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Abstract

In this paper, we extend the integer-valued model class to give a nonnegative integer-
valued bilinear process, denoted by INBL(p, q, m, n), similar to the real-valued bilinear
model. We demonstrate the existence of this strictly stationary process and give an
existence condition for it. The estimation problem is discussed in the context of a
particular simple case. The method of moments is applied and the asymptotic joint
distribution of the estimators is given: it turns out to be a normal distribution. We present
numerical examples and applications of the model to real time series data on meningitis
and Escherichia coli infections.
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1. Introduction

As was pointed out in [22, p. 3], discrete-valued time series are commonly encountered in
practice. In the last two decades, many developments have been made in this field. Conse-
quently, tools specifically designed for discrete-valued series are now available for data analysis.

There has been a real effort to define a family of models that are structurally simple,
sufficiently versatile, and also accessible. Pioneering work must be mentioned. Several
articles have dealt with statistical data expressed in terms of counts taken sequentially in
time and correlated. Many authors have tackled the problem of integer-valued time series
analysis. Jacobs and Lewis in [16], [17], and [18] presented and applied the so-called discrete
autoregressive moving average models. Some autoregressive moving average models for
dependent sequences of Poisson counts were suggested in [8], [21], [23], and [24]. In [2],
Alzaid and Al-Osh introduced integer-valued pth-order autoregressive (INAR(p)) models and,
in [1], integer-valued qth-order moving average (INMA(q)) models. In [11], Du and Li gave
the first rigorous construction of an integer-valued autoregressive process. Gauthier and Latour
in [14] and Latour in [19] and [20] developed a more general version of the INAR(p) model,
denoted by GINAR(p). Park and Kim in [25] studied the properties of the INMA(q) model,

Received 8 May 2001; revision received 9 March 2006.
∗ Postal address: Laboratoire de Statistique, CREST, Timbre J340, 3 avenue Pierre Larousse, 92240 Malakoff Cedex,
France. Email address: paul.doukhan@ensae.fr
∗∗ Postal address: Laboratoire de Statistique et Analyse de Données, Université Pierre Mendès-France, Bâtiment
Sciences Humaines et Mathématiques, 1251 avenue Centrale, BP 47, 38040 Grenoble Cedex 09, France.
Email address: alain.latour@upmf-grenoble.fr
∗∗∗ Postal address: Centre de Recherche du CHU Sainte-Justine, 3175 chemin de la Côte-Sainte-Catherine, Montréal,
QC H3T 1C5, Canada. Email address: driss.oraichi@recherche-ste-justine.qc.ca

559

https://doi.org/10.1239/aap/1151337085 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337085


560 P. DOUKHAN ET AL.

while Dion et al.in [9] established links between some models used in integer-valued time series
analysis and branching processes.

More recently, a simple integer-valued generalized autoregressive conditional heteroske-
dastic-type model of orders p and q (the INGARCH(p, q) model) has been proposed. See [13]
for some results on this model and its application in epidemiology. This model was also studied
in [28] and applied in finance to model the number of transactions taking place during a short
interval of time. Streettin [30] has derived some stationarity results for the INGARCH(1, 1)

model. Like a model proposed by Davis et al. in [6], this is an observation-driven model.
In this paper, as in many other ones, the Steutel–van Harn operator is used. Let us recall the

definition of this operator from [14].

Definition 1.1. (Steutel–van Harn operator.) Let {Yj }j∈N be a sequence of independent and
identically distributed nonnegative integer-valued variables with mean α and variance λ, inde-
pendent of X, which is a nonnegative integer-valued variable. The Steutel–van Harn operator
α◦ is defined by

α ◦ X =

⎧⎪⎪⎨
⎪⎪⎩

X∑
i=1

Yi if X > 0,

0 otherwise.

