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COLLECTIONS OF SEQUENCES HAVING THE
RAMSEY PROPERTY ONLY FOR FEW COLOURS

BRUCE M. LANDMAN AND BEATA WYSOCKA

A family C of sequences has the r-Ramsey property if for every positive integer
k, there exists a least positive integer g^T\k) such that for every r-colouring of
{1,2,... ,<rr'(&)} there is a monochromatic As-tertn member of C. For fixed inte-
gers in > 1 and 0 ^ a < m, define a k-term a (mod m)-sequence to be an increas-
ing sequence of positive integers {x\,... , a;*} such that xt — xt-i = a (mod 771)
for i = 2 , . . . ,k. Define an m-a.p. to be an arithmetic progression where the dif-
ference between successive terms is 771. Let C*,m\ be the collection of sequences
that are either a (mod m)-sequences or m-a.p.'s. Landman and Long showed that
for all 771 ;? 2 and 1 ^ a < m, C*(m^ has the 2-Ramsey property, and that the

2-Ramsey function 9arm\(k,n), corresponding to fc-term a (mod m)-sequences or
n-term m-a.p.'s, has order of magnitude mkn. We show that C*rm\ does not have
the 4-Ramsey property and that, unless m/a = 2, it does not have the 3-Ramsey
property. In the case where m/a = 2, we give an exact formula for ffa(m)(*>n)-

We show that if a ^ 0, there exist 4-colourings or 6-colourings (depending on 771
and a) of the positive integers which avoid 2-term monochromatic members of
C*(mj, but that there never exist such 3-colourings. We also give an exact formula

1. INTRODUCTION

Many results in Ramsey theory take on the following general form: there exists
a positive integer /(r) such that for every partition of [l,/(r)] = {1 , . . . >/(r)} into
r classes, some class will contain a set with property P (where P is some specified
property). This can also be described by saying that for every r-colouring of [l,/(r)],
there is a monochromatic set with property P. Two of the most famous theorems of
this type are van der Waerden's theorem [9] and Schur's theorem [8]. Schur's theorem
says that for every positive integer r, there exists a positive integer /(r) such that
whenever [l,/(r)] is r-coloured, there is a monochromatic set {x,y,z} such that x+y =
z. Van der Waerden's theorem states that for all positive integers k and r, there
exists a positive integer w(k,r) such that whenever [l,t/;(A;,r)] is r-coloured, there is
a monochromatic fc-term arithmetic progression. Estimation of the van der Waerden
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20 B.M. Landman and B. Wysocka [2]

numbers w(k,r) remains one of the most intriguing (and presumably one of the most
difficult) problems in Ramsey theory, even for r = 2 (see [2] for an in depth discussion).
In recent years, several problems similar to van der Waerden's theorem have been looked
at, where the family of Ai-term arithmetic progressions is replaced by some other family
of fc-term sequences. Examples can be found in [1, 3, 4, 5, 6, 7].

Let us say that a family C of sequences has the r-Ramsey property if for every
positive integer k there exists a positive integer g(r\k) such that whenever [1, </r)(ib)]
is r-coloured there is a monochromatic fc-term member of C. Thus van der Waerden's
theorem tells us that the family of arithmetic progressions has the r-Ramsey property
for every positive integer r. Schur's theorem, although it does not involve the parameter
k, also is a result which holds for any number of colours r . Likewise, most other well-
known results in Ramsey theory which say that in a large enough set there exists some
specified monochromatic structure, are true regardless of the number of colours used.
In this paper we examine the r-Ramsey property for certain collections of sequences
that were shown to be 2-Ramsey in [7], and show that these collections do not have
the 4-Ramsey property, and in most cases do not have the 3-Ramsey property. We
find this particularly intriguing because the Ramsey function corresponding to fc-term
sequences of this type, where two colours are used, grows only like a quadratic in k.

This is in contrast to the van der Waerden function for 2 colours, w(k, 2), for which the
best known upper bound is enormous [2]; yet the collection of arithmetic progressions
does have the r-Ramsey property for all r .

