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DEGREE SPECTRA OF ANALYTIC COMPLETE
EQUIVALENCE RELATIONS

DINO ROSSEGGER

Abstract. We study the bi-embeddability and elementary bi-embeddability relation on graphs under
Borel reducibility and investigate the degree spectra realized by these relations. We first give a Borel reduction
from embeddability on graphs to elementary embeddability on graphs. As a consequence we obtain that
elementary bi-embeddability on graphs is a Σ1

1 complete equivalence relation. We then investigate the
algorithmic properties of this reduction. We obtain that elementary bi-embeddability on the class of
computable graphs is Σ1

1 complete with respect to computable reducibility and show that the elementary
bi-embeddability and bi-embeddability spectra realized by graphs are related.

§1. Introduction. Equivalence relations on countable structures are among the
most heavily studied objects in descriptive set theory and computability theory. In
descriptive set theory, starting with the work of Friedman and Stanley [10], the
complexity of equivalence relations on spaces of structures under Borel reducibility
has seen much interest by experts, culminating in results by Louveau and Rosendal
[16], who showed that, among others, the bi-embeddability relation on graphs is
Σ1

1-complete. Since then there has been a constant stream of work on the complexity
of the bi-embeddability relation, both on other classes of structures, see for instance
[4], and refinements of completeness notions, e.g., in [5].

Equivalence relations are also one of the main objects of study in computability
theory. Here, the equivalence relations are usually on the set of natural numbers
and their complexity is established using computable reducibility. Identifying a
computable structure with the index of the algorithm computing it, one can obtain
completeness results like the ones in descriptive set theory for equivalence relations
on computable structures [6, 9]. One object of study in computable structure
theory which also takes non-computable structures into account is degree spectra of
structures, introduced by Knight [15]. The degree spectrum of a given structure is
the set of sets of natural numbers Turing equivalent to one of its isomorphic copies.
They provide a measure of the algorithmic complexity of countable structures.

Recently, researchers initiated the study of degree spectra with respect to other
model theoretic equivalence relations such as bi-embeddability [7], elementary bi-
embeddability [20], elementary equivalence [1–3], or Σn equivalence [8]. One of the
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main goals in this line of research is to distinguish these equivalence relations with
respect to the degree spectra they realize. While for elementary equivalence and Σn
equivalence examples that separate them from each other and from isomorphism and
elementary bi-embeddability are known, so far all attempts to separate isomorphism,
bi-embeddability, and elementary bi-embeddability have been unsuccessful.

There seem to be various reasons for this. That we can separate elementary
equivalence and Σn equivalence is the case because they have different levels in the
Borel hierarchy while isomorphism and bi-embeddability are not even Borel. On the
other hand bi-embeddability preserves very little structural properties and it is thus
difficult to construct interesting examples. The aim of this article is to investigate
the relationship between the degree spectra realized by the bi-embeddability relation
and by the elementary bi-embeddability relation. First, we establish that elementary
bi-embeddability on graphs is Σ1

1 complete with respect to Borel reducibility. We
then proceed to establish a relationship between the degree spectra realized by the
bi-embeddability and elementary bi-embeddability relation on graphs. Our main
results are as follows.

Theorem 1.1. The elementary embeddability relation on graphs �G is a complete
Σ1

1 quasi-order. In particular, the elementary bi-embeddability relation on graphs �G

is a complete Σ1
1 equivalence relation.

As a corollary of Theorem 1.1 we obtain the corresponding result for elementary
bi-embeddability on computable structures.

Theorem 1.2. The elementary embeddability relation on the class of computable
graphs is a Σ1

1 complete quasi-order with respect to computable reducibility. In
particular, the elementary bi-embeddability relation on computable graphs is a Σ1

1
complete equivalence relation with respect to computable reducibility.

The following result establishes a relationship between bi-embeddability spectra
of graphs and elementary bi-embeddability spectra of graphs.

Theorem 1.3. Let G be an automorphically non-trivial graph, then there is a graph
Ĝ such that

DgSp
�

(Ĝ) = {X : X ′ ∈ DgSp≈(G)}.

Note that in Theorem 1.3 we deal only with automorphically non-trivial graphs.
This might seem like a shortcoming; however, automorphically trivial structures are
not interesting from a computability theoretic point of view. In particular, every
structure bi-embeddable with an automorphically trivial graph is computable and
thus both its bi-embeddability spectrum and elementary bi-embeddability spectrum
are the set of all computable sets.

The proofs of Theorems 1.1 and 1.2 are the topic of Section 3. In Section 4 we
build on these results to prove Theorem 1.3. In Section 2 we give the necessary
background and definitions.

§2. Background. Our definitions follow for the most part [12, 19]. We assume
that all structures have universe � and are relational. Let L be a relational language
(Ri)i∈� where without loss of generality Ri has arity i. Then each element A of
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Mod (L) can be viewed as an element of the product space

XL =
∏
i∈�

2�
i
,

and thusMod (L) becomes a compact Polish space on which we can define the Borel
and projective hierarchy in the usual way.

