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INVARIANT MEANS ON DENSE SUBSEMIGROUPS OF
TOPOLOGICAL GROUPS

ANTHONY TO-MING LAU

1. Introduction. Let S be a topological semigroup (i.e., S is a semigroup
with a Hausdorff topology such that the mapping from .S X .S to .S defined
by (s,t) — s -t for all s,¢ in .S is continuous when S X S has the product
topology) and C(S) be the space of bounded continuous real valued functions
on S. For each f in C(S) and a in S, define || f || = sup {| f(s)]: s € S} (sup
norm of f); 7,f(s) = f(sa) and I,f(s) = f(as) for all s in S. If X is a sup norm
closed subspace of C(S) which is translation invariant (i.e., 7,(X) € X and
1,(X) € X for all ¢ in S) and contains the constant one function 1g, then
an element ¢ in X*, the conjugate space of X, is a LIM (left invariant mean)
if $(1s) = ||¢|| = 1 and ¢(l,f) = ¢(f) for all fin X and @ in S. (See [2].)

A function f € C(S) is left (right) uniformly continuous if whenever {s;} is
a net in S and s; converges to some s in S, then ||l,f — Lf || =0 (||rs,f —
rsf || — 0); furthermore, f is uniformly continuous if f is left and right uni-
formly continuous. As known, LUC(S) and UC(S), the space of left uni-
formly continuous functions on S and the space of uniformly continuous
functions on .S respectively, are translation invariant, sup norm closed sub-
algebras of C(S) containing 1s. Furthermore, if .S is compact, then C(S) =
LUC(S) = UC(S) (see [10, pp. 64-65]).

Let G be a topological semigroup and S be a dense subsemigroup of G. It
is easy to see that

(*) if UC(S) has a LIM, then UC(G) also has a LIM.

Indeed, if ¢ is a LIM on UC(S), define ¢ € UC(S) by &(f) = ¢(fls),
where f|s is the restriction of f to S; then ¢ is a LIM on UC(G) (see [9, Theo-
rem 8)]. However, the converse of (x) is false in general even when G is
compact. (Consider the following example of [9, pp. 640-641]: let .S be the
free semigroup on two generators with the discrete topology and G = S \U {z}
be the one point compactification of S, where iz = 2t = z for all t € G. It is
easy to see that C(G) has a LIM and yet UC(S) does not.)

The main purpose of this paper is to establish a partial converse of (x).
Let G be a topological group and S be a dense subsemigroup of G. We show
in § 3 that:

(1) If C(G) has a LIM, then UC(S) has a LIM.

(2) If LUC(G) has a LIM and S has finite intersection property for right
ideals, then UC(S) has a LIM.
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(3) If UC(G) has a LIM and .S has finite intersection property for right
ideals and finite intersection property for left ideals, then UC(S) has a LIM.

Unfortunately, we know of no example which shows that the condition ‘S
has finite intersection property for right ideals” in (2) (and the corresponding
condition on S in (3)) cannot be entirely dropped.

2. Extension of uniformly continuous functions on subsemigroups
of topological groups. Recently, S. Wiley [12] has considered pairs S, T,
where T is a topological semigroup and S is a subsemigroup of 7" such that
each function in LUC(S) has an extension to a function in LUC(7"). In this
section, we consider extension properties of the similar type. Results in this
section are essential tools for our main work in § 3. Proof of the early results
of this section are adaptations of the proofs of [12].

For the rest of this paper, G will denote a topological group. If .Sis a topo-
logical semigroup and a € .S, then S[e] will denote the subsemigroup
{aS M Sa} \J {a} of S.

LemMmaA 2.1, Let S be a dense subsemigroup of G and a € S. If {s;} and {;}
are lwo nets in Sla] which converge to some g € G, then lim,f(s;) and lim,f(t;)
exist and are equal for each f € UC(S).

Proof. Let f € UC(S) be arbitrary and fixed. We first assume that
lim;f(s;) = Ly, lim,;f(¢;) = Ly and L; 3¢ Ly. Let e = |L; — L. For each
n € N, where N is the family of neighbourhoods of g, we can find elements,
s, and ¢, from {s;} and {{;}, respectively, with the property that

Clearly, the nets {s,: # € N} and {f{,: » € N} also converge to g. For each
n € N, pick p,, ¢, in S such that s, = ap, and #, = ¢g,a. Then the nets
{pn:n € N}, {¢.: n € N} converge to a~'g and ga!, respectively. Let
{wy: k € D} be a net in .S which converges to w = ag—!a. Then for each

n €N, k€D,
e = If(a;bn) — f(gua)|
=

Hl f ﬂnwkfll + Hrwwnf— raf“y

which is impossible since the nets {gw;: (n,k) € N X D} and {wp,:
(n, k) € N X D} (where N X D denote the product directed set of N and
D) in S converge to ¢ € S, and f € UC(S). Hence L; = L,.

