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ABSTRACT. A continuum mixture model of coupled ice-sheet/ice-stream
dynamics has been developed within a conventional three-dimensional finite-
difference model ramework. The ice mass is arcally divided into sheel-ice and stream-
ice components, Dynamic evolution of each component is solved with coupling terms to
describe mass exchange between flows. In this way, ice-stream [luxes can be
incorporated in a rigorous dynamical model with only a doubling of computational
cost. This paper presents simple model tests using the EISMINT experimental ice
block, a 1500 km x 1500 km ice sheet which rests on a flat bed. Tce-stream behaviour is
investigated for a range of coupling rules and activation scenarios. In simple tests
presented here, we find that the viscous response time ol source ice feeding the ice
stream may be a factor limiting ice-stream vigour and longevity.

1. INTRODUCTION

Ice streams of the Antarctic and Greenland ice sheets
account for a large [raction of total ice-sheet drainage
(Morgan and others, 1982; Paterson, 1994, p.301).
Geologic and palacocecanographic evidence suggests that
ice streams and [ast-llow behaviour (e.g. surge lobes,
Heinrich events) played an equally vigorous role in the
history and dynamics of past ice sheets {e.g. Clark, 1994;
Bond and Lotu, 1995). Despite this motivation, ice
streams arc not explicitly portrayed in large-scale ice-
sheet models. The foremost limitation is the basie problem
that fast-llow physics and ice-stream activation are not
well understood. Scale imposes another [undamental
restriction. Current ice-sheet models have grid-cell
dimensions of order 20100 km; contemporary ice streams
are essentially sub-grid at this resolution.

We have developed a continuum mixture framework
which overcomes the scale limitation. Ice-sheet area is
divided into a binary mixture of sheet ice and stream ice.
Conservation laws are applied to cach component to
track interdependent dynamic and thermal evolutions.
This accounts for ice-stream [luxes without concomitant
enhancements in resolution. The number ol equations
and field variables is doubled from conventional models,
increasing computational cost by a factor of 2.

The mixture framework permits rational exploration

of ice-stream physics. This paper focuses on parameter-

ization of rules lor sheet/stream coupling and controls of

ice-stream activation and growth. We envisage (wo
means by which ice is exchanged between [low regimes,
creep transfer and bed transfer. Creep transfer describes ice-
stream nourishment by viscous creep flow ol ice from the
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ice sheet. Bed transfer can be thought of as areal
activation or deactivation ol ice streams and 1s controlled
by basal conditions. We present ice-stream mobilization
experiments on the EISMINT calibration block, a
simplified ice geometry resting on a flat bed.

2. THEORETICAL MODEL

We outline the continuum foundation of the mixture
model in this section, introducing a general formulation
that can be applied to multiple ice-flow constituents. This
paper considers a two-component mixture of sheet ice and
stream ice, which honour distinct governing dynamics.
Sheet ice [lows by viscous creep deformation under
eravitational loading, whereas stream-ice fluxes are
driven by subglacial sediment deformation and/or de-
coupled sliding at the ice-bed contact. Because ol this
important distinction, we separately describe the velocity
of each mixture constituent rather than blend the
contributions to obtain a single barveentric velocity.
Coonsider an ice mass occupying total mixture
volume V in a Cartesian reference frame (), 29, 3).
Directions x; and @ are horizontal and @3 is vertical
and positive upwards. Deline mixture surlace arca S
interior to V, with Euclidean area element dS = dxdiey
and volume element dV = daydS. An intensive quantity
(. xe,x3.t) in volume V' owith vertical extent H has the

integral value

/ th dV = / / Y daeydS = /(U‘) s (1)
J¥ J&dn Js

where () is the vertical integral ol . Define the
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vertically averaged quantity

b= Q = i :  dxg. (2)

o H)J

We employ summation convention for vector operations
and tensor fields. As a general convention, subscripts 7. k,
and [ denote three-dimensional operations and vectors,
and we reserve subscript J for two-dimensional (horizon-
tal) operations and vectors. Deline the three-dimensional
velocity field vp(xy, 22, 23,t) with components (u, v, w)
and the horizontal sub-set vj(xy, 2, 23.1) with compo-
nents (-u. l‘).

2.1. General balance equations

The nature of sheet/stream divisions in an ice mass leads
us to describe a two-dimensional areal mivture rather than
a volume mixture. We divide area S into n, ice-flux
constituents, where 7, =2 in the binary sheet/stream
mixture, Subscript a signifies constituent properties, with
a € (s.c¢) denoting sheet ice and stream (“channelized™)
The areal density or infinitesimal area
o.t), with the

ice, respectively.
fraction of each constituent is (.
satluration constraint

1y

Zr\,, =1. (3)

a=1

Constituents co-exist in S, each component occupying
bed area «,S.
J’J.l(.r...rg._f) and bed heights hff(_.r...rg.r‘.) above an
Corresponding ice

Define constituent surface heights

arbitrary datum (e.g. sea level).
thicknesses are then

1
[I,,(.H..l’g.f) - h { T f) = h ( sl 9y f) (1)
Note that constituents occupy distinet vertical space and
there is no vertical variation in component fraction cy,.