The sequence {Yi}i∈N is called a counting sequence. Note that, as indicated in Definition 1.1,
the mean of the summands {Yi} associated with the operator α◦ is denoted by α. Suppose that
β◦ is another Steutel–van Harn operator based on a counting sequence {Ỹi}i∈N. The operators
α◦ and β◦ are said to be independent if and only if the counting sequences {Yi}i∈N and {Ỹi}i∈N

are mutually independent.
We would like to extend the integer-valued model class to give a nonnegative integer-valued

bilinear process, denoted by INBL(p, q, m, n), similar to the real-valued bilinear process
presented by Tong in [31, pp. 114–115]. A time series {Xt }t∈Z is generated by a bilinear
model if it satisfies the equation

Xt = α +
p∑

i=1

aiXt−i +
q∑

j=1

cj εt−j +
m∑

k=1

n∑
�=1

b�k(εt−�Xt−k) + εt , (1.1)

where {εt }t∈Z is a sequence of independent, identically distributed random variables, usually
but not always with zero mean, and where α, ai (i = 1, . . . , p), cj (j = 1, . . . , q), and
b�k (� = 1, . . . , n, k = 1, . . . , m), are real constants. In (1.1) we can ‘formally’ substitute
Steutel–van Harn operators for some of the parameters, giving an equation of the form

Xt =
p∑

i=1

ai ◦ Xt−i +
q∑

j=1

cj ◦ εt−j +
m∑

k=1

n∑
�=1

b�k ◦ (εt−�Xt−k) + εt , (1.2)

where the operators ai◦ (i = 1, . . . , p), cj◦ (j = 1, . . . , q), and b�k◦ (� = 1, . . . , n, k =
1, . . . , m) are mutually independent and {εt }t∈Z is a sequence of independent, identically
distributed nonnegative integer-valued random variables of finite mean µ and finite variance
σ 2, independent of the operators.

In (1.2) it may seem more appropriate to write α
(t)
j ◦ instead of αj◦, to explicitly indicate that

there exists a sequence of variables {Y (t,j)
k }k∈N for all t . However, because (1.2) more closely

resembles the standard equation of the bilinear model in its present form, we prefer to use the
notation αj◦.
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Model (1.2) has never been studied before (to the authors’ knowledge) and is quite com-
plicated. We believe that it is better to restrict our discussion to the first-order bilinear model

Xt = a ◦ Xt−1 + b ◦ (εt−1Xt−1) + εt , (1.3)

where the sequences involved in the operators a◦ and b◦ are respectively of means a and b and
variances α and β. Let Y and Ỹ respectively denote generic variables used in a◦ and b◦. It
should be pointed out that using the Steutel–van Harn operator in (1.2) instead of using the usual
multiplication means that we are not allowed simply to invoke known results established for
the classical real-valued bilinear process, as was done in [15], [26], [27], and [31, pp. 114ff.].

The structure of the paper is as follows. In Section 2 we demonstrate the existence of a
strictly stationary process satisfying (1.3). In Section 3 a sufficient condition for second-order
stationarity is obtained. In Section 4 we discuss the problem of the estimation of the parameters
in a model where εt , t ∈ Z, has a Poisson distribution with mean µ and the sequences involved
in the operators a◦ and b◦ have Poisson distributions with respective means a and b. In Section 5
the asymptotic distribution of estimators is derived. In Section 6 we present numerical examples
and applications of this model to real time series.

2. Existence of a strictly stationary bilinear process

In Theorem 2.1 we give a sufficient condition under which there is a strictly stationary
process {Xt }t∈Z that satisfies (1.3) and is such that εt is independent of Xs , s < t .

Theorem 2.1. If a + bµ < 1 then there exists a unique strictly stationary process {Xt }t∈Z that
satisfies (1.3) and is such that εt is independent of Xs , s < t .

The proof of this theorem is based on several results that we shall prove first. For each t ,
let us introduce a sequence of random variables, {X(n)

t }n∈N, that will be used in the proof of
Theorem 2.1 to generate a strictly stationary solution to (1.3). Let

X
(n)
t =

⎧⎪⎨
⎪⎩

0, n < 0,

εt , n = 0,

a(t) ◦ X
(n−1)
t−1 + b(t) ◦ (εt−1X

(n−1)
t−1 ) + εt , n > 0.

(2.1)

The notation a(t)◦ and b(t)◦ indicates that the counting sequences {Y (t)
k }k∈N and {Ỹ (t)

k }k∈N used
in the operators a◦ and b◦ are fixed at time t . We will show that the sequence {X(n)

t }n∈Z has
an almost-sure limit, denoted hereafter by Xt , for all t . We will prove that the limit process
{Xt }t∈Z satisfies the conditions of Theorem 2.1. To simplify the proof of the main result we
demonstrate the following lemmas, which concern the sequence defined by (2.1).

Lemma 2.1. The sequence {X(n)
t }n∈Z is nondecreasing for all t ∈ Z.