Let m and a be fixed integers such that m ^ 2 and 0 ^ a < m. Define a k-

term a (mod m)-sequence to be an increasing sequence of positive integers {xi,... ,Xk}

such that Xi — Xi-i = a (mod TO) for 2 ^ i ^ k. Let Ca(m) denote the family of
all a (mod m)-sequences. Define an m-a.p. to be an arithmetic progression such that
the difference between consecutive terms is m. Denote by C^/m\ the family of all
sequences that are either a (mod m)-sequences or m-a.p.'s. In [7] the authors showed
that for all m and all a ^ 0, the family Ca(m) does not have the 2-Ramsey property,
but that C\m\ does. If we let <7o(m)(k) denote the least positive integer N such that
every 2-colouring of [1, N] yields a monochromatic member of C*,\, it was shown that
ga(m)(k) = mk2(l + o( l ) ) . In fact, the following more general result was found:

THEOREM 1 . (Landman and Long) Let m,k,n ^ 2 and 0 ^ a < m. Let

ga(m)(k,n) denote the least positive integer N such that every 2-colouring of [1,N]

contains either a monochromatic k-term a(mod m)-sequence or a monochromatic n-

term m-a.p. Then for all 1 ^ a < TO, fifo(m)(^)n) ~ mkri (as k —* oo and n —> oo).

Also, 5o(m)(*:,n) = 2TO(& - 1) + 1.

Let us extend the notation of Theorem 1 so that 9aim)(^^n) denotes the least pos-
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[3] Sequences Ramsey for few colours 21

itive integer N (if it exists) such that every r-colouring of [1,JV] contains a monochro-

matic fc-term a (mod m)-sequence or a monochromatic n-term m-a.p. If no such N

exists, we write ^ ( ^ ( ^ i ™ ) = oo. In Section 2 we show that if a > 0 and m/a ^ 2,

then <7o(^)(fc)2) = oo for k sufficiently large; thus, the family C*,m^ does not have

the 3-Ramsey property. We also prove that if m/a = 2, then this family does have

the 3-Ramsey property, and we give an exact formula for 5o(m)(^)7i) (having order of

magnitude 3mnk).

In Section 3 we consider r > 3 . We show that for all 1 ^ a < m , the family
C*rm\ does not have the r-Ramsey property if r > 3 . Further, we show that there exist
4-colourings or 6-colourings (depending on m and a) of the positive integers that in
fact avoid any 2-term monochromatic members of C^7m\, but that no such 3-colourings
exist. In addition, the result of Theorem 1 which deals with the case of a = 0 is easily
extended to r colours.

2. T H R E E COLORS

The following lemma will be useful in obtaining results throughout this paper.

LEMMA 1 . Let c be a positive integer, r ^ 2, m ^ 2 and 0 ^ a < m. Then

PROOF: Let N = 9a(m){k,n). Now if y is apositive integer, then {a;; : 1 ^ i ^ k}

is an a (mod m)-sequence if and only if {cxi + y : 1 ^ i ^ k} is a ca(mod cm)-sequence;

and {xi : 1 ^ i ^ k} is an m-a.p. if and only if {cxi + j / : l ^ i « J f c } i s a cm-a.p.

Hence, by the definition of N, any r colouring of { l , c + l , 2 c + l , . . . ,(N — l ) c + l } must

contain a fc-term monochromatic ca (mod cm)-sequence or an n-term monochromatic

co-a.p. Hence g%cm)(k,n) < c(N - 1) + 1.

On the other hand, we know there is an r-colouring x of [1,N — 1] that contains
no monochromatic /fc-term a (mod m)-sequence and no monochromatic n-term m-a.p.
Define x ' on [l,c(N - 1)] by

X'{[c(x - 1) + l,cx}) = x(«) for x = 1 , . . . , N - 1.

To complete the proof we shall show that %' avoids monochromatic fc-term ca (mod cm)-

sequences and monochromatic n-term cm-a.p.'s. Assume, by way of contradiction,
that {si} is a monochromatic (with respect to x ' ) sequence of one of these types. Let
<j = \si/c\ for each i. Then, by the reasoning of the previous paragraph, {U} is either
a fc-term a (mod m)-sequence or an n-term m-a.p. that is monochromatic with respect
to X) a contradiction. D
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22 B.M. Landman and B. Wysocka [4]

We now show that for most choices of m and a, C*,, does not have the 3-Ramsey

property (hence it has the r-Ramsey property only for r = 2).

THEOREM 2 . Let 1 ^ a < m where m/a ± 2 and let s = |"(2m/3)]. Tien

9a(m)(s + 1)2) = oo , so that C*,\ does not have the 3-Ramsey property.