For a general constituent thermodynamic quantity ¢, in
the areal mixture, this allows the simplilication

(L':‘l‘l) = L?'rl Hu . (l'))

(ﬁ,, z;-'rw) = (Xy

Total ice volume V is therefore composed ol constituent

; -
o = / dV = / / o, deg dS
\Z, JS JhB
- /(u,,) ds = / a.H, dS (6)
VA JSs

N

V= Z V,. (7)

=1

volumes

with

Consider the time evolution of a specilic constituent
material quantity 2, with the extensive integral value

W= / pttf',, Sl (8)

We assume that ice is incompressible with a true mass
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density p! that is constant and identical for all mixture ice
components. The Lagrangian time derivative of Equation
(8) gives the transport relation

My dy
L o p i, dV

dt dt .
| (Ll / / (o 7 {,“_-“ (‘LI';; (]Lg
(lf 3 3 h
o [ [ [ ) + g o] s
ala . \Pak®a Wy L
Js Jup i g+ {
g B
[ ./;, n,:L u) + ()T", (* aj®all ”)

+.i(u‘..n.,n,«.,)} drsdS  (9)

()J';;

H

where the spatial derivative djx is over j € (1,2) and
d,/dt denotes the constituent material derivative. With

Equation (1) the resulting expression (9) becomes

rlu 9]

(lf p i, AV = p / <(3){ (Cata) +E(f'”_',(h,t,’,,)> ds

+PI/ [(U-'uﬂnf«'u)|‘,.‘,h1
5! : v

— (watratia)|,_yp] 45 (10)

Now consider the kinematic conditions at the constituent
1983: Morland, 1984). Applying the

constituent material derivative at the upper

surfaces (e.g. Hutter,
surlace
e e

2z =l

()h (')h:, ()h

([”z”
== 1 f':sz-‘,, )f + u(l\,-.‘:h}‘ 0.1‘] i (3P |”_.f¢” ()I')

dt

( l

(11)

where I;,', is a source/sink term representing ice-equivalent
supply rate (accumulation ablation) at the constituent
surface. We deline it to be positive [or positive mass
halance (net accumulation ). Surface-ice velocities in the
material derivative are defined in the horizontal plane
which is approximated to be parallel to the surface. This is
the common assumption made in ice-sheet models and
requires small surface slopes with negligible deviations

from the horizontal mean surface (Hutter. 1983).
Similarly, at the constituent bed z, = h?,

a1 B a1 B a1, B

oh,; oh; oh,

!r"“

— ——— - — l‘
ny=hi ot o ””|.r‘|=hll,‘ (l)-rl it

where b incorporates basal melt and refreezing, and is
again deflined as positive for net gain ol ice (refreezing
exceeding melt), Leibnitz” differentiation rule over the

vertical integral gives

My, @l : Oh' ‘ ghE .
< - > = (V) =¥l 5 Valrmp 5, (13)

where ¢ is a generalized time-space coordinate, r €
(r1,@9.1t). LEquations (11)-(13), along with Equation
(5) simplify Equation (10) to give the verdcally

o
~1
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dn
m f P dV
<(P,, Yy r|> +

o B

0 (n:,,(u,,‘,;‘u‘.l,,)) —u,,f},,] s (14)

Ox;

<‘ Jaj Qg L”n) - ”rlbu] ds

where we have combined terms F;{E and f;? into a single
source/sink rate B
This is a general result for vertically integrated
constituent balances. Define a specific transfer term x,
which describes exchanges between mixture constituents
in arca S. This transfer term obeys
My
;)IZ V= (15)
a=1

The balance law of a flux-free quantity ¢, thus yields

d,
7= a = Xa B 1
df/ Pl dV = p.L\ ds (16)

Note that x, is the rate of supply of quantity ¥, X, is
vertically constant, emphasizing once again the areal
basis of our mixture.

2.2. Mass balance

case ol mass balance, with
(dimensionless). Using Equation (6), constituent

Consider now the particular
’U’!” = 1

ice masses are given by

fr,'r
Ayi= / p' gl = / / pla,, daxydS
JYV, JS§ Jhb

,r)'f(ct,,) (.152[)If(l:,,f{,, ds  (17)
5 s

and the total ice mass is

g Tq 4
= Z my = Zp]/ QJ('IHH dS
a=1 a=1 5
— I)I]ZDOHH d (18)

a=1

If one considers the ice volume as a whole with an average
or bulk ice thickness Hy, the total ice mass can be written

= /‘,r)I dv = p! [ / dasdS =p' [ H, dS. (19)
SV JsJm, g

With respect to Equation (18), this defines the bulk thickness

ny

Hy = Z o H, . (20)

a=1

It is possible to model the full mixture evolution using this

single variable and a corresponding baryeentric velocity.

