid,

Srf-S^^). 06)
i=l 3=1
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From (10) and (11) we have the special forms of (15) and (16):

within the cavity, Y(6; r) \ n 2

= ~ SPI3!,(cot3 0y+f cot 6ti), (17)
within the surrounding solid, Y*(6; r)J Z l = 1 *=1

within the cavity, *F(4; r) •> \ n 2
= - ~ 2 p F 1 2 c o t 0 y . (18)

within the surrounding solid, r*(4; r)J -=1 ' = 1

5. Potential about a polygonal prism

The general expression for the potential about a homogeneous solid prism of
arbitrary polygonal cross-section, infinite in the z-direction, follows from (16). We
denote by *F(e; r)pr i sm the potential due to the solid prism at point r outside it; and
we denote by T*(e; r)c a v i t y the supplementary potential at the same point due to
the homogeneous solid occupying all three-dimensional space less the space
occupied by the prism. We then have

prism cavity

W(e; r) = -W*(e; r). (19)
prism cavity

It then follows from (16) and (19) that

outside prism, W(e; r) = - \ £ P\~'j:g{e; 9ti). (20)

Note that the 6it for the prism correspond to 2TT— 0tf for the cavity. The negative
sign on the right of (20) follows, since -#(£; &) = g(e'> 2™— 6).

The required expression for the potential is thus identical with (15); and the
special forms of (15), such as the first of (17) and (18), carry over to the prism.
Although the symbols have the same meaning as in Section 4, the configurations
are, of course, totally different.

6. Illustrative examples

We illustrate the general results of Sections 3 and 4 with a few simple examples.

6.1. Semi-infinite laminae
We first consider the potential about semi-infinite laminae. Taking Cartesian

coordinates (x, y, z), let the solid occupy the region x^ 0, — Y^ y < Y. Equation (20)
immediately yields the required solution, with the first of (17) and (18) giving the
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following particular results:

} (21)

j £ 2 ± 2 T | j (22)

The positive values of square roots are to be taken in (21) and (22), and
subsequently. Both equations may be written more compactly, but at the expense
of some complications about the sign conventions for the roots. The last two
terms of each expansion are from the two vertices at infinity, (oo, Y) and (oo, — Y).
The limiting processes as p^-^oo and 0#-»-O are performed so that pfsin dti=y—Y
and —y—Y, respectively (see the Appendix). Values for x = 0 and for y = 0 and
± Y are especially simple, but we shall not display them here.

6.2. Deep rectangular cracks
The solid occupies three-dimensional space, except for the region x>0,

— Y<y< Y. The required solutions are algebraically identical to those for the
semi-infinite lamina, except that the sign is reversed.

6.3. Rectangular prisms
The solid occupies the region -X^x^X, -Y^y^Y.It follows from (20) that

the solution takes the form

T(e; x,y) = u(s; X, Y)-u(e; X, - Y)~u(e; -X, Y) + u(e; -X, - Y), (23)

where the w's are functions of x and y. We find, in particular, that

(24)

«(4; X, Y) = \[{x~Xf+(y- yyj-wffZ^+ZzJl. (25)

Figure 1 gives the plot of equipotentials about an infinitely long square prism (a)
for e = 6 and (b) for e = 4. An equipotential in the boundary layer approximation
[6,7] that *F = T(v) is shown for comparison.
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Fig. 1. The potential about an infinitely long square prism, T , (a) for e = 6, (b) for e = 4.
2L is the length of a side of the square. Numerals on the equipotentials denote values of
(a) -YZ,3//x, (b) -'FZ./A. Thick curves: exact equipotentials, computed from (20). Thin

curves: boundary layer approximations [6].

6.4. Rectangular prismatic cavities

The solid occupies three-dimensional space, except for the region — X<x<X,
— Y<y< Y. The required solutions are algebraically identical to those for rect-
angular prisms, except that the sign is reversed. Figure 2 shows the equipotentials
within an infinitely long square prismatic cavity (a) for e = 6 and (b) for e = 4.
An equipotential in the boundary layer approximation is shown for comparison.