PROOF: Let d = gcd(m,o). By Lemma 1 we know that 9a(m)(k,n)

= d(g}a/li)(m/d)(^'Tl) ~ -0 + •*-• Hence we may assume that d = 1. To prove the theo-
rem we provide a 3-colouring of the positive integers that contains no monochromatic
2-term m-a.p. and no monochromatic (s + l)-term a (mod m)-sequence.

For each positive integer x, define x to be the element of [1,2m] such that x =
x (mod 2m). Let t = [(4m/3)]. Define x to be the 2m-periodic colouring of the
positive integers with x(x) — x(^) f°r ^ x> where x([l>5]) = lj x([ s+ !>*]) = 2,
and x([t + 1,2m]) = 3. In other words, x = UKIJKIJK..., where / = 11 . . . 1 has
length s, J - 22 . . . 2 has length t - s, and K - 33 . . . 3 has length 2m-t.

To see that there is no monochromatic 2-term m-a.p., note that since m ^ 3, we
have s < m < t. Hence if x 6 [1, s], then s + l^x+m^ 2m, so that x{x + TO) 7̂
x(x). Likewise if af S [s + l,t], then x +m $ [s + 1,1], and if x G [t + 1,2m],
then x + m £ [t + 1,2m]. Thus in all cases x(x + m ) 7̂  x(x)> s o that there is no
monochromatic 2-term m-a.p.

To complete the proof, assume X is an (s + l)-term a (mod m)-sequence. Then
X is of the form {x,x + a + jim,x + 2a + J2Tn> • • • ,x + sa + j,m} where ji ^ • • • ̂  j ,
are nonnegative integers. Since d = 1 and s < m, from elementary group theory we
know that the set

X = {x, x + a + jim, x + 2a + ]2m,... , x + sa + j,m}

consists of s + 1 distinct elements modulo m. Then these s + 1 elements are also
distinct modulo 2m and, since each of the sets [1,3], [3 + 1,1], and [1 + 1,2m] contains
no more than s elements, X cannot be monochromatic under x- Hence there is no
monochromatic (s + l)-term a (mod m)-sequence. D

When 1 ^ a < m, then the only circumstance under which C*(m> has the 3-
Ramsey property is when a = m/2. In the next theorem we establish this fact by
giving a precise formula for the associated Ramsey function ff(T^/2)(m)(^!,n)-

THEOREM 3 . Let m> I be even, and let k,n ^ 2. Then

(1) 9%\m)(Kn) = j(3k - 5)(2TX - 1) + 1.

PROOF: We first prove the theorem for m = 2. To show that (when m = 2) the
right-hand side of (1) is a lower bound for g^Jkjn), we shall give a 3-colouring of
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[l,(3fc — 5)(2n — 1)] that contains no monochromatic A:-term 1 (mod 2)-sequence and
no monochromatic n-term 2-a.p.

For i = 0 , . . . , 3k - 6, define U = [i{2n - 1) + 1, (i + l)(2n - 1)]. Hence

3i-6

|J Ii = [l,(3k-5)(2n-l)].
t=0

If A; = 2, colour Jo = [l,2n - 1] with the colouring 1212...12 3 (each of the colours
1 and 2 occurs n — 1 times). This colouring clearly contains no 2-term monochromatic
1 (mod 2)-sequence and no n-term monochromatic 2-a.p.

If k ^ 3, colour the Ii as follows:

1212.. . 12 3 ifi = 0(mod3)
2n-2

3131. . . 31 2 if i = 1 (mod 3)
2n-2

2323 . . . 231 if i = 2 (mod 3)
2n-2

Since | / j | = 2n — 1, we see that there is no monochromatic n-term 2-a.p.

Note that for each j = 0 , . . . ,k — 3, the interval I^j U I3J+1 U /3J+2 contains no
2-term 1 (mod 2)-sequence having colour 1. Hence any 1 (mod 2)-sequence with colour

3Jt—7

1 that is contained in \J J,- has length at most k — 2. Thus any 1 (mod 2)-sequence
i=0 3fc-6

with colour 1 that is contained in |J Ii has length at most k — 1.
t=0

Note also that if k ^ 4, then for each j = 0 , . . . , k — 4, the interval I3J+2 UI3J+3 U
I3J+4 contains no 2-term 1 (mod 2)-sequence having colour 2. Hence any 1 (mod 2)-

3*-8

sequence with colour 2 that is contained in (J Ii has length at most k — 3. Since
i=2

/o U I\ and (for k ^ 3) hk-i U /3jt-6 can each contain at most one term of a 1 (mod
2)-sequence having colour 2, we see that any 1 (mod 2)-sequence having colour 2 that

3fc-6
is contained in (J Ii has length at most A; — 1.