It remains to show that lim,f(s;) and lim;f({,) exist. If lim,f(s;) does not
exist, say, then we may find subnets {f(s;)} and {f(s:)} of the net {f(s.)}
which converge to two distinct real numbers L,’ and Ly’ in the closed interval
[(=lfI, [|f]]]. However, the subnets {s;} and {s;/} of the net {s;} also
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converge to g. Consequently, it follows from what we have proved that
Ly = Ly, contradicting our assumption that L,’ and L, are distinct.

LeEMMA 2.2. Let 0 be @ mapping from a Hausdorff space X into a metric space
(Y, d). Then the following are equivalent:

(@) There exists a dense subspace T of X with the property that whenever
{t:} is a net in T which converges to a point x in X, then d(0(¢;), 6(x)) converges
to 0.

(b) 6 s continuous.

Proof. (b) = (a) is trivial. Conversely, if (a) holds, and 6 is not con-
tinuous, then there exist e > 0 and a net {x;: ¢+ € D} in X which converges
to a point x in X such that d(0(x;), 8(x¢)) = e. For each 7 € D, let {¢,. 5 :
j € E;} be a net in 7" which converges to x;. Let P be the product directed
set X {E;:2€ D}. If (4,h) € D X P, define ¢ 5 = tinco). Then the net
{taam: (4, k) € D X P} in T converges to lim; lim; ¢, ; = xo (see [8, p. 69]).
By assumption, we may choose (¢, #y) € D X P such that whenever
(2, ) = (4o, ko), d0(Fiim) — 0(x0)) < ¢/2. Furthermore, we can also choose
jo € Eq4 such that jo = ho(io) and d(6(xs,), 0(tcs,50) < €/2. Define hy € P
by hi(f) = he(z) if 75 4y, and hi(p) = jo. Then (2o, h1) = (40, ko) and
tso,50 = beio,nn- Consequently,

e = d0(x4), 0(xo))

= d(e(xio)r e(l(io.jo))) + d(0<t(i0,hl)1 B(xo))
< ¢

which is impossible. Hence, 6 is continuous.

TuEOREM 2.3. If S is a subsemigroup of G such that S is a group, then for
each f € UC(S), there exists f € C(G) such that Fls = f.

Proof. Using Tietze's extension theorem, we may assume that S =G. Let
a € S be fixed. It is easy to see that S[a] is also dense in G. For each g € G,
define F(g) = lim,f(s;) where {s;} is a net in S[a] converging to g. It follows
from Lemmas 2.1 and 2.2 that F is well defined, F € C(G), and F|s = f.

If G is a compact group, then UC(G) = C(G) and S is a group for any
subsemigroup of G (see, for example, [6, p. 99]). Hence we have:

COROLLARY 2.4. If G is compact and S is a subsemigroup of G, then for each
f € UC(S), there exists F € UC(G) such that F|s = f.

Remark 2.5. Corollary 2.4 was proved by Wiley [12, Theorem 4.6] for the
case when S is abelian.

The next lemma, due to Wiley [12], follows immediately from [7, Theorem
3] and the observation that if G is a topological group, then LUC(G) is pre-
cisely the uniformly continuous bounded real valued functions on (G, R),
where R is the right uniformity on G (see, for example, [6, p. 21]).
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Lemma 2.6 (Wiley [12, Lemma 3.5]). If Gy is a subgroup of G and
f € LUC(Go), then there exists F € LUC(G) such that Fl|s = f.

LeEMMA 2.7. If S is a dense subsemigroup of G with finite intersection property
for right ideals and F € C(G) such that Flg € LUC(S), then F € LUC(G).

Proof. We first note that since S has finite intersection property for right
ideals, Gy = SS~! is a subgroup of G containing S (see, for example, [1, p.
36]). Let Fy denote the restriction of F to Gg. If we can show that Fy € LUC(Go),
then by Lemma 2.6 there exists F, € LUC(G) which extends F,. Since
Fo(s) = F(s) for all s € S and S is dense in G, it follows that Fy, = F.

It remains to show that Fy, € LUC(G,). If {s;} is a net in .S converging to
some g € Gy, let @, b € S such that g = ab™'. Then

lsFo — L, Fol| = [[ls(lssFo — 1,Fo)||
= sup {|Fo(s:bt) — Fo(ght)| : ¢t € S},

which converges to 0 since the net {s.b} converges to gb = € S and
Fols € LUC(S). It follows from Lemma 2.2 that the mapping 8 : Go — C(Go)
defined by 6(g) = [,F, for each g € Gy is continuous when C(G,) has the
sup norm topology, i.e., F € LUC(G,).