(a)c=6 (b)c-4

Fig. 2. The potential within an infinitely long square prismatic cavity. Details as for Fig. 1.
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6.5. Regular n-gonal prismatic cavities

Finally, we evaluate the potential on the axis of regular n-gonal prismatic
cavities of infinite length, *Fn(e; 0). It follows from (15) that

Tn(£; 0) = -n&-g(e; ^ j , (26)

where R is the radius of the circumscribing circle of the n-gon. We find the particular
forms

Yn(6; 0) = -n /*a-»gtan^+tan»^, (27)

Tn(4; 0) = -nXR-Han-. (28)
n

We observe that

lira Yn(6; 0) = - f wR-3, lira Tn(4; 0) = - ITXR~\ (29)

The limit as n->oo is, of course, the circular tube. These values agree exactly with
the solutions for the tube [7], as they should.

The area A of the regular M-gon is given by

A = inR2 sin—, (30)
2 n

so that we may eliminate R between (26) and (30), and express *£"„(£; 0) as a
function of A rather than R. We have, in particular,

Tn(6; 0) = - /*(2/0-3/2n5 / 2sin3/2^^tan^+tan3^, (31)

Yn(4; 0) = - A(2^)-1/2n3'2sin1'2—tan-. (32)

We may infer from (31) and (32) the dependence on n of the axial potential in
regular M-gonal cavities of equal cross-sectional area. Normalizing with respect
to the tube (n->-oo), we obtain
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Table 1 presents numerical results which follow from (24) and (34). It will be
seen that the axial potential converges rapidly to the value for the tube as n
increases. For e = 4, cavity geometry exerts very little influence on the axial
potential: the deviation from the result for the tube is only 1.6% with n as small
as 4. For e = 6 the deviations are some five times as large, as one might expect
for shorter-range interactions.

TABLE 1

Axial potentials in regular n-gonal cavities of equal cross-section area

; 0) ; 0)

n

3
4
5
6
8
10
12
oo

^(6:0)

2-3.310/4 ,,.-5/2 _

27/2.3-1.5.77-6/2 =

2-1/2 33/4 11 ,,.-5/2 =

221/4 3 -1(1 3 2Ui — 17) T7""5'2 =

22.3(58.31/2-99)77"6/2 =

.3220491
1.0779014
1.0292561
1.0135471
1.0041328
1.0016665
1.0007971

I

^==(4; 0)

2-1.39/4.'n-3/2 = 1.0635748
25/2^.-3/2 _ 1.0158982

1.0059570
21/2.35/4̂ .-3/2 = 1.0027479

2i5/4(2i/2_D^-3/2 = 1.0008339

1.0003353
12.3 V 2 ( 2-3 1 / 2 ) T T- 3 / 2 = 1.0001601

1

7. Discussion

We conclude with some brief observations:
(a) In our treatment of the evaluation of *F about the prism, we have not

discussed the special case of points coplanar with one face of the prism. Such
points yield the values 0y = 0 and 77 at the two relevant vertices, with the corre-
sponding g's singular. Evaluating Y at a point normal distance 8 from the plane
of the prism face, and taking the limit as S -> 0, we find that the singularities cancel,
so that \F is finite and readily evaluated.

(b) Our general results, (15) and (20), apply to a wide range of configurations.
Applications include adsorptive potentials on stepped and on rough surfaces, and
within cracks and near protrusions of various shapes.

(c) There seems no prospect of analogous general results for polyhedra and
polyhedral cavities. Nevertheless, ad hoc use of related superposition methods
yields solutions for at least some important classes of polyhedral configurations [8].