»=o
Finally, we see that for each j = 0 , . . . , k — 3, the interval I3J+1 U hj+2 U /3J+3

contains no 2-term 1 (mod 2)-sequence having colour 3. Therefore, any 1 (mod 2)-
3k-6

sequence with colour 3 that is contained in (J Ii has length at most k — 2. Thus
*=1 3Jb-6

any 1 (mod 2)-sequence having colour 3 t h a t is contained in (J Ii has length at most

Jfc — X. ' = 0

We have shown t h a t x avoids bo th monochromat ic fc-term 1 ( m o d 2)-sequences

and monochromat ic n - t e r m 2-a.p. 's , and therefore ^ - ^ ( f c . n ) ^ (3fc — 5)(2n — 1) + 1.
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Next we prove that

(2) </$)(fc,n)^(3fc-5)(2n-l) + l.

Let I(k,n) = [l,{3k - 5)(2n - 1) + 1]. We need to show that for every 3-colouring of
I{k, n), there is either a monochromatic &-term 1 (mod 2)-sequence or a monochromatic
n-term 2-a.p.

Given a 3-colouring <f> of I(k,n), let a,(<£) denote the length of the longest
monochromatic 1 (mod 2)-sequence that has colour i (i — 1,2,3). Let S(k,n,<j>) =
ai((f>) + a2{4>) + d3{4>)- To prove (2) our strategy is to establish the following fact:

FACT 1. If </> is a 3-colouring of I(k,n) for which there is no monochromatic n-term
2-a.p., then S(k,n,<f>) ^ 3(Jb - 1) + 1.

Then (2) will follow easily from Fact 1 by the pigeon-hole principle, since there is
either a monochromatic n-term 2-a.p. or a monochromatic ib-term 1 (mod 2)-sequence.

We prove Fact 1 by induction on k. Let k — 2 and let <j> be any 3-colouring of
[1, 2n] with no monochromatic n-term 2-a.p. So there are odd numbers Oi, o2 and even
numbers e1,e2 in [l,2n] such that <f>(oi) ^ (j>{o2) and (£(ei) ^ 4>{e2). Since there are
only three colours, 4>{ei) = 4>{°i) f°r some i and j , 1 ^ i,j ^ 2. Therefore {ei,Oj}
is a monochromatic 2-term 1 (mod 2)-sequence, say of colour 1. We also see (since
there is no monochromatic n-term 2-a.p.) that there is some even number e and some
odd number o such that <f>(e) ^ 1 and <fi(o) ^ 1. Hence either <f>{o) = cj>{e) and we
have another monochromatic 2-term 1 (mod 2)-sequence, or else {e} and {0} are each
1-term 1 (mod 2)-sequences, not of the same colour, and neither having colour 1. In
either case, 5 (2 ,^^) ^ 4.

Now assume k ^ 2 and that Fact 1 holds for k. Let (j> be any 3-colouring of
I(k.+ l,n) — [l,(3fc — 2)(2n — 1) + 1] such that there is no monochromatic n-term
2-a.p. To complete the proof we show that S(k + l,n, <f>) ^ 3ife + 1.

Let Ai = [{3k - 5)(2n - 1) + 1, (3fc - 4)(2n - 1) + 1], A2 = [{3k - 4)(2n - 1) +
1, (3A; - 3)(2n - 1) + 1], and A3 = [{3k - 3){2n - 1) + 1, (3A; - 2)(2n - 1) + 1]. Thus,
I{k + l ,n) = I{k,n)UAiUA2UA3. For each j {j = 1,2,3), since A, has length 2n, by
the same argument used for [l,2n] in the case of A; = 2, Aj contains a monochromatic
sequence Yj = {ej,Oj}, where ej is even and Oj is odd. Let (f> represent the colouring
<j> restricted to the interval I{k,n). Then, by using the contributions of the Yj, we
have that S{k + l ,n, <f>) ^ S(fc,n,^) + 3 . Therefore, by the inductive hypothesis,
S{k + l,n,4>) ^ 3/fc + l .