Proof. We prove this result by induction. For n = 0, we have

X
(1)
t = a(t) ◦ X

(0)
t−1 + b(t) ◦ (εt−1X

(0)
t−1) + εt ≥ εt = X

(0)
t .

Now suppose that X
(k)
t ≥ X

(k−1)
t for all t and for all k ≤ n − 1. Since εt−k is a nonnegative

integer-valued random variable, using the induction hypothesis yields

X
(n−1)
t−1 ≥ X

(n−2)
t−1 and εt−1X

(n−1)
t−1 ≥ εt−1X

(n−2)
t−1 ,
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and by definition of a(t)◦ and b(t)◦ we obtain

a(t) ◦ X
(n−1)
t−1 ≥ a(t) ◦ X

(n−2)
t−1 and b(t) ◦ (εt−1X

(n−1)
t−1 ) ≥ b(t) ◦ (εt−1X

(n−2)
t−1 ).

Consequently we can write X
(n)
t ≥ X

(n−1)
t , and the proof follows by induction on n.

Lemma 2.2. The process {X(n)
t }t∈Z is strictly stationary for all n ∈ N.

Proof. According to [5, p. 12], to show that the process {X(n)
t }t∈Z is strictly stationary it

suffices to show that the two vectors (X
(n)
1 , . . . , X

(n)
� )′ and (X

(n)
1+h, . . . , X

(n)
�+h)

′ are identically
distributed. It is clear that

⎛
⎜⎝

X
(0)
1
...

X
(0)
�

⎞
⎟⎠ =

⎛
⎜⎝

ε1
...

ε�

⎞
⎟⎠ and

⎛
⎜⎜⎝

X
(0)
1+h
...

X
(0)
�+h

⎞
⎟⎟⎠ =

⎛
⎜⎝

ε1+h

...

ε�+h

⎞
⎟⎠

are identically distributed, since (ε
(n+1)
1 , . . . , ε

(n+1)
� )′ and (ε

(n+1)
1+h , . . . , ε

(n+1)
�+h )′ are identically

distributed. Hence, the process {X(0)
t }t∈Z is strictly stationary. Now suppose that the process

{X(r)
t }t∈Z is strictly stationary for all r such that 1 ≤ r ≤ n. We then have

⎛
⎜⎝

X
(n+1)
1
...

X
(n+1)
�

⎞
⎟⎠ =

⎛
⎜⎝

a(1)◦ · · · 0◦
...

. . .
...

0◦ · · · a(�)◦

⎞
⎟⎠

⎛
⎜⎝

X
(n)
0
...

X
(n)
�−1

⎞
⎟⎠

+
⎛
⎜⎝

b(1)◦ · · · 0◦
...

. . .
...

0◦ · · · b(�)◦

⎞
⎟⎠

⎛
⎜⎝

X
(n)
0 ε0
...

X
(n)
�−1ε�−1

⎞
⎟⎠ +

⎛
⎜⎝

ε1
...

ε�

⎞
⎟⎠

and
⎛
⎜⎜⎝

X
(n+1)
1+h
...

X
(n+1)
�+h

⎞
⎟⎟⎠ =

⎛
⎜⎝

a(1+h)◦ · · · 0◦
...

. . .
...

0◦ · · · a(�+h)◦

⎞
⎟⎠

⎛
⎜⎝

X
(n)
h
...

X
(n)
�+h−1

⎞
⎟⎠

+
⎛
⎜⎝

b(1+h)◦ · · · 0◦
...

. . .
...

0◦ · · · b(�+h)◦

⎞
⎟⎠

⎛
⎜⎝

X
(n)
h εh

...

X
(n)
�+h−1ε�+h−1

⎞
⎟⎠ +

⎛
⎜⎝

ε1+h

...

ε�+h

⎞
⎟⎠ .

By the induction hypothesis and the property of the random vectors involved in the right-hand
sides of the two preceeding equalities, the vectors (X

(n+1)
1 , . . . , X

(n+1)
� )′ and (X

(n+1)
1+h , . . . ,

X
(n+1)
�+h )′ are identically distributed.

Lemma 2.3. The vectors (X
(n)
t , X

(n−1)
t )′ and (X

(n)
t+h, X

(n−1)
t+h )′ are identically distributed for

all n, h ∈ N.

Proof. The proof is similar to the previous one, and is thus omitted.
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Let kn = E[X(n)
t − X

(n−1)
t ]. By Lemma 2.3 and the structure of the process {Xt

(n)}t∈Z, we
conclude that kn is independent of t .