Let A be an L-structure and (ϕati )i∈� be a computable enumeration of the atomic
L-sentences with variables in {x1, x2, ... }. The atomic diagram D(A) of A is the
element of Cantor space defined by

D(A)(i) =

{
1 if A |= ϕati [xj→j : j ∈ �],
0 otherwise.

The Turing degree of a structure A is the degree of D(A). We will in general not
distinguish between a structure as an element of Mod (L) and its atomic diagram
and assume that what is meant is clear from the context.

Variations of the following definition were independently suggested in [8, 17, 22].

Definition 2.1. Let E be an equivalence relation onMod (L) and A ∈Mod (L).
Then the degree spectrum of A with respect to E, or, short E-spectrum of A, is the
set

DgSpE(A) = {X : ∃B E A D(B) ≡T X}.

We write A ↪→B to say that A is embeddable in B, and A ≈ B to say that A is bi-
embeddable with B, i.e., A ↪→B and B ↪→A. Further, we write A� B to say that A
is elementary embeddable in B and A � B to say that A is elementary bi-embeddable
with B, i.e., A� B and B �A.

Definition 2.2. LetR,S be binary relations on a set X. The relation R is reducible
to S if there is a function f : X → X such that for all x, y ∈ X

xRy ⇔ f(x)Sf(y).

Assume X =Mod (L). Then

(1) R is Borel reducible to S if f is Borel onMod (L) ×Mod (L),
(2) R is computably reducible to S if there is a computable operator Φ such that

for all A ∈Mod (L), ΦD(A) = D(f(A)).

Assume X is � and that (Ai)i∈� is a computable enumeration of all partial
computable L structures. Then R is computably reducible to S if f is a computable
function.

We say that an equivalence relation (quasi-order) R ∈ Γ is a Γ complete
equivalence relation (quasi-order) for a complexity class Γ with respect to x-
reducibility if all equivalence relations (quasi-orders) in Γ are x-reducible to R.

A standard reference on Borel reducibility is [12]. Computable reducibility on
the natural numbers can be seen as a natural effectivization of Borel reducibility
where one only considers computable structures. Fokina and Friedman [6] showed
that bi-embeddability on trees and thus also graphs is Σ1

1 complete with respect
to computable reducibility, and in [9] it is shown that isomorphism on graphs
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is Σ1
1 complete with respect to computable reducibility. This contrasts with Borel

reducibility; it is well known that isomorphism on graphs is not Σ1
1 complete.

§3. Elementary bi-embeddability is analytic complete. In this section we prove
Theorems 1.1 and 1.2 and some lemmas needed for Theorem 1.3. The section is
structured as follows. In Section 3.1 we give a reduction from embeddability on the
class of graphs G to elementary embeddability on a Borel class C of structures in
an infinite relational language. In Section 3.2 we show that graphs are complete for
elementary embeddability. That is, for every Borel class, elementary embeddability
on this class can be reduced to elementary embeddability on graphs. Theorem 1.1
then follows by composing the reductions given in Sections 3.1 and 3.2. For Theorem
1.2 we need a few more observations made at the end of this section.

3.1. The reduction from ↪→G to �C. The main idea of the construction is that for
any given graph G we replace the edge relation with structures having the property
that they are minimal under elementary embeddability.

Definition 3.1. A structure A is minimal if it does not have proper elementary
substructures.

Minimal structures were investigated by Fuhrken [11] who showed that there is a
theory with 2ℵ0 minimal models, and Shelah [21] who showed that for every n ≤ ℵ0,
there is a theory with n minimal models. Later, Ikeda [14] investigated minimal
models of minimal theories. Notice that a prime model is not necessarily minimal,
as it might contain elementary substructures isomorphic to itself.

Given a graph G, if x, y ∈ G and xEy, then we associate a copy of a structure A
with the pair (x, y) and otherwise we associate a copy B with (x, y). The structures
A and B will be elementary equivalent and minimal.

Before we formally state the reduction let us describeA andB. They will be models
of the theory of the following structure studied by Shelah [21]. The language of the
theory contains countably many unary functions F� and unary relation symbolsR� ,
one for each � ∈ 2<� . Consider the structure

S = (2�, 〈F�〉�∈2<� , 〈R�〉�∈2<� ),

where F� is defined by F�(�)(x) = �(x) + �(x)mod 2 where we assume that �(x) =
0 for x ≥ |�| and R�(�) if and only if � ≺ �. Shelah showed that the theory of
S has quantifier elimination and that each element of S generates an elementary
substructure that is minimal.

Let Ŝ0 be the substructure of S generated by 0̄, the constant string of 0’s, and
Ŝ1 be the substructure generated by 1̄, the constant string of 1’s. These structures
are countable and by Shelah’s argument, Ŝ0 ≡ Ŝ1 ≡ S. Furthermore, Ŝ0 and Ŝ1 are
minimal models of Th(S). To see this, let x ∈ Ŝ0, then x = F�(0̄) and in particular,
0̄ = F�(x) for some � ∈ 2<� . So, the substructure of Ŝ0 generated by x is already Ŝ0.