We have estabhshed the theorem for m — 2. Now let m be any positive even
integer. Then by this result for m =2, and Lemma 1, we have
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and the proof is complete. U

3. M O R E THAN THREE COLOURS

From the results of Section 2, we know that if 1 ^ a < m and m/a ^ 2, then

C*rm\ does not have the r-Ramsey property whenever r ^ 3. The remaining cases are

those where either (i) a = 0; or (ii) r ^ 4 and m/a = 2.

The case of a = 0 is a unique case, and is also easier (one explanation for this is that

when a > 0, an a (mod m)-sequence can be thought of as an arithmetic progression

modulo m, while a 0 (mod m )-sequence cannot be considered as part of the collection

of arithmetic progression's modulo m ) . Note by the following theorem that the value

of ffofm)^'") *s independent of n.

THEOREM 4 . For all r,m,k,n ^ 2, g^r?Jk,n) = Trn(k - 1) + 1.

PROOF: In [l,rTn(A; — 1) + 1] there are r(k — 1) + 1 integers that are congruent
to 1 (mod m) . Under any r-colouring of [l,rm(k — 1) + 1] at least k of these integers
must be monochromatic, giving a fc-term monochromatic 0 (mod m )-sequence. Hence

To show the reverse inequality, let x be the following r-colouring of [l,rm(k — 1)]:

1 1 . . . 1 22...2... rr...r 1 1 . . . 1 22.. .2 ... rr .. .r 1 1 . . . 1 22 .. .2 . . . rr . ..r
771 771 771 771 771 771 T71 771 771

where there are r(k — 1) blocks of size m. Then x avoids monochromatic A;-term
0(mod m)-sequences. Also, since n ^ 2, x avoids monochromatic n-term m-a.p.'s,
and the proof is complete. D

For the only remaining case, m/a = 2 and r ^ 4, it turns out that C*,^ does not
have the r-Ramsey property. In fact, the next theorem gives the stronger result that,
whenever m/(gcd(a ,m)) is even, it is possible to 4-colour the positive integers so as to
avoid monochromatic 2-term members of C*/m>.

THEOREM 5 . Let 1 ^ a < m and let m/d be even where d = gcd(m,a) . Then

*Si.)(2.2) = ~-
PROOF: By Lemma 1 it is sufficient to prove the result when d = 1. Hence we

assume that m is even and a is odd. We give a colouring of the positive integers that
contains no monochromatic 2-term a (mod m)-sequences and no monochromatic 2-term
m-a.p.'s.

Let Q be the string 1212. . . 12 of length m, and let R be the string 3434. . . 34 of
length m . Colour the positive integers with the colouring \ ~ QRQRQR••• • Clearly
X contains no monochromatic 2-term m-a.p. Also, since m is even, there is no pair of
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positive integers x and y such that y — x is odd and x(x) — x{y)- Thus there is no
monochromatic 2-term a (mod m)-sequence. D

By Theorem 3 we know that we cannot replace the value of r = 4 with r = 3 in

Theorem 5 and still have a true statement. Looking at Theorem 2 one might wonder

whether there are any values of m and a for for which s L ^ o ^ ^ ) = oo. The next

theorem shows that this is not the case.

THEOREM 6 . Let 1 ^ a < m. Then ^ ( ^ ( 2 , 2 ) ^ 3m.

PROOF: Assume the statement is false. Hence for some a and m there exists a 3-

colouring x '• [1,3m] —» {1,2,3} having no monochromatic 2-term a (mod m)-sequence

and no monochromatic 2-term m-a.p. Without loss of generality, let x ( m + 1) = 1 and

X ( 2 m + 1 ) = 2.

By assumption, x ( l ) ¥" x ( m + ° + l ) , x(m+l) ¥" x ( m + ° + l)> a n d x( l ) ¥"
x(m+l). Hence we have two cases: (a) x( l ) = 2 and x(T n + a + l ) — 3, and (b)
x ( l ) = 3 and x ( m + a + 1) = 2- We prove only case (a), as the proof of case (b) is
essentially the same. Now if x ( l ) = 2 and x ( m + a + 1) = 3, then x(2m + a -f-1) = 1,
but then {m+1, 2 m + a + l } is a monochromatic a (mod m)-sequence, a contradiction. D

Considering Theorems 2, 3, and 5, one would suspect that, for a > 0 and m/d

odd, So(m)(2>2) = ° ° . However, computer output suggests that, for m/d odd, the

least r for which ^ ^ ^ ( 2 , 2 ) = oo, is always either 5 or 6. We are able to show that
for all 77i ^ 2 and a ^ 0 it is possible to 6-colour the positive integers so as to avoid
monochromatic 2-term a (mod m)-sequences and monochromatic 2-term m-a.p.'s.