Lemma 2.4. The sequence {kn}n∈Z is a geometric sequence with ratio a + bµ.

Proof. Because the sequence {X(n)
t }n∈Z is nondecreasing, we have the following equality

in distribution:

X
(n)
t − X

(n−1)
t

d= a(t) ◦ (X
(n−1)
t−1 − X

(n−2)
t−1 ) + b(t) ◦ (εt−1(X

(n−1)
t−1 − X

(n−2)
t−1 )).

By taking expectations on both sides of this equality and using the properties of the Steutel–van
Harn operator, we have

kn = E[X(n)
t − X

(n−1)
t ] = a E[X(n−1)

t − X
(n−2)
t ] + b E[εt−1(X

(n−1)
t−1 − X

(n−2)
t−1 )].

From (2.1) we observe that, for all j = 1, . . . , n − 1, X
(n−j)
t−j − X

(n−j−1)
t−j depends only on

εt−j−1, . . . , εt−n and the sequence involved in the operator. Hence,

E[εt−1(X
(n−1)
t−1 − X

(n−2)
t−1 )] = µ E[X(n−1)

t−1 − X
(n−2)
t−1 ]

and, so,
kn = (a + bµ)kn−1 = (a + bµ)n−1k1,

where k1 = E[X(1)
t−n+1 − X

(0)
t−n+1] = aµ + b(σ 2 + µ2).

Now we prove that the sequence {X(n)
t }n∈N has a unique almost surely nonnegative integer-

valued limit, Xt , for all t . The process {Xt }t∈Z satisfies the conditions of Theorem 2.1.
Almost sure convergence of {X(n)

t }n∈N. Let (�, F , P) be the common probability space
on which the relevant random variables are defined. Since the sequence {X(n)

t }n∈N is a
nondecreasing sequence of nonnegative integers, we have

lim
n→∞ X

(n)
t (ω) = Xt(ω) for all ω ∈ �.

It remains to show that Xt is almost surely finite. To do so, it suffices to show that the set
A∞ = {ω : Xt(ω) = ∞} is such that P{A∞} = 0. We observe that

A∞ =
∞⋂

n=1

∞⋃
m=n

Am = lim sup
n→∞

An,

where An = {ω : X
(n)
t (ω) − X

(n−1)
t (ω) > 0}. On the one hand, we have

kn = E[X(n)
t − X

(n−1)
t ] ≥

∞∑
k=1

P{ω : X
(n)
t (ω) − X

(n−1)
t (ω) = k} = P{An}.

On the other hand, in Lemma 2.4 we showed that kn = (a + bµ)n−1k1. Consequently, if a +
bµ < 1 then the series

∑
n≥1 kn converges and, hence, the series

∑
n≥1 P(An) also converges.

Applying the Borel–Cantelli lemma yields P{A∞} = 0, from which we conclude that Xt is
almost surely finite and that the process {Xt }t∈Z satisfies the conditions of Theorem 2.1.
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Strict stationarity. According to Lemma 2.3, the process {X(n)
t }t∈Z is strictly stationary.

Because Xt is the almost-sure limit of the sequence {X(n)
t }n∈N for all t , it is obvious that the

process {Xt }t∈Z is also strictly stationary.
Nonnegative integer-valuedness. Since Xt is the almost-sure limit of the nondecreasing

integer-valued sequence {X(n)
t }n∈N for all t , we can find an Nt > 0 such that X

(n)
t − X

(m)
t = 0

for all m and n with m ≥ n ≥ Nt , and clearly X
(n)
t = Xt for all n ≥ Nt . Thus, Xt is a

nonnegative integer-valued random variable.
Independence. Let ϒ(t) denote all of the sequences involved in the operators, and let F (·)

denote the smallest σ -algebra that makes measurable the random variables it takes as arguments.
With this notation, and from the structure of the process {Xt }t∈Z, for all s < t we have

F (Xs, Xs−1, . . . ) ⊂ F (Xt−1, Xt−2, . . . )

⊂ F (εt−1, ϒ(t − 1), εt−2, ϒ(t − 2), . . .), (2.2)

from which we deduce that εt is independent of Xs , s < t .
Uniqueness. Let {Zt }t∈Z be another process satisfying (1.3) that is strictly stationary and

such that εt is independent of Zs , s < t . We will demonstrate that Xt = Zt . It suffices to
show that the set B∞ = {ω : |Xt(ω) − Zt(ω)| > 0} is of probability 0. Note that B∞ =⋂∞

n=1
⋃∞

m=n Bm = lim supn→∞ Bn, where Bn = {ω : |X(n)
t (ω) − Zt(ω)| > 0}. The following

notation will be used:

W
(0)
t = εt , W

(n)
t = |X(n)

t (ω) − Zt(ω)|,
L

(0)
t = 0, L

(n)
t = min(X

(n)
t , Zt ).