As we require our structures in C to be of relational syntax we will let S0 and S1 be
the structures corresponding to Ŝ0, respectively Ŝ1, after we replace each F Si

� by its
graph graphSi

F�
= {(�, F Si

� (�)) : � ∈ Si}. We may assume without loss of generality
that the universes of S0 and S1 are � and let A = S0 and B = S1.
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Let us describe the structures in the class C more formally. The class of structures
C consists of all countable structures with universe � in the language consisting
of a unary relation W, binary relations R� , and graphF� for all � ∈ 2<� , and a
ternary relation O. We are now ready to give the function f : G→ C witnessing the
reduction.

We formally describe how to obtain a structure in C given a graph. Let G be
a graph and partition � into countably many infinite, coinfinite subsets (Ai)i∈� .
Then

• for every ai ∈ A0,Wf(G)(ai ) (we will call elements ofA0 the vertices off(G)),
• for every m, n ∈ �, if mEn, then for all � ∈ 2<� define Rf(G)

� and graphF�
f(G)

on A〈m,n〉+1 such that (A〈m,n〉+1, 〈graphF�
f(G)〉�∈2<� ,R

f(G)
� ) ∼= S0,

• for everym, n ∈ �, if ¬mEn, then for all � ∈ 2<� defineRf(G)
� and graphF�

f(G)

on A〈m,n〉+1 such that (A〈m,n〉+1, 〈graphF�
f(G)〉�∈2<� ,R

f(G)
� ) ∼= S1, and

• for every m, n ∈ �, let Of(G)(am, an, j) for all j ∈ A〈m,n〉+1.

This finishes the construction of f(G). We will refer to the substructure on the
elements in A〈m,n〉+1 as the substructure associated with the pair (am, an) and with

(A〈m,n〉+1, 〈graphF�
f(G)〉�∈2<� ,R

f(G)
� ) as S(am,an).

It is easy to see that the function f so defined is Borel; indeed, it is even computable.
To see that f is a reduction from ↪→G to �C it remains to prove the following.

Lemma 3.2. For G,H ∈ G, G ↪→H if and only if f(G) � f(H).

Proof. That G ↪→H if f(G) � f(H) follows trivially from the construction.
To show the converse we will use the following model theoretic fact: For two L-
structures A and B, A is an elementary substructure of B if and only if for every
finite R ⊆ L, the R reduct of A is an elementary substructure of the R reduct of B.
Necessity follows trivially from the fact that R ⊆ L and sufficiency is easily seen by
noticing that every first-order formula ϕ is in a finite Rϕ ⊆ L.

So, say G ↪→H by h. We get an induced embedding ĥ defined such that for all
i, i ′ ∈ G , if h(i) = j, then ĥ(ai) = aj and ĥ is the canonic isomorphism between
the substructure associated with (ai , ai′) and the one associated with (ĥ(ai), ĥ(ai′)).
Without loss of generality we may assume that f(G) is a substructure of f(H), i.e.,
that ĥ is the identity. We use Ehrenfeucht–Fraı̈ssé games to verify that in every finite
R ⊆ L, f(G) is an elementary substructure of f(H). We assume without loss of
generality that R = {O,W,R�0 , ... , R�k ,GraphF�0 , ... ,GraphF�k } where �i is the i th

string in the lexicographical ordering of 2<� and k ∈ �. Let us show that Player
II has a winning strategy in Gm((f(G), g1, ... , gn), (f(H), g1, ... , gn)) for arbitrary
m ∈ � played in R. First, notice that since S0 ≡ S1, II has a winning strategy for
Gm(S0,S1) in the reduct {R�0 , ... , R�k ,GraphF�0 , ... ,GraphF�k }. The following is a

winning strategy for Gm((f(G), g1, ... , gn), (f(H), g1, ... , gn)) played in R. Say that
at turn i, the played substructures areGi andHi given by the partial isomorphism hi .
Assume we are on turn i + 1.

(1) If I plays an element c in the O-closure of g1, ... , gn, then let hi+1(c) = c.
(2) If I plays an element c in f(G) not in the O-closure of Gi , say it is associated

with (a, b) where none of a, b is in the O-closure of Gi , then pick vertices
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(a′, b′) in f(H). If c = a or b, let hi+1(c) = a′, respectively, hi+1(c) = b′.
Otherwise start running a Gm(S(a,b),S(a′,b′)) winning strategy w(a′,b′)

(a,b) and let

hi+1(c) = w(a′,b′)
(a,b) (c).

(3) If I plays an element c in f(G) not in the O-closure of Gi but associated with
(a, b) where either a or b is in Gi , then pick (a′, b′) such that a′, respectively
b′, is the element corresponding to a, respectively b, inHi and continue as in
(2), mutatis mutandis.