This is appealing because it reduces the number of
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unknowns from 2n, 1 to n, but it sacrifices physical
understanding.
have physical significance and different dynamics govern
each flow component. We therefore choose to describe

Component thicknesses and velocities

separate constituent evolutions, applying the transport
theorem to each mixture component based on constituent
velocities vgp.

For a specific mass-exchange rate x,¢ with dimension
T Equation (16) with ¢, =1 gives

d,m, B val
de  — dt

fJ flV—/)/\m.' ds. (21)
g

From Equations (14) and (17), this gives the global balance

0 0 e f
/; [E (n,,H,,)+8_—rj (‘-‘u<"uj>) — agh, | dS =]H Sad B 5

[ d ) o ]
/, [ﬁf— (ﬂ'an) +E ((l‘uf.[,,f.“r.j) = (h,b,,:| d.S :L Wi IS

(22)
This has the local form
) ( . .
é (e H,) —0—:)()7 (evaHoBas) = 0iyby + Xad - (23)
‘ it

This is the governing equation for constituent ice-
thickness evolution where the areal partitioning
v (), 2, 1) 15 known. A separate evolution equation [or
(2, 0,t) is required. We are working towards an
evolution equation which determines «, from bed
character and bed thermal and hydrological conditions
(paper in preparation by S.J. Marshall and G.K.C.
Clarke). For simplicity, here o, (x, 22.1) is a prescribed
function. Constitutive relations and momentum equations
for each flow component are applied to express 7,; in
terms of constituent ice thickness, closing Equation (23).
The specilic form of Equation (23) for each constituent in
the ice mixture s described below.

3. APPLICATION TO THE SHEET/STREAM
MIXTURE

3.1. Mass balance

We now apply the generalized vertically integrated
dynamics to a binary ice-sheet/ice-stream mixture (Fig.
1), using subscript s to denote sheet ice and subscript ¢ for
stream ice. We consider each constituent to occupy the

same bed, such that h?(.r.'l..rfg.f):hB(.r'|.;rg.f) for

a € (s,¢). Local constituent thicknesses are then
H.(z1,23,t) = bl (21, 22,t) — hB(z1, 22, 2) (24a)
Hel it nt) = fz]_(.l,l,.z 9, £) — hP(z1, 29, 1) (24b)

and from Equation (17) the masses of sheet ice and stream

O /pln;,H,. ds
5

= /'pla-r.H(. 48 (25b)
Js

ice are

(25a)
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Stream Ice
Sheet Ice |

Fig. 1. Plan view of the areal mixture of sheet ice, fraction
o, and stream ice, fraction o = 1 — s, (a) depicts
areal division over the full ice sheet, with area S, and (b)
visualizes sample  finite-difference cells containing ice
streams with o, = 0.3.

The total ice mass is

i / p! (uhHH + nc.H(‘) dsS (26)
)

and the bulk thickness of ice in area S, from Equation
(20), is

B = ol +og 1, . (27)

Define mass-balance rates by(21. 22.1) and b.(xy, 2o, t)
which represent net accumulation minus ablation for
cach constituent, including upper surface and basal
contributions. Define the mixture exchange term y,q in
Equation (23) as x4, positive for transfer from the sheet
ice to the stream ice: explicitly, Ysd = —Xma and
Xed = Xmd- Local constituent mass-balance equations
then follow,

B :
Ay QHH% e I_’H.(THH.N = ths — Xmd
()]l ( § ) ()r" ( 5] ) \I
OH, 1 B0 & Y
e — — (B H) S ——=p 28:
ot i O (0o He) as Ot } o (28a)
and the analogous stream component balance
OH. 1 0 H. 06 =  ¥md
+ —— (Te e H) +— — = b +2— . 28b
ot = o dx; (BejoreHe) e Of e iz

Equations (28] bear close resemblance to the vertically-
Mahatlty (1976),
weighted by the areal fraction in our case. Coupling/
exchange terms Y,,¢ and iy are discussed below. Note

integrated conservation equation of

that the saturation constraint (3) requires &y, = —has.
3.2. Ice-sheet and Ice-stream fluxes

We assume that sheet ice flows by viscous creep
deformation [ollowing Glen’s [low law (Glen, 1958;
Paterson, 1994, p.97). Stream-ice fluxes are basally
driven, with low basal shear stress and high velocities
such that internal creep delormation is negligible. Glen’s
flow law relates strain rates é; to deviatoric stresses ol in
the ice

&= B(T")(BL)* 2, (29)
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where X is the second invariant of the deviatoric stress
tensor,

5, =1d,al, (30)

and B(T') is a strain hardness or viscosity term which
follows the Arrhenius temperature dependence

B(T") = Byexp (~Q/R,, T}i,) - (31)

Q@ is a creep activation energy, Ry, is the ideal gas law
constant, By is a constant and n is the [low-law exponent,
typically set to 3.