On the one hand, we have

W
(n)
t = |a(t) ◦ X

(n−1)
t−1 − a(t) ◦ Zt−1 + b(t) ◦ (εt−1X

(n−1)
t−1 ) − b(t) ◦ (εt−1Zt−1)|

=
W

(n−1)
t−1∑
i=1

Y
(t)

i+Ln−1
t

+
εt−1W

(n−1)
t−1∑

i=1

Ỹ
(t)

i+εt−1L
n−1
t

d= a(t) ◦ W
(n−1)
t−1 + b(t) ◦ (εt−1W

(n−1)
t−1 ),

where, recall, {Yn
(t)}n∈N and {Ỹ (t)

n }n∈N respectively denote the sequences involved in the
operators a(t)◦ and b(t)◦. From the structure of W

(n)
t , we observe that εt−1 is independent

of W
(n−1)
t−1 . By using the expected value properties of the Steutel–van Harn operator we thus

find that
E[W(n)

t ] = (a + bµ)n E[W(0)
t−n],

where E[W(0)
t−n] = E[εt ] = µ. On the other hand, we have

E[W(n)
t ] ≥

∞∑
k=1

P{ω : |X(n)
t (ω) − Zt(ω)| = k} = P{Bn}.

Consequently, ∑
n≥1

P{Bn} ≤ µ
∑
n≥1

(a + bµ)n < ∞,

since a + bµ < 1. This means that Xt is almost surely unique.
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3. Stationarity condition

In the previous section, we proved that the process {Xt }t∈Z is strictly stationary. To conclude
that this process is second-order stationary, it suffices to show that the first two moments of Xt

exist.

Remark 3.1. Since the processes {Xt }t∈Z and {εt }t∈Z are strictly stationary, the processes
{Xtεt }t∈Z, {X2

t εt }t∈Z, and {Xtεt }2
t∈Z

are also strictly stationary.

Proposition 3.1. Let the process {Xt }t∈Z satisfy the conditions of Theorem 2.1. Then E[Xt ]
exists.

Proof. From (1.3) and by using properties of the Steutel–van Harn operator, we have

E[Xt ] = a E[Xt−1] + b E[εt−1Xt−1] + µ. (3.1)

Observe that
εtXt = (a ◦ Xt−1)εt + (b ◦ (εt−1Xt−1))εt + ε2

t .

Using the independence property of εt , we also have

E[Xtεt ] = aµ E[Xt−1] + bµ E[Xt−1εt−1] + σ 2 + µ2. (3.2)

From Remark 3.1, we conclude that

E[Xtεt ] = E[Xt−1εt−1].
Consequently,

E[Xt−1εt−1] = aµ E[Xt−1] + σ 2 + µ2

1 − bµ
.

Finally, using the fact that the process {Xt }t∈Z is strictly stationarity, we obtain

E[Xt ] = bσ 2 + µ

1 − (a + bµ)
.

This expectation exists because a + bµ < 1 by the existence condition.

From now on, we will omit the superscript in the operator and we will write a◦ and b◦
instead of a(t)◦ and b(t)◦.

Proposition 3.2. Let the process {Xt }t∈Z satisfy the conditions of Theorem 2.1, and suppose
that εt has a finite fourth moment. If (a + bµ)2 + bσ 2 then E[Xt

2] exists.