(d) A recent paper by Waldvogel [11] suggests the paucity and complication of
solutions for e = 1. MacMillan's classical formula [5] for the Newtonial potential
about a rectangular parallelepiped needs 1£ pages for its display alone, and
WaldvogePs more concise derivation requires 3 pages. It is paradoxical that
simple general results appear to be more readily available for e>3 than for the
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[11] Potentials in polygonal configurations 251

presumably elementary case of e= 1. Fundamental solutions for infinite con-
figurations do not exist for e<3, so that in this case there is no opportunity,
comparable to that for e>3, of generating simple general results by superposition,

(e) Peripherally to our main theme, we show in Figs. 1 and 2 one equipotential
according to the elementary form of the boundary layer approximation [6,7] that
Y = ^(v). The comparison of exact and boundary layer potentials afforded by
these figures, and by various other results of this paper, supplements the study of
this question in [7], and is fully consistent with it.
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Appendix

Coverage of the plane by double fans

In this Appendix we examine the coverage of any plane z = constant through a
superposition of double-wedge-shaped plane segments, which we designate
"double fans". A two-dimensional discussion suffices, because the three-dimensional
configurations treated in this paper are infinite in the z-direction; coverage of the
plane by double fans is equivalent to filling three-dimensional space with three-
dimensional double wedges. We proceed to develop appropriate theorems.

DEFINITION. An interior double fan of a polygon has as one of its apical angles
one of the interior angles of the polygon.

DEFINITION. An exterior double fan of a polygon has as its apical angles a
vertical pair of exterior angles of the polygon.

THEOREM 1. The n interior double fans of any n-gon, taken together, cover the
whole plane, exclusive of the n-gon, n—2 times; and they cover the n-gon itself n times.

We begin with the observation that the theorem is true for n = 3. The proof
consists of enumeration of the areas covered by the three double fans. The plane,
exclusive of the triangle, is covered exactly once; and the triangle is covered 3 times.

Now, for w>3, any n-gon may be dissected into n - 2 triangles, such that every
vertex of every triangle is a vertex of the n-gon [4].
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It follows from the foregoing result for n = 3 that superposition of the interior
double fans of all n — 2 triangles covers the whole plane, exclusive of the n-gon,
n — 2 times; and that it covers the n-gon itself 3 + (« — 3) = n times.

Now, at every vertex of the n-gon, the interior angles of the component triangles,
taken together, make up the interior angle of the n-gon. It follows that the interior
double fans of all n — 2 triangles, taken together, make up all the interior double
fans of the n-gon.

This completes the proof of the Theorem.

THEOREM 2. The n exterior double fans of any n-gon, taken together, cover the
whole plane, exclusive of the n-gon, twice; and they leave the n-gon itself uncovered.

At any vertex of the n-gon, the interior double fan and the exterior double fan,
taken together, cover the total plane. Summing over all n vertices, then,

n n

2 (exterior double fan)j- = n(total plane) - 2 (interior double fan)f. (A. 1)

But Theorem 1 asserts

2 (interior double fan^ = (n - 2) (total plane) + 2(n-gon). (A.2)

Eliminating 2f=i(interior double fan)t- between (A.I) and (A.2) yields
n

2 (exterior double fan)£ = 2(total plane-n-gon). (A.3)

This establishes the Theorem.

The dissection into n — 2 triangles holds not only for convex n-gons, but also for
non-convex ones [4]; so that Theorems 1 and 2 apply to both convex and non-
convex n-gons. Non-convex n-gons have at least one reflex interior angle. In this
connection we note that the double fan associated with a reflex angle contained
between the lines 6 = 2n—fi (TT<P<2TT) and 6 = 2n consists of double coverage
of the regions 2n—)8< d^v, 3TT—/?< 9^2-n, together with single coverage of the
regions (K0^2TT—£, TT^6^3TT-P.

Theorems 1 and 2 apply also to n-gons with two or more vertices at infinity.
Such n-gons present no special features except that, in respect of equations such
as (17) and (18), care must be exercised in proceeding to the limit as Pi~>co and
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