(4) If I plays an element in f(H) not in the O-closure of Hi , then as f(G) is
infinite, II can play as in the cases (2) and (3), mutatis mutandis.

(5) If I plays an element c in f(G) that is in the O-closure of Gi but not in
the O-closure of g1, ... , gn, then it is associated with some (a, b) in f(G)
and by induction there is a winning strategy w(a′,b′)

(a,b) that has already been
used. If c = a or c = b, let hi+1(c) = a′, respectively, hi+1(c) = b′. Otherwise
let hi+1(c) = w(a′,b′)

(a,b) (c1, ... , ck, c) where c1, ... , ck are the elements from the
structures associated with (a, b) and (a′, b′) played by I so far.

(6) If I plays an element c in f(H) that is in the O-closure of Hi but not in the
O-closure of g1, ... , gn, then play as in (5), mutatis mutandis.

Since at each turn we play according to winning strategies for games of the form
Gm(Si ,Sj) where i, j ∈ {0, 1} we obtain that hm is a partial isomorphism between
(f(G), g1, ... , gn) and (f(H), g1, ... , gn). We thus have given a winning strategy for
Gm((f(G), g1, ... , gn), (f(H), g1, ... , gn)). �

3.2. Graphs are complete for elementary embeddability. We will show that for
every class of structures K, there is a computable reduction �K →�G.

The result we are going to prove appeared in [20]. There, a proof sketch of the fact
that the reduction preserves elementary bi-embeddability spectra was given. We will
give a full proof of this fact in Section 4. Note that the coding used in the reduction
is not new but was already used in [2] to show that graphs are universal for theory
spectra. Let us first describe this coding.

We may assume without loss of generality thatK is a class of structures in relational
language L = (R1, ... ) where each Ri has arity i. Given A ∈ K, the graph g(A) has
three vertices a, b, c where to a we connect the unique 3-cycle in the graph, to b the
unique 5-cycle, and to c the unique 7-cycle. For each element x ∈ A we add a vertex
vx and an edge a � vx . For every i tuple x1, ... , xi ∈ Awe add chains of length i + k
for every k, 1 ≤ k ≤ i , with common last elements y. We add an edge vxk � y1 only
if y1 is the first element of the chain of length of i + k. If A |= Ri(x1, ... , xi) we add
an edge y � b and otherwise add an edge y � c. This finishes the construction.
See Figure 1 for an example.

Let us fix the some notation for the following proofs. Given a structure A and
ā ∈ A<� we let 〈ā〉A be the substructure of A generated by ā.

Lemma 3.3. For A,B ∈ K, A� B if and only if g(A) � g(B).

Proof. (⇒). Assume that A� B and that A is an elementary substructure of B.
We may also assume without loss of generality that g(A) ⊆ g(B). We will show that
for all n ∈ � and any a ∈ g(A)<� Player II has a winning strategy for the n turn
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Figure 1. Part of the graph F (A) coding that A �|= R3(3, 2, 1) and A |= R3(1, 2, 3).

Ehrenfeucht–Fraı̈ssé game Gn((g(A), a), (g(B), a)). Assume that n is the least such
that Player II has no winning strategy for Gn((g(A), a), (g(B), a)). Consider the
set of partial isomorphisms from (g(A), a) to (g(B), a). This set cannot have the
back-and-forth property. In particular, the back-and-forth property fails already
if we only consider partial isomorphisms with domain of size n + |a|. Otherwise
there would be a winning strategy for Gn((g(A), a), (g(B), a)). So, either there is
v ∈ g(A)n such that for all u ∈ g(B)n, 〈av〉g(A) �∼= 〈au〉g(B) or there is u ∈ g(B)n

such that for all v ∈ g(B)n, 〈au〉g(B) �∼= 〈av〉g(A). We will derive a contradiction
assuming the second case. Deriving one from the first case can be done in a similar
fashion.

Notice that au is in a substructure of g(B) coding a finite substructure of B
in a finite part L1 of the language of B. Extend 〈au〉g(B) so that it codes such a
substructure B1 of B. Consider the conjunction ϕ of atomic formulas, or negations
thereof, true of B1 in L1. Let a′ be the elements in B1 ∩ A and u′ the elements in
B1 \ A. Then B |= ϕ(a′u′) and the Tarski–Vaught test gives us elements v′ in A such
that A |= ϕ(a′v′). It follows that we have a partial isomorphism between 〈a′u′〉B
and 〈a′v′〉A in L1. This induces an isomorphism between the subgraph coding B1

and the subgraph coding 〈a′v′〉A. But 〈au〉g(B) is a subgraph of the graph coding B1

and thus it is isomorphic to a substructure 〈av〉g(A) of the structure coding 〈a′v′〉A,
a contradiction.