We assume vanishing interaction forces for constituent
force balances. The ice-sheet mass balance (Equation
(28a)) can then be closed using Mahafly’s (1976) reduced
system of momentum equations which express viscous
creep flux as a function of ice thickness and topography.
In the case where sheet ice 1s treated as isothermal at
mean temperature 7', Glen’s flow law and the vertically
integrated momentum equations give the horizontal
velocity components ug () and vo(x3):

us(x3) = us(h®)
zB(Tl) H=1 Uiil
S p r) -
n+1 dry

n+1 A
L, — &g = ., '
[(f% y -]

Balta)i= t'h(ftli}
(.).I'g

[(h_{—.r,)”* H““]. (32)

s the Lo norm of vector (')_,h__{.

The notation

Integrating again over the ice thickness gives the ice
. g ag g

uxes

QB(jT]) n n— dh[

T B s 1 o ‘I i n+2

el = Uallo)H 7” 9 (p 9) |0Jh.~| pr H
L Ah)

B, H, = 0y (h%) H, + 22 %a) =V e

DsHs = wa(fi™) + ) s

(33)

Equations (28a) and (33) give a non-linear parabolic
equation which tracks ice-sheet thickness and velocity-
field evolution.

We model ice-stream fluxes in Equation (28b) as
basally driven with no internal shear, giving plug flow

with

Bej = ve;(h®). (34)

For the sensitivity tests deseribed in this presentation, we
specily basal velocities rather than calculate them from a
momentum-balance equation. We are working towards a
more complete physical treatment to parameterize
objectively v.;(h") as a function of basal-water pressure,
arcal coverage of water at the bed and basal and marginal
pinning points (basal and side drag).

Exchanges ol momentum between flow constituents
may be quite important as a velocity control on ice

339
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streams. A sensible way to introduce ice-stream me-
chanics and sheet/stream coupling would be to apply the
reduced ice-shell dynamical equations (Morland, 1987).
MacAyeal (1989) and Jenson (1994) have previously
adapted these equations to descriptions of ice-stream and
surge-lobe flow. Parameterizations for basal drag are
required and similar parameterizations could be made to
describe side drag exerted by the sheet ice.

3.3. Dynamic coupling

The source/sink term x4 in Equations (28) represents
transfer of ice between ice-sheet and ice-stream compo-
nents. We describe two means by which the domains
exchange ice mass: creep caplure Xop, governed by ice
dynamics and bed capture Xy, governed by bed properties
and basal hvdrological and thermal conditions.

Creep capture is one-way; it is the creep flow of ice
[rom the ice sheet to the ice stream. This is specified from
the Glen [low parameters B and n, ice-sheet thickness H.
and the gradient in height ir__" - h"_ across a characteristic
horizontal length scale L, hence

n

1 IGIg n+l (1 I L
Xz = xoB(T}) T H™ (=B (35)
We have introduced a dimensionless constant x which
controls the strength of creep capture. It may embody cell
characteristics such as the ice-stream path length
(exchange-zone length) and is of order We choose
length scale L to be the horizontal dimension of the finite-
difference cell.

Bed capture g is the interchange of ice mass due to
conversion of bed area from one [low regime to the other,
following dhe,. To convert this to ice mass (volume)
exchange in Equation (28), the area of the bed being
transferred must be multiplied by the height of the corres-
ponding ice column. This depends on the direction of the
conversion. We introduce a generalized representation

oo, _ | =0l ; B <05 g0
=1 (HL(He) | = -8o.H., 8o:>0. 36}

T'his notation is adapted from a similar Boolean operator
used by Patankar (1980).

The full source/sink term in Equation (28) is
Xmd = Xo + X»- The latter acts as the eflective control
of ice-stream mobilization, while v, is the dominant
exchange term which feeds fully developed ice streams.
There may appear to be double accounting of the arcal
exchange term, as a v term arose naturally from the
mass balance in Equation (28). Depending on the sign,
this original term and x; combine to either
H.| dg.

ice-sheet and ice-stream thicknesses are identical,

cancel out
or give a disbalance |, —

thickness fields are not perturbed by transferring bed
ared

3.4. Vertical velocity-field computation
The vertical velocity field in each constituent is found

from the distribution of
g (2 @0y t) and v, (21, 22, 23,1) and from the mass-

horizontal velocities
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I'his is sensible; if

halance Equation (21) for incompressible ice

-Ll o ]” y ‘ ] :
£ s L i "o dagdS = p! / Xad dS . (37)
dt dt I S

In this instance, we counsider the three-dimensional

balance and write the vertically constant exchange term
as a volume integral

l” h [E18
[ C / / a, dzgdS =p // Xad ey dS.