Proof. Observe that
E[X2

t ] = E[B2
t−1 + 2Bt−1εt + ε2

t ],
where Bt−1 = a ◦ Xt−1 + b ◦ (Xt−1εt−1). Using the independence property of εt , we have

E[X2
t ] = E[B2

t−1] + 2µ E[Bt−1] + σ 2 + µ2, (3.3)

and using the properties of the Steutel–van Harn operator yields

E[B2
t−1] = E[(a ◦ Xt−1)

2] + 2 E[(a ◦ Xt−1)(b ◦ (Xt−1εt−1))] + E[(b ◦ (Xt−1εt−1))
2]

= α E[Xt−1] + a2 E[X2
t−1] + 2ab E[X2

t−1εt−1] + β E[Xt−1εt−1]
+ b2 E[(Xt−1εt−1)

2].
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From Remark 3.1, we obtain

E[X2
t−1εt−1] = E[X2

t εt ]
= E[(B2

t−1 + 2Bt−1εt + ε2
t )εt ]

= µ E[B2
t−1] + 2(σ 2 + µ2) E[Bt−1] + E[ε3

t ]
and

E[(Xt−1εt−1)
2] = E[(Xtεt )

2]
= E[(B2

t−1 + 2Bt−1εt + ε2
t )ε

2
t ]

= (σ 2 + µ2) E[B2
t−1] + 2 E[ε3

t ] E[Bt−1] + E[ε4
t ].

Let

C
(1)
t = α E[Xt−1] + 4ab(σ 2 + µ2) E[Bt−1] + 2ab E[ε3

t ],
C

(2)
t = β E[Xt−1εt−1] + 2b2 E[ε3

t ] + b2 E[ε4
t ].

Consequently,

E[B2
t−1] = [2abµ + b2(σ 2 + µ2)] E[B2

t−1] + a2 E[X2
t−1] + C

(1)
t + C

(2)
t ,

whence

E[B2
t−1] = a2 E[X2

t−1] + C
(1)
t + C

(2)
t

1 − (2abµ + b2(σ 2 + µ2))
.

By the strict stationarity property of the process {Xt }t∈Z, and using (3.3), we conclude that

E[X2
t ] = C

(1)
t + C

(2)
t + (1 − (2abµ + b2(σ 2 + µ2)))(2µ E[Bt−1] + σ 2 + µ2)

1 − (a2 + 2abµ + b2(σ 2 + µ2))

= C
(1)
t + C

(2)
t + (1 − (2abµ + b2(σ 2 + µ2)))(2µ E[Bt−1] + σ 2 + µ2)

1 − ((a + bµ)2 + b2σ 2)
.

If (a + bµ)2 + b2σ 2 < 1 then the numerator and the denominator both become positive, and
E[X2

t ] exists.

We can now state the following theorem.

Theorem 3.1. If (a + bµ)2 + b2σ 2 < 1 then there exists a unique second-order, strictly
stationary process that satisfyies (1.3) and is such that εt is independent of Xs , s < t .

3.1. Sufficient condition for the existence of E[Xp
t ]

As we will see later, to have asymptotic normality of the estimator, the existence of E[Xp]
for p > 4 is required. For a random variable X, let ‖X‖p = E[|X|p]1/p. The aim of this section
is to give a sufficient condition for the existence of E[Xp

t ]. In view of 1.3, let m
p
p = E[Xp

t ].
Obviously,

mp ≤ ‖a ◦ Xt−1‖p + ‖b ◦ (εt−1Xt−1)‖p + ‖εt‖p. (3.4)

For the first term on the right-hand side of (3.4), we have

‖a ◦ Xt−1‖p
p = E[(a ◦ Xt−1)

p] = E

[Xt−1∑
j=1

Yjt

]
.
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By using the convexity of the function f (z) = zp, we find that

‖a ◦ Xt−1‖p
p ≤ E

[
X

p−1
t−1

(Xt−1∑
j=1

Y
p
jt

)]
= E[Yp] E[Xp

t−1].

Hence, by strict stationarity, we obtain

‖a ◦ Xt‖p ≤ ‖Xt‖p‖Y‖p.

For the second term on the right-hand side of (3.4), by the same argument we find that

‖b ◦ (εt−1Xt−1)‖p
p ≤ E[(εt−1Xt−1)

p] E[Ỹ p].

Let us introduce the following notation: n
p
p = E[(εt−1Xt−1)

p], a
p
p = E[Yp], b

p
p = E[Ỹ p],

and µ
p
p = E[εp]. We can then write

mp ≤ apmp + bpnp + µp. (3.5)

By substituting a ◦ Xt−2 + b ◦ (εt−2Xt−2) + εt−1 for Xt−1, we obtain

n
p
p = E[[εt−1(a ◦ Xt−2 + b ◦ (εt−2Xt−2) + εt−1)]p],

from which we deduce that

np ≤ ‖εt−1a ◦ Xt−2‖p + ‖εt−1(b ◦ (εt−2Xt−2))‖p + ‖ε2
t−1‖p

≤ ‖ε‖p‖Y‖pmp + ‖ε‖p‖Ỹ‖pnp + ‖ε2‖p.