(⇐). An easy induction on the quantifier depth of formulas in L shows that for
every A ∈ K and L-formula ϕ with n-free variables the set

DA
ϕ = {(va1 , ... , van ) : (A, a1, ... , an) |= ϕ(a1, ... , an)}

is definable in g(A). Now, assume that g(A) � g(B) and without loss of generality
that g(A) is an elementary substructure of g(B). Let gB : B → g(B) be defined by
gB : b �→ vb . Notice that the map a �→ g–1

B (va) is an embedding of A in B. To see
that this embedding is elementary assume that (A, a) |= ϕ, then v̄ā ∈ DA

ϕ and by
elementarity v̄ā ∈ DB

ϕ . So, (B, g–1
B (v̄ā)) |= ϕ(g–1

B (v̄ā)). �
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Concatenating the reductions f and g and from the fact that ↪→G,≈G are complete
Σ1

1 quasi-orders, respectively equivalence relations, we obtain Theorem 1.1.
To prove Theorem 1.2 notice that f and g are computable. Thus there is a

Turing operator Φ such that Φ = g ◦ f. We can find a Turing machine ϕi such
that ϕi(j, k) = ΦAj (k) for all k ∈ � if Aj is a total computable structure. Using
the s-m-n theorem we can then get a computable function j �→ u(i, j) where u(i, j)
is an index for ΦAj . Thus ↪→G is computably reducible to �G as a quasi-order on
�. Fokina and Friedman [6] showed that ↪→G is Σ1

1 complete. Thus, �G is also Σ1
1

complete and Theorem 1.2 follows.

§4. Degree spectra. In this section we finish the proof of Theorem 1.3. As noticed
before the two reductions f : G→ C and g : C→G are computable. We will see
that the two functions induce an even stronger notion of reduction that allows us to
relate the degree spectra realized by ≈G and �G.

Definition 4.1 (cf. [13, 17]). Let C and D be categories. A computable functor
between C and D is a pair of computable operators (Φ,Φ∗) such that

(1) for all A ∈ C1, F (A) = ΦA, and
(2) for all f : A→B ∈ C2, F (f) = ΦA⊕f⊕B

∗ .

Computable functors preserve many computability theoretic properties. One
example are degree spectra: Recall that for X,Y ⊆ P(�), X is Medvedev reducible
to Y, X ≤s Y , if there is a Turing operator Φ such that for all y ∈ Y , there is
x ∈ X such that Φy = x. We have in particular that if F : (C,�1) → (D,�2) is a
computable functor, and ∼i is the equivalence relation given by

A ∼i B ⇔ A�i B ∧ B �i A,
then for all A ∈ C, DgSp∼1

(F (A)) ≤s DgSp∼2
(A).

It is an easy exercise to see that g ◦ f induces a computable functorH : (G, ↪→) →
(G,�) and thus for all G ∈ G, DgSp≈(H (G)) ≤s DgSp

�
(G).

To get that every degree spectrum realized in C is also realized in D we need
a stronger notion of reducibility. To define this we need an effectivization of the
category theoretic notion of a natural isomorphism between functors.

Definition 4.2 [13]. A functor F : C→D is effectively isomorphic to G : C→D

if there is a Turing operator Λ such that for every A ∈ C, ΛA is an isomorphism
from F (A) to G(A), and the following diagram commutes for all A,B ∈ C1 and
every � : A→B ∈ C2.

F (A) G(A)

F (B) G(B)

ΛA

F (�) G(�)

ΛB

Definition 4.3 (cf. [13]). We say that (C,�1) is CBF-reducible to (D,�2),
(C,�1) ≤CBF (D,�2) if

(1) there is a computable functor F : C→D and a computable functor G : D ⊇
D̂→ C where D̂ is the ∼2-closure of F (C),
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(2) F ◦G is effectively isomorphic to Id
D̂

,G ◦ F is effectively isomorphic to IdC,
and

(3) if ΛC, ΛD are the operators witnessing the effective isomorphism between
G ◦ F and IdC, respectively, F ◦G and Id

D̂
, then for every A ∈ C, F (ΛA

C
) =

ΛF (A)
D

: F (A) → F (G(F (A))) and every B ∈ D̂, G(ΛB
D

) = ΛG(B)
C

: G(B) →
G(F (G(B))).

Consider two structures A and B and a morphismf : A ∼= B. Then, clearly A ≤T
B ⊕ f; after all, we have thatRA(a1, ... , an) if and only ifRB(f(a1), ... , f(an)). The
following definition generalizes this observation.

Definition 4.4. A category C is degree invariant if for every A,B ∈ C1 and every
f : A→B ∈ C2, f ≡T f–1 and A ≤T B ⊕ f.

Proposition 4.5. If C and D are degree invariant and C ≤CBF D, then every set
realized as a ∼1-spectrum in C is realized as a ∼2-spectrum in D.