dt o -

o, 0
/- /,': {(}f ().z m ("nﬂl,,)

- phl X
" Xad )

N Ly dS., -
/5 /f;,ul H, ar;c (38)

The local form of the global constituent balance is

daydS

(‘)('Y” 2] Xl
—— (Vgply ) = — - b g
ot oy Veka) =g )

This can he expanded to give an integral expression for
the constituent vertical velocity field

1 e @
wyly) = w,,(h:f) - — / — (v ) day
j

X, i O
a

C 1 afl‘“ Xad B
_ L (00w Xad\(, By (40
+ /h“ () (i) (n” % ) (lI s Xy 81‘ I[I.'l ( A h” ) ( )

Constituent-exchange term x,q is given by x, + xp [rom
Equations (35) and (36), with Xw = —Xmd and ¥ed =
Xmds gi\'il]g

£y f)
(2] = we(hP) — 1 f = (cvsus) day
i

o dwy

£y ')
-+ [ ‘ () dag
JhB ()1‘1

1 B‘Ph Xmd . B
m(i), 4 Hh)(.r.;; Y

l[ . (oveue) + (eewe)

or ()41_:

(.)n'r Xmd . B y
+2 H(l(']:‘ MY, (1)

This gives the (ull three-dimensional flow field which is of
interest in particle tracking and in thermal advection for
thermomechanical modelling,.

3.5. Initial and boundary conditions

The coupled sheet/stream dynamical evolution Is gov-
erned I Ilqualinn.\ (28a and b), which contain the
unknowns h ; IJ hB, Ty Togs Oy ('),n,. b.. b. and Nirnels
Constituent ice- \ml.uv topographies fr and hl are our
two unknowns which are freely determined [mm arbi-
trary initial values. Bed topography h® is a specified
initial field and is fixed (no isostatic adjustment) in tests
presented here. Iee-sheet velocity vy is calculated [rom ice

and bed topographies using Equation (33). Scenarios are
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prescribed for ice-stream velocity o, for areal partition-
ing a.(r).ra.t) and for mass-balance rates I':ﬁ(.rl..rg.l‘)
and Bc»(.[]..‘t'g. f). Initial areal partitioning is arbitrary: we
begin with pure sheet ice (a;=1) everywhere, The
exchange term y,,4 is calculated from Equations (35) and
(36), and is a function Ul'hl. h(". hB. a, and da..
Constituent ice thickness is forced to zero at lateral
boundaries by specifving instantancous ablation of all ice
which reaches the margins. In a steady state, net mass loss
at the boundaries should equal net gain from b, and b,.

4. NUMERICAL MODEL

lee dynamics are solved in a three-dimensional finite-
difference model styled after Huyhrechts (1990, 1992),
Madels in this class are based in principle on the dynamic
treatment of Mahally (1976). Our model has been
developed in a spherical Cartesian coordinate system
but it readily emulates a rectangular coordinate system
for the tests presented here. Consider (27,72, 23) 10 map
to (x,y,z); the Mnite-dilference model has extent
(nsyny,m.) and the corresponding cell dimensions
(Ax, Ay, Az).

The sheet/stream mixture doubles the number of field
variables at each linite-difference cell and also introduces
the new wvariable og(xy,29,¢) which describes areal
fractionation. This requires a further step in the
numerical procedure. Areal divisions are determined
within each finite-diflerence cell prior to the dynamic
update to give the required variables o and G, We
ADI)

scheme 1o update ice-surface evolution (Equations (28)),

then employ an Alternating Direction Implicit

after Mahally (1976). Sheet and stream surfaces are
jointly solved in a matrix system now doubled in size.
Because the sheet-ice equation is extremely non-linear.
Newton's method is applied at cach time step to iterate Lo
an acceptable convergence criteria (ram.s. residual of less
than 107%ma ! in each ADI sweep of 1, or ny cells).
The physical determination ol oy is governed by basal
processes which are in turn controlled by a collaboration

Table 1. Physical and model parameters

ol ice dynamics, basal thermal and hydrological regimes,
and bed geologic and topographic coupling with the ice.
A respectable physical treatment of the problem requires
description of this full range ol system controls. We limit
this paper to simple tests of the mixture framework and
hence preseribe scenarios for the areal division, as detailed
below. A [ull thermomechanical mixture model has been
developed and coded (paper in preparation by S.].
Marshall and G.K.C. Clarke) and we are now in the
process of developing a hydrological model that responds
to basal thermal and mechanical conditions, Primary
controls of dynamic areal partitioning o (.29, 1) are
sub-grid distribution and pressure of water. In addition,

we envisage a limiting o™ in each cell determined by
sub-grid topographic and geologic attributes. This is the
maximum cell area which could support ice streams.

essentially a bed predisposition.