Isolating np leads to

np ≤ ‖ε‖p‖Y‖pmp + ‖ε2‖p

1 − ‖ε‖p‖Ỹ‖p

= µpapmp + µ2
2p

1 − µpbp

.

Relation (3.5) becomes

mp ≤
(

ap + bpµpap

1 − µpbp

)
mp + bpµ2

2p

1 − bpµp

+ µp ≤ apmp + µp + bp(µ2
2p − µ2

p)

1 − µpbp

,

and isolating mp gives

mp ≤ µp + bp(µ2
2p − µ2

p)

1 − (ap + µpbp)
.

Under the hypothesis that ap, µp, and bp exist, we conclude that mp exists if

ap + µpbp < 1 ⇔ ‖Y‖p + ‖ε‖p‖Ỹ‖p < 1. (3.6)

In the next section we assume that the random variables Y , Ỹ , and ε are all Poisson and,
thus, that all their moments exist. In that case, E[Xp

t ] exists if ap + µpbp < 1.
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4. Parameter estimation

In the estimation procedure discussed in this section, we assume that the distribution of
the random variables of the sequence {εt }t∈Z is P (µ), the Poisson distribution with parameter
µ, and that the distributions of variables of the sequences involved in the operators a◦ and
b◦ are respectively P (a) and P (b). Even though similar results might hold for many other
distributions, we prefer to investigate the Poisson case because it arises very naturally in many
counting processes, in the same way that the Gaussian distribution arises in the continuous case.
Also, the Poisson distribution is computationally more tractable than other distributions when
dealing with integer-valued processes. Therefore, we expect that the Poisson distribution for εt

in the INBL(p, q, m, n) process plays a role similar to that of the Gaussian distribution in the
classical BL(p, q, m, n) model. The estimation problem associated with the INBL(1, 0, 1, 1)

process is more complicated than that associated with the BL(1, 0, 1, 1) process. However, we
have successfully developed some higher-order moments for the simple, nonnegative integer-
valued bilinear model, so we can apply the method of moments.

Assume first that the existence and stationarity conditions hold, i.e. that (a+bµ)2+b2µ < 1,

and let γ (0) be the variance of the process. After some tedious calculations, we obtain

E[XtXt+1] = (a + bµ) E[X2
t ] + 2bµµX + bµ + µµX

and, for k ≥ 2,

E[XtXt+k] = (a + bµ) E[XtXt+k−1] + bµµX + µµX,

where µX = E[Xt ]. Consequently, we have the following expressions:

γ (1) = (a + bµ)γ (0) + (a + bµ)µ2
X − µ2

X + 2bµµX + bµ + µµX, (4.1)

γ (k) = (a + bµ)γ (k − 1) + (a + bµ)µ2
X − µ2

X + bµµX + µµX, k ≥ 2. (4.2)

Since εt is P (µ)-distributed, by the proof of Proposition 3.1 we have

µX = bµ + µ

1 − (a + bµ)
.

Therefore, by simple substitution, we obtain

(a + bµ)µ2
X − µ2

X + 2bµµX + bµ + µµX = bµ(µX + 1)

and
(a + bµ)µ2

X − µ2
X + bµµX + µµX = 0.

Thus, (4.1) and (4.2) imply that

a + bµ = γ (k)

γ (k − 1)

and

bµ = γ (1) − (a + bµ)γ (0)

µX + 1
.

By defining A = a + bµ and B = bµ, since µX = (bµ + µ)/(1 − (a + bµ)) we deduce that

µ = µX(1 − A) − B, a = A − B, and b = B

µ
.
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Given the observations X1, . . . , Xn, let

X̄n = 1

n

n∑
t=1

Xt (4.3)

and

γ̂ (k) = 1

n

n−k∑
t=1

(Xt+k − X̄)(Xt − X̄). (4.4)

Note that we use n−1 instead of (n − k)−1 as the normalizing constant for our estimator of the
autocovariance γ (k). From (4.3) and (4.4) we obtain the moment estimators µ̂, â, and b̂ of the
corresponding parameters µ, a, and b as follows:

µ̂ = X̄(1 − Â) − B̂, (4.5)

â = Â − B̂, (4.6)

b̂ = B̂

µ̂
, (4.7)

where Â = γ̂ (2)/γ̂ (1) and B̂ = (γ̂ (1) − Âγ̂ (0))/(X̄ + 1).