Proof. Say F : C→D and G : D→ C witness that C ≤CBF D. Fix A ∈ C and
let Λ be the Turing operator witnessing that G ◦ F is effectively isomorphic
to the identity functor on C. Then, for Â ∼1 A, Â ≥T F (Â) ≥T G(F (Â))
and by degree invariance Â ≤T ΛA ⊕G(F (Â)) ≡T G(F (Â)) ≤T F (Â). Thus,
DgSp∼1

(A) ⊆ DgSp∼2
(F (Â)). The proof that DgSp∼1

(A) ⊇ DgSp∼2
(F (Â)) is

similar. So, if X is a ∼1 spectrum realized by A in C, then it is realized as a ∼2

spectrum in D. �

Notice that if K is a class of relational structures, then whether (K,�) is degree
invariant only depends on �. Thus we might say that a relation on structures is
degree invariant.

Definition 4.6. A class of structures C is CBF-complete with respect to a degree
invariant relation �, if for every class K, (K,�) ≤CBF (C,�).

We showed in Section 3.2 that for any class K equipped with the elementary
embeddability relation there is a computable reduction g from (K,�) to (G,�).
We can now show that these reductions induce CBF -reductions (K,�) ≤CBF (G�)
and that thus graphs are CBF-complete for elementary embeddability. Verifying the
conditions of Definition 4.3 is quite technical, but the core ideas of the proof should
not be too difficult.

Theorem 4.7. The class of graphs is CBF-complete for elementary embeddability.

Proof. Fix a classK. It is clear from the construction that g induces a computable
functor F : (K,�) → (G,�). We have to show that F (K) is closed under elementary
bi-embeddability, that there is a functor G : F (K) → K such that F ◦G and G ◦ F
are effectively isomorphic to the identity on K, respectively, F (K) and that the
witnesses of these effective isomorphisms agree.

Let G � F (A) for some A ∈ K. We may assume without loss of generality that G
is an elementary substructure of F (A). For every ā ∈ G<� , tpG(ā) = tpA(ā). Thus
G must contain the elements a, b, c of F (A) with unique 3-cycles, respectively, 5-
cycles and 7-cycles connected to them. Furthermore, say ā ∈ G codes elements of
A in F (A) such that A |= Ri(ā), then this information must also be coded in G as
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it is preserved in the type of ā. We can compute a structure G(G) as follows. Fix
a G computable injective enumeration f of the set {x : a � x}. Notice that this
can be done uniformly since the set {x : a � x} is uniformly computable in all
structures in F (K). Let the universe of G(G) be the pull-back along f. Then for all
a1, ... , ai = ā ∈ �i , G(G) |= Ri(ā) if for every aj , j < i , there is a chain of i + j
connected elements y1, ... , yi+j with f(aj) � y1, all j chains share the same last
element y and y � b. Likewise, G(G) |= ¬Ri(ā) if there are chains satisfying the
above conditions with y � c. This finishes the construction of G(G).

Let G, Ĝ ∈ F (K) and g : G � Ĝ. As both graphs are elementary bi-embeddable
with images of structures in K, they have unique vertices a, respectively, â with 3-
cycles connected to them. Computably inG and Ĝ find the vertices and enumerate the
sets {x : a � x}, and {x : â � x} using the same procedure as in the construction
of G(G) above. Let f, respectively, f̂ be these enumerations. Now let G(g) = f̂–1 ◦
g ◦ f. By construction G(g) : G(G) ↪→G(Ĝ) and G(g) is uniformly computable in
G ⊕ g ⊕ Ĝ. To see thatG(g) is elementary, assume towards a contradiction that it is
not. Then there is a ∈ G(G) andϕ such thatG(G) |= ϕ(a) butG(Ĝ) �|= ϕ(G(g)(a)).
Recall that the atomic diagram of the tuple a is coded in the type of f(a) in G and
similarly, the atomic diagram of G(g)(a) is coded in the type of g(f(a)) in Ĝ. So, g
could not be elementary, a contradiction.

To see that G ◦ F and F ◦G are effectively isomorphic to the identities on K and
F (K), respectively, first note that G(F (A)) ∼= A. There is a canonic isomorphism
given by the composition of the maps a �→ va and the enumeration f of the set
{x : a � x}, i.e., the isomorphism is defined by a �→ f–1(va). It is clearly uniformly
computable, say by ΛK. On the other hand let G ∈ F (K), then we can compute an
isomorphism between F (G(G)) and G by doing the following. Every v ∈ G either
defines a relation Ri on some tuple, codes an element, or is used to define a, b, c.
One can computably determine which of the three cases holds. In the second case
simply map v to vf–1(v), in the third case one can computably determine whether
v is used to define a, b, c, and, using F and G, computably find the corresponding
element in F (G(G)). In the first case, we have to find the tuple w such that v is
involved in the coding of the relation Ri on w̄. We then map v to the corresponding
element in the coding of Ri on the tuple vf–1(w). It is easy to see that one can
define a Turing operator ΛF(K) computing this isomorphism. The Turing operators
ΛF(K) and ΛK will witness the effective isomorphism between F ◦G and the identity
on F (K), respectively, the effective isomorphism between G ◦ F and the identity
on G.