THEOREM 7 . Let 1 ^ a < m and let m/d be odd where d = gcd(m,a) . Then

PROOF: By Lemma 1, we assume d = 1. We provide a 6-colouring of the pos-
itive integers that avoids monochromatic 2-term members of C*/m\ • The proof splits
naturally into two cases.

CASE 1. a < m/2. Let m = qa + t, where q is an integer and 0 ^ t < a. We have

two subcases.

(i) q is even. Colour [1,2m] with the colouring

ABAB...AB E' CDC D... CD F',

where A = 11...1, B = 22 . . . 2, C = 33 . . . 3, and D = 44 . . . 4 each have length a,
where E' = 5 5 . . . 5 and F' = 66 . . . 6 each have length t, and where each of A, B, C, D
occurs q/2 times. Now extend this to a colouring of the positive integers by repeating
it (that is, we now have a 2m-periodic colouring of the positive integers). Call this
colouring of the positive integers x •
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There is no monochromatic 2-term m-a.p. with respect to x> f° r : if i £ A, then
i-\-m £ C;'\i i £ B, then i + m £ D; if i £ C, then i + m £ A; et cetera.

Now let {x,y} be an a (mod m)-sequence. Let x = cm + j , where 1 ̂  j ^ m. If
1 ^ j ^ m — a, then we see that x(x) ¥" x{x + a) a l m x(x) ¥" x{x + m + a). Therefore
x(z) ^ x(y)- K> instead, m — a < j ^ m, then a; belongs to some copy of B, E', D,
or .F', while y belongs to some copy of A or C. Thus {x,y} is not monochromatic.

(ii) q is odd. In this case colour [1,2m] with the colouring

ABAB...AB EB' CDCD...CD FD'

where A, B, C, and D are defined as in subcase (i) and each occurs (g — l)/2 times,
where E = 55.. .5 and F = 66...6 each have length a, and where B' = 22...2
and D' = 44. . . 4 each have length t. As in subcase (i) extend this to a 2m-periodic
colouring of the positive integers. Since ABAB.. .ABEB' has length 771, it is clear
that there is no monochomatic 2-term m-a.p.

Let {x,y} be an a (mod m)-sequence. If x = cm + j where 1 ^ j ^ m — a,
then {x,y} cannot be monochromatic for the same reason given in subcase (i). If
m — a < j ^ m, then x belongs to some copy of E, B', F, or D', while y belongs to
some copy of A or C. This proves the theorem for the case in which a < m/2.

CASE 2. a > m/2. (Equality is impossible since m/d is odd.) Let b = rn — a. Let
m = q'b + t', where q' is an integer and 0 ^ t < b. Again we have two subcases,
depending on whether q' is even or odd. For convenience, we do the subcase in which
q' is even, as the other is done in the same way. We use the same colouring that was
used in Case 1, subcase (i), except replace a by b, q by q' and t by t'. Denote this new
colouring by \' • Then we know that x' wiU avoid monochromatic 2-term m-a.p.'s and
monochromatic 2-term b (mod m)-sequences. The proof will be completed by showing
that there are also no monochromatic 2-term a (mod m)-sequences. Assume, by way
of contradiction, that {x,y} is a monochromatic a (mod m)-sequence under x'- Let
h be even such that x + hm > y. Then {y,x + hm} is a b (mod m)-sequence and,
since x' IS 2m-periodic, x'(x) — x'{x + hm), so that {y,x + hm} is a monochromatic
b (mod m)-sequence, a contradiction. u

We summarise the results on the Ramsey properties of C*, , in the following table.
For the different choices of 771, a, and r, we give the asymptotic value, as k —* 00, of
the associated Ramsey function 9a/m\{k,k).
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values of a, m
m/a = 2

m/a ^ 2, a ^ 0
a = 0

r = 2
mk2

mk2

2mk

T = 3

2mk2

oo
Zmk

oo
oo

rmk

Table 1. Asymptotic value of gj/m){k,k)
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