THEOREM 2.8. Let S be a subsemigroup of G with finite intersection property
for right ideals. If Sis a group, then for each f € UC(S), there exists F € LUC(G),
such that Flg = f.

Proof. By Lemma 2.6, we may assume that S = G. The theorem now
follows from Theorem 2.3 and Lemma 2.7.

COROLLARY 2.9. If S is a subsemigroup of G with finite intersection property
for right ideals and finite intersection property for left ideals, then for each
f € UC(S) there exists F € UC(G) such that Fls = f.

Proof. It follows from Theorem 2.8 that there exists F € LUC(G) such
that F|s = f. Furthermore, an application of Lemma 2.6 (and interchanging
“left” and “‘right’”) shows that F is also right uniformly continuous.

3. Main results. We are now ready to state and prove our main results.

THEOREM 3.1. Let S be a dense subsemigroup of G.
(@) If C(G) has a LIM, then UC(S) has o LIM.

(b) If S has finite intersection property for right ideals and LUC(S) has a
LIM, then UC(S) has a LIM.

(c) If S has finite intersection property for right ideals and finite intersec-
tion property for left ideals, and UC(G) has a LIM, then UC(S) has a LIM.

Proof. We will prove (a). The proofs for (b) and (c) are similar.
If ¢ is a LIM on C(G), define § € UC(S)* by ¥(f) = ¢(f), for each
f € C(S), and f is the unigue function in C(G) extending f (Theorem 2.3). It
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is easy to see that ¥l = ¥(1s) = 1. Now if a € .S and f € C(S), then
lﬁ‘.’f € C(G)andl,f(s) = glaf) (s) foreachs € S. Consequently, I.f = (l.f)~. Hence
V@) =) =v@f) = ¢() = ¥(f).

CoRrOLLARY 3.2. If G is a locally compact group such that UC(G) has a LIM,
and S is a subsemigroup of G such that S is a group, then UC(S) has a LIM.

Proof. UC(G) has a LIM implies that C(S) has a LIM (see [5,Theorem
2.3.2]), and hence UC(S) has a LIM.

CoROLLARY 3.3. If G is compact, then UC(S) has a unique LIM for each
subsemigroup S of G.

Proof. Since UC(G) has a LIM (see [13, p. 224]) and S is a group [6, p.
99], it {ollows from Corollary 3.2 that UC(S) also has a LIM. If ¢; and ¢,
are distinct LIM on UC(S), there exists fo € UC(S) such that ¢1(fo) # ¢2(fo).
For each F € UC(Gy), Gy = S, define ¢;(F) = ¢;(F|s), ¢« = 1, 2. Then as is
readily checked, ¢;(l,F) = &,(F) for each s € S.

Since S is dense in Gy and the mapping s — I,F, s € S, is continuous, it
follows that ¢; and @2 are LIM on UC(G,). Let Fy € UC(Gy) such that
Fo|ls = fo (Corollary 2.4), then ¢1(F,) # $2(Fo), which is impossible by the
uniqueness of LIM on UC(G,) (see [11]).

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I (Amer. Math.
Soc., Providence, 1961).
. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
. K. Deleeuw and I. Glicksberg, A4 pplication of almost periodic compactification, Acta Math.
106 (1961), 63-97.
. Dunford and Schwartz, Linear operators, Vol. I (Interscience, New York, 1968).
. F. P. Greenleaf, Invariant means on topological groups and their applications (Van Nostrand,
New York, 1969).
6. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1 (Springer-Verlag, New York,
1963).
7. M. Katetov, On real valued functions on a topological space, Fund. Math 38 (1951), 85-91
and Fund. Math. 40 (1953), 203-205.
8. J. L. Kelly, General topology (Van Nostrand, New York, 1963).
9. T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630-641.
10. I. Namioka, On certain actions of semi-group on L-spaces, Studia Math. 29 (1967), 63-77.
11. W. G. Rosen, On invariant means over compact semigroups, Proc. Amer. Math. Soc. 7 (1956),
1076-1082.

12. S. Wiley, On the extension of left uniformly continuous functions on a topological semigroup,
Ph.D. Thesis, Temple University, Philadelphia, 1970.

13. N. W. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer.
Math. Soc. 127 (1967), 221-232.

w N

S

Unaversity of Alberta,
Edmonton, Alberta

https://doi.org/10.4153/CJM-1971-088-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-088-4