It remains to show that the diagrams of Definition 4.2 commute and that
for all A ∈ K and G ∈ F (K), F (ΛA

K
) = ΛF (A)

F (K) and G(ΛG
F (K)) = ΛG(G)

K
. For the

commutation of the diagrams, say first that A, Â ∈ K with � : A� Â. Let h :
A→ F (A) and ĥ : Â → F (A) given by h, ĥ : a �→ va . We have not given an explicit
definition of F (�) yet. But notice that F (�) is uniquely determined by the way it
maps the elements va . In particular, if �(x) = F (�)(x) on the elements with a � x,
then � = F (�). Thus we have that

G(F (�)) = f̂–1 ◦ F (�) ◦ f = f̂–1 ◦ ĥ ◦ � ◦ h–1 ◦ f,
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and ΛA
K

= f–1 ◦ h, so

ΛÂ
K ◦ � = f̂–1 ◦ ĥ ◦ � = G(F (�)) ◦ ΛA

K ,

and thusG ◦ F is effectively isomorphic to idK. Now, sayG, Ĝ ∈ F (K) with 	 : G � Ĝ.
First let x ∈ G with a � x. Let h, and ĥ be as above, then (ΛĜ

F (K) ◦ 	)(x) = (ĥ ◦
f̂–1 ◦ 	)(x) and F (f̂–1 ◦ 	 ◦ f) = ĥ ◦ f̂–1 ◦ 	 ◦ f ◦ h–1, so

(F (G(	)) ◦ ΛG
F (K))(x) = (F (f̂–1 ◦ 	 ◦ f) ◦ h ◦ f–1)(x) = (ĥ ◦ f̂–1 ◦ 	)(x).

Having established that the diagram commutes on the restricted universes we use
the fact that any embedding is determined by these parts of the universes to obtain
that F ◦G is effectively isomorphic to idF (K).

To verify the last condition in Definition 4.3 let A ∈ K, then on {x : x � a}

F (ΛA
K )(x) = (ĥ ◦ f–1 ◦ h ◦ h–1)(x) = (ĥ ◦ f–1)(x) = ΛF (A)

F (K) (x)

and as there is a unique extension of this to a mapping F (A) → F (G(F (A)))
F (ΛA

K
) = ΛF (A)

F (K) . At last, let G ∈ F (K), then

G(ΛG
F (K)) = f̂–1 ◦ h ◦ f–1 ◦ f = f̂–1 ◦ h = ΛG(G)

K
,

where f is the enumeration of {x : x � a} in G and f̂ the one in G(F (G)). �
The following is a direct consequence of Proposition 4.5 and Theorem 4.7.

Corollary 4.8. For every structure A, there is a graph GA such that

DgSp
�

(A) = DgSp
�

(GA).

Unfortunately, for the reduction from bi-embeddability on graphs to elementary
bi-embeddability on C given in Section 3.1 we cannot deduce that (G, ↪→) ≤CBF
(C,�). However, we can still establish a relationship between the degree spectra in
these classes. Recall that S0 is the substructure of S generated by the constant string
of 0’s and S1 is the substructure generated by the constant string of 1’s.

Lemma 4.9. Let X be Δ0
2(Y ) for some set Y. Then there exist a sequence of structures

(Ci)i∈� , uniformly computable in Y, such that for all i ∈ �

Ci ∼=
{
S0 if i ∈ X,
S1 if i �∈ X.

Proof. As X is Δ0
2 there is an X -computable two-valued function f such that

lim
s→∞

f(i, s) =

{
0 if i ∈ X,
1 if i �∈ X.

Define a structure C as follows. Fix an enumeration g of 2<� . At Stage 0 define C0

to be the partial structure containing one element a on which no relation holds and
leave all function symbols undefined. Say we have defined the structure Cs . At Stage
s + 1 we look at f(i, j) for j < s and define Cs+1 as if a was the finite string with
a(j) = f(j) for j < s . To be more precise:
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(1) For all k, if k ≤ s and |g(k)| ≤ s then let Rg(k)(a) if and only if g(k) � a,
and if Fg(k)(a) has not been defined yet add a new element and set Fg(k)(a).

(2) We may assume by induction that for all elements b in Cs+1 there is k ≤ s
such that b = Fg(k)(a). We set Rg(l)(b) respecting this equation for all l ≤ s .

It is easy to see that this procedure yields a computable sequence of structures Cs
with Cs ⊆ Cs+1 and a computable structure as its limit. We let C be this structure. C
contains an element a such that A |= R�(a) if and only if a � f(i, –) and all other
elements are equal to F
(a) for some 
 ∈ 2<� . Thus, in particular if limf(i, s) = 0,
then there is an element representing the constant string of 0’s in A and otherwise
there is an element representing the constant string of 1’s in A. Let Ci = C, then
Ci ∼= S0 if and only if i ∈ X and Ci ∼= S1 if and only if i �∈ X as required. �

We use the usual category theoretic definition of pseudo-inverse. Two functors
F : C→D and G : D→ C are pseudo-inverses if F ◦G is naturally isomorphic to
idD and G ◦ F is naturally isomorphic to idC.