5. SENSITIVITY TESTS

We explore exchange rules and coupled behaviour on the
EISMINT intercomparison ice block. This ice block is
simple enough 1o permit controlled and economic
sensitivity analyses. The EISMINT test domain was set
up by Huybrechts and others (1996) at EISMINT Model
Intercomparison Workshops in Brussels (June, 1993 and
Bremerhaven (June, 1994). Huybrechts and others (1996
provided a comprehensive discussion of model specifica-
tions and workshop results. We summarize base-model
characteristics here and describe mixture-model beha-
viour for ice streams introduced along the EISMINT
transect.

5.1. Base model characteristics

Model domain is a 1500 km % 1500 km block with 50 kim
grid cells, giving a horizontal extent n, = fi= B0 We
applied a 15 level vertical resolution in all results
presented here. The control-case ice-sheet bed is flat
and at sea level (hB®=0), and there is no bedrock

Parameter Value Definition

pl 910 kgm Density of ice

n 3 Glen flow-law exponent

By 4.1204 % 107 Pa ?; Glen flow-law constant

Q 60700 ] mol ' Creep activation energy of ice
Bieas 6.314 ] mol 'K Ideal gas-law constant

q 9.8l ms * Gravitational aceeleration

L 50 km Creep-coupling length scale
X0 0.01- 10 Creep-coupling coeflicient

Ly = Iy 1500 km Horvizontal-model dimensions
Mg =y 30 Horizontal-grid size

. 195) Vertical-grid size

Ar=Ay 50 km Horizontal-grid dimensions
Az H/n. Vertical-grid dimension

At 2-20a Time step
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EISMINT _
y (km) Transect Thickness (m) 7 (m/a)
1500 : 3500 3500f S
3267 3000} 1 o5
1200 3033 §
2800 25001 j e
900 2567 5q00! 1 66
i 2333 —s— thickness 1 55
| --=- velocit /
600 | 2100 1500 ¥ 1 aa
x
1867 1000 _x 1 33
300 1633 " x,x’ 4 22
1400 3 L = 4 19
0 2 0 T - 1 L I 1 1 1 | 7 0
0O 300 600 900 1200 1500 o 200 400 600 750
a x (km) b Distance from divide (km)

Fig. 2. Equilibrium fields for pure sheet flow in the EISMINT model test block. (a) Plan view of ice-thickness conlours
Sfor thermally decoupled flowe. (b) Profiles of ice thickness and average column veloeity, @, along the EISMIN'T transect
showon in (a).
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Fig. 3. Equilibrium dynamic profiles from an experiment with an ice stream from x = 1100 1500 km along the EISMIN'T
transect. All profiles are at 20 ka, with e, = 0.5 and xo=1. (a) shows thickness contours. ( b) Graphs of transect surface
profiles, where the upper curve is the initial thickness. (¢ ) shows depth-averaged ice-sheet and ice-stream velocities and (d)
showos time series of divide thickness, transect volume and ice-stream head thickness.
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Fig. 4. Thinning of (a) sheel and (b) stream ice along the EISMIN'T transect as a_function of creep-coupling strength
X.r- From lop to bottom, curves correspond to xo = (0.01,0.1,0.5. 1. 5. 10). The ice-stream head is 350 km from the divide.

adjustment to ice-sheet loading in these tests. Initial ice
thickness is zero and a spatially uniform accumulation
rate of 0.3ma ' is applied for all time. All ice which
reaches the margins ablates instantaneously, Table |
summarizes physical and model parameters used
throughout. Under pure creep flow, the ice sheet takes
H0-100ka to reach equilibrium (varying with model
intricacy).

We use equilibrium isothermal ice sheets as initial)
base models for the sensitivity tests. Iee is set o 273 K,
giving a flow-law coeflicient B(1") which corresponds o
the EISMINT Huybrechts and others,
1996). Figure 2 presents base-model equilibrium thickness

level | tests
and velocity fields. Transect profiles are plotted for
y = 750 km along 2 = 7501500 km.

5.2, Ice-stream profiles

We introduce a single ice stream along the EISMINT
transect, beginning 350 km [rom the ice divide and
extending 400 km to the margin. It is limited to one grid
cell in width (50 km). An ice-stream outlet velocity u,. =
900 ma ! is imposed, decreasing linearly to zero at the
head of the stream. Velocities are [lixed at this level for as
long as the stream is active. The ice stream is activated
and grown by areal transfer of sheet ice within the
transect cells. The initial configuration (time 0) contains
pure sheet ice (a,=0) throughout. Ice-stream bed
fractions along the transect are then ramped up to 50%
(. = 0.5) over 500 years, at a constant rate v, =
—0.001. Areal partitioning is held at this level for the
duration of the experiment, 10-20 ka. This corresponds to
an ice stream nominally 25 km in width, although this is
not explicit in the mixture. Creep exchange is active
throughout, with an exchange coeflicient yy = 1 in this
initial activation test.

Figure 3 shows thickness and velocity profiles and time
series from a typical activation experiment. The ice
stream immediately initiates a surface lowering along its
axis and in adjacent cells, as ice flux out of the system
increases. Following a transient period of about 3ka, a
new equilibrinm is reached; ice thicknesses and total
volume are constant for the rest of the integration. The
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upper curve in Figure 3b is the initial base-model
thickness profile and the lower curves show sheet- and
stream-ice profiles along the EISMINT transect after
20 ka. There is a surlace draw-down of about 100 m at the
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3200 - transect ice
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S 1993
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2400 [
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Fig. 5. Time sevies of ice-divide thickness, transect-ice
volume and ice-sheet thickness at the tce-stream head, (a)
corvesponds to xo=0.1 and (bh) displays oscillations
enticed by greater creep coupling, xo=J.
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Fiv. 6. Equilibrium dynamic profiles from an experiment with five-fold increases in ice-stream velocity. All profiles are al
10 ka. with o = 0.5 and xo =0.1. (a) plots thickness contowrs, (b) plols transect profiles and () displays depth-averaged
velocities as in Figure 3. (d) shows time series of divide thickness, transect volume and sheet thickness al the ice-stream head.
Nole the greatly enhanced thinning relative to Figure 3.

divide and over 400 m midway along the stream. Plot are identical in form to those in Figure 3. Ice-stream

Figure 3¢ displays depth-averaged horizontal ice velo-
cities i, and u. along the transect. Creep velocities are
dramatically reduced due to surface lowering and
{lattening, consistent with expectations under thin and
low-sloping ice. lce-stream surface draw-down and
upwards concavity are observed in Antarctic ice streams,
particularly near their head (Shabtaie and others, 1988).
Plot Figure 3d depicts the time evolution ol ice-divide and
ice-stream head thicknesses and total transect-ice volume.

5.3. Creep capture of ice

We varied creep-capture coelficient xq in a set of

experiments with the single-stream model. Stream
activation, velocity and positioning were prescribed in
section 5.2. The creep-coupling parameterization (Equa-
tion (35)), has its physical basis in reasonably constrained
quantities, [rom ice properties and Glen's flow law. We

therefore anticipate that the coellicient xo = 1. A range of

simulations varying xg from 0.01 to 10 allirms this, with
unphysical or high-strung behaviour exhibited beyond

this range. In all cases, ice-thickness and velocity profiles
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profiles are concave-upwards except at the outlet, where
zero thickness is enforced in these tests: given free reign,
stream flow across the boundary gives an ice clifl’ which
more closely resembles a calving front.

Figure 4 plots sheet and stream thinning along the
(ransect. relative to the initial (base-model) thickness, All
profiles are at 20 ka and are equilibrated. The head of the
ice stream is 350km from the divide and stream
thicknesses plotted above this simple track-sheet thickness
(ae = 0 at these points). The impact of xo on sheet-ice
clevations is almost indiscernible. Stream-ice evolution is
more sensitive to creep-exchange strength, with thinner
ice streams under low coupling. As xg increases, sheet and
stream thicknesses track each other more closely and the
resulting ice stream thickens. There is essentially a
balance between xo and (bl — h)" which adjusts
(."){—h(') to meet the feeding requirements of the ice
stream.

Behaviour at the ice-stream head becomes mterest-
ingly sporadic when yg increases, as seen in time series
plotted in Figure 5. The plot in Figure 5a corresponds to
the case xy = 0.1 and Figure 5b is for xg = 5. The former
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tig. 7. Equilthrium dynamic profiles with fwo ice streams 50 km apart straddling the EISMINT transect. Resulls (a, ¢
and ¢) correspond lo case D1z outlet velocity of 900 ma ' and xo=0.5. Resulls (b, d and [) correspond to case D2: outlet
velocity of 1800ma ' and xo=1. (a) and (b) show surface contowrs after 10ka. (¢) and (d) show divide and bransect
profiles and sheet and stream profiles along a sample ice stream: differences between streams are small. (¢) and () showe
time sertes of divide thickness and inter-stream ridge and sheet thicknesses at the head of each stream axis (= [100km ).
Stream profiles confuse the image so have been omitted: stream and sheet profiles for a given stream oscillate in phase.

case smoothly approaches and maintains equilibrium
thicknesses, velocities and transect volume. Sheet flow at
the head of the ice stream has more than doubled [rom
the initial configuration as a result of surlace steepening.
This is important for ice-stream nourishment [rom the
peripheral sheet ice. Under enhanced creep coupling in
the lower plots, the ice-stream head appears unstable. [ee
at the divide and elsewhere quickly approaches equili-
brium but head thicknesses (and resulting creep velo-
cities) oscillate. Pulses of exchange y, occur when sheet
stream  height dillerences are great but cannot be
maintained because of the more ponderous creep-time

https://doi.org/10.3189/50260305500013616 Published online by Cambridge University Press

response of ice from the surrounding sheet. We do not
allow this 1o allect the siream flow but maintain a
constant rate ol stream flushing rom the head. These
combined influences make the behaviour erratic but non-
divergent.