Recall that a structure A is automorphically trivial if there is a finite set D ⊆ A
such that every permutation of A that fixes D pointwise is an automorphism. Knight
[16] showed that isomorphism spectra of automorphically trivial structures contain
only one Turing degree and that the isomorphism spectra of automorphically non-
trivial structures are upwards closed in the Turing degrees. In [7] the authors showed
that if A is automorphically trivial and B ≈ A, then B ∼= A. Thus, as every bi-
embeddability and elementary bi-embeddability spectrum is a union of isomorphism
spectra, Knight’s result carries over to this setting.

Lemma 4.10. For every automorphically non-trivial structure G ∈ G there is A ∈ C

such that

DgSp
�

(A) = {X : X ′ ∈ DgSp≈(G)}.
Proof. Recall the reduction from embeddability on graphs to elementary

embeddability on C given in Section 3.1. It is easy to see that it induces a computable
functorF : (G,≈) → (C,�). We show that the functor has a pseudo-inverse G on the
�-saturation of F (G) and then use Lemma 4.9 to obtain the lemma. The minimality
of the submodels S used in the construction of F will play a crucial role in the proof.

Say B � F (G) for G ∈ G, that x, y are vertices in B and S(x,y) is the substructure
on the elements satisfying O(x, y, –) in the reduct to the language of S. We have
that either S(x,y)

∼= S0 or S(x,y)
∼= S1 since it elementary embeds into S(u,v) for some

u, v ∈ F (G) and S(u,v)
∼= S0 or S(u,v)

∼= S1 by minimality. Thus, we get a graphG(B)
from B by defining an edge between two vertex variables x, y from B if and only if
S(u,v)

∼= S0. Clearly every elementary embedding ofB inF (G) yields an embedding of
G(B) inG ∼= G(F (G)) and the analogous fact is true for every elementary embedding
of F (G) in B. Likewise, we can argue that F (G(A)) ∼= A for every A ∈ F (G). Thus
G and F are pseudo-inverses.

However, notice that G is not effective. Within one jump over the diagram of any
B ∈ F (G) we can computeG(B) as the isomorphism types ofS1 andS0 are definable
by Σc2 formulas in C. This implies that for all A ∈ G, F (A)′ ≥T G(F (A)) ∼= A. So,
in particular,

DgSp
�

(F (A)) ≥s {X : X ′ ∈ DgSp≈(G(F (A))) = DgSp≈(A)}. (1)
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On the other hand, let X ∈ DgSp≈(A) and Â ≈ A such that Â ≡T X . Then by
Lemma 4.9 for every Y with Y ′ ≥T X , there is B ∼= F (Â) with B ≡T Y . This
process is uniform in B and Y. Thus

DgSp
�

(F (A)) ≤s {X : X ′ ∈ DgSp≈(A)}. (2)

As both bi-embeddability and elementary bi-embeddability spectra of automorphi-
cally non-trivial structures are upwards closed, Equations (1) and (2) imply that

DgSp
�

(F (A)) = {X : X ′ ∈ DgSp≈(A)}. �

Theorem 1.3 follows directly from Lemma 4.10 and Corollary 4.8.
We note that Theorem 1.3 may not be optimal. Using a different proof one

might be able to get an even stronger relationship between the spectra realized by
bi-embeddability on graphs and elementary bi-embeddability on graphs. We thus
ask:

Question 4.11. Is every bi-embeddability spectrum of a graph the elementary bi-
embeddability spectrum of a graph and vice versa?

One way to answer this question positively is by showing that if X is an
elementary bi-embeddability spectrum then so isX ′ = {x′ : x ∈ X}. This is true for
isomorphism spectra and usually shown by considering an appropriate definition for
the jump of a structure. However, all known definitions do not preserve elementary
embeddability (and not even elementary equivalence). We thus ask:

Question 4.12. Let X be the elementary bi-embeddability spectrum of a graph. Is
X ′ the elementary bi-embeddability spectrum of a graph?

Question 4.13. Let X be the theory spectrum of a graph. IsX ′ the theory spectrum
of a graph?

Also, while Theorem 4.7 shows that graphs are complete for elementary bi-
embeddability spectra, it is unknown whether the same is true for bi-embeddability.

Question 4.14. Is every bi-embeddability spectrum of a structure realized as the
bi-embeddability spectrum of a graph?
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VIENNA, AUSTRIA

E-mail: dino@math.berkeley.edu

https://doi.org/10.1017/jsl.2021.82 Published online by Cambridge University Press

mailto:dino@math.berkeley.edu
https://doi.org/10.1017/jsl.2021.82

	1 Introduction
	2 Background
	3 Elementary bi-embeddability is analytic complete
	3.1 The reduction from -3mu→G to C
	3.2 Graphs are complete for elementary embeddability

	4 Degree spectra