These results offer some interesting cuidance. Low
coupling coeflicients vield within-cell surface gradients of
order (B! — hl) 2 100 m. These are perhaps large and we
prefer coupling coellicients vy > 0.5 which narrow the
difference. Excursions in behavior at the ice-stream head
increase with increasing vy and above y; =5 we were

forced to decrease dynamic time steps from 10 1o 2 5 a.

n
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We fully expect that the dynamic excursions would be
much damped in a real physical situation. Interplay with
stream-ice velocities can be expected and might prove
quite interesting. Our treatment of inter-cell feeding can
also be refined. In these tests, streams are fed anly from the
local sheet ice, with a longer response time [rom
neighbouring cells. Experiments we have done with a
broader source region directly feeding the ice-stream head
yield a smoother evolution and permit exchange coelli-
cients o in the range 50-100,

5.4, Ice-stream velocity

We found predictable responses to variations in pre-
scribed ice-stream velocity. Surface draw-down and
concave-upwards surface profiles persist as long as flux
et H, increases downstream. These characteristics are
enhanced by increases in velocity. Figure 6 shows surface
profiles and temporal evolution for an outlet velocity of
4.5kma L. There is a single ice stream which is activated
as before but with all velocities increased five-fold.
xo = 0.5 in this test and head behaviour is smooth
following small oscillations during the initial activation.

5.5. Double stream model

We are quite interested in the mutual interaction ol two
or more ice streams (as present on the Siple Coast,
Antarctica, for example). As a preliminary stability test,
we introduce two parallel ice streams separated by 50 km
and straddling the EISMINT transect. Each stream is
400 km long and up to 50 km wide, occupying a single
row of cells as before. Activation of each stream is
identical to that in the single-stream case (section (5.2)).
and eflective equilibria are achieved by 10 ka.

Results of two test scenarios are plotted in Figure 7.
The images on the left correspond to outlet velocities of
900ma ' and xp = 0.5 (case D1). Stream velocitics are
doubled and yy = 1 on the right (case D2). All profiles
are at 10ka. EISMINT transect profiles are plotied in
Figure 7¢ and d; this is now an inter-stream ridge and is
drawn-down extensively by drainage to both streams.
The two lower curves in Figure 7¢ and d plot sheet-ice
and stream-ice thicknesses along a single ice-stream axis.
The second ice-stiream axis is identical in case D1 but not
in D2. Time series of sheet-ice thicknesses in Figure 7e and
{ demonstrate the diflerence. The “gentle™ case on the left
evolves smoothly with the two ice streams indistinguish-
able and no apparent interaction, Under higher coupling
and larger fluxes highly correlated, stream interactions
are evident with anti-phase thickness oscillations of sheet
ice along the two stream axes. Stream-thickness evolu-
tions muddle the image and are not plotted; sheet and
stream thicknesses oscillate in phase along each stream.

6. SUMMARY

The mixture framework is conceptually and numerically
simple as an enhancement to existing model strategies.
Tests of numerical robustness and physical sense are
encouraging over a range of physically plausible scenar-
ios; we are optimistic that sub-grid ice streams can be
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dynamics

physically accounted within comprehensive models with-
out increasing numerical resolution. Computational costs
are nominally doubled, although some conditions [orced
smaller time steps to ensure dynamic stability (i.e. a
reduction from 10 to 2-5a).

We re-emphasize that ice-stream governing physics is
not described in this work. Stream velocities, activation
and growth need to be objectively and freely determined.
At the minimum, this requires a description of sub-ice
hydrological regime and sub-grid bed coupling. In
addition, ice-dynamical coupling between sheet and
stream components should be refined to describe better
dynamical controls of stream flow. We expect side drag
along sheet/stream boundaries to be important. Details of
transient evolution and shut-down should be explored
further, as equilibrium ice streams may never be realized in
Nature. We believe that the mixture framework provides
us with the means to ask sensible questions and make
detailed quantitative studies of ice-stream behaviour,

More sophisticated treatments of ice-stream me-
chanics and sheet/stream momentum coupling are con-
ceptually straight forward within the mixture framework.
The general framework also allows direct extension to
mixture thermodynamics and a three-constituent mixture
which includes ice shelves.
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