Theorem 4.1. The moment estimators µ̂, â, and b̂, defined in (4.5), (4.6), and (4.7), are strongly
consistent.

Proof. To demonstrate that the moment estimators µ̂, â, and b̂ are strongly consistent it
suffices to prove that the process {Xt }t∈Z is ergodic. As we saw previously, from (2.2) we have

F (Xt , Xt−1, . . . ) ⊂ F (εt , ϒ(t), εt−1, ϒ(t − 1), . . . ).

Hence,
∞⋂
t=0

F (Xt , Xt−1, · · · ) ⊂
∞⋂
t=0

F (εt , ϒ(t), εt−1, ϒ(t − 1), . . .). (4.8)

Because the right-hand side of (4.8) is the tail of a σ -field of independent random variables
(εt and ϒ(t)), the probability of any event in it is 0 or 1, from which we conclude that any event
in the σ -field of the left-hand side is also of probability 0 or 1. Thus, from [32], the process
{Xt }t∈Z is ergodic. Since the process {Xt }t∈Z is stationary and ergodic, we conclude that the
estimators X̄n and γ̂ (k) are strongly consistent. Consequently, we deduce that the moment
estimators µ̂, â, and b̂ are strongly consistent.

5. Asymptotic distribution of the estimators

5.1. Weak dependence of the process

To obtain the asymptotic distribution of the estimators given in Section 4, we will use some
weak dependence results; see [7] or [10]. Let us denote by P0 the common probability space
on which are defined the variables Yit and Ỹit εt , t ≤ 0, such that

F0 = σ(Yit , Ỹit , εt : t ≤ 0),

and let P denote the common probability space on which are defined the variables Yit , Zjt , and
εt , t ∈ Z, such that F = σ(Yit , Ỹit , εt : t ∈ Z). Let st = EF0 [Xt ], s = E[Xt ], ut = EF0 [εtXt ],
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and u = E[εtXt ]. In the notation of [7], we will calculate θt = E[|st − s|]. Obviously (see (3.1)
and (3.2)),

st = ast−1 + but−1 + µ,

ut = aµst−1 + bµut−1 + σ 2 + µ2,
(5.1)

for all t > 1. We can write

µ(st − µ) = µ(ast−1 + but−1),

µst − µ2 = ut − σ 2 − µ2,

ut = µst + σ 2,

(5.2)

and substitution of (5.2) into (5.1) gives

st = (a + bµ)st−1 + bσ 2 + µ.

We also have
s = (a + bµ)s + bσ 2 + µ.

Now let zt = st − s = EF0 [Xt ] − E[Xt ]. Straightforward computation yields

zt = (a + bµ)zt−1

= (a + bµ)tz0

= (a + bµ)t (EF0 [X0] − E[X0])
= (a + bµ)t (X0 − E[X0])
≤ 2(a + bµ)t E[X0]

= 2(a + bµ)t
µ + bσ 2

1 − (a + bµ)
.

Thus, {Xt } is a θ -weakly dependent process, with θr given by

θr = (a + bµ)r E[|X0 − E[X0]|] ≤ 2(a + bµ)t E[|X0|].

5.2. Basic general and asymptotic results

Definition 5.1. (Asymptotic normality [5, p. 211], [29, p. 122].) The sequence {Xn} of random
k-vectors is asymptotically normal with ‘mean vector’ µ and ‘covariance matrix’ �n if

(i) �n has no zero diagonal elements for all sufficiently large n, and

(ii) λ′X is AN(λ′µn, λ
′�nλ) for every λ ∈ R

k such that λ′�nλ > 0 for all sufficiently
large n.

Proposition 5.1. (Transformation of asymptotically normal vectors [5, p. 211], [29, p. 122].)
Suppose that Xn is AN(µ, c2

n�), where � is a symmetric nonnegative-definite matrix and
cn → 0 as n → ∞. If g(X) = (g1(X), . . . , gm(X))′ is a mapping from R

k into R
m such that

each gi(·) is continuously differentiable in a neighborhood of µ, and if all diagonal elements
of D�D′ are nonzero, where D is the m × k matrix with (i, j)th entry [(∂gi/∂xj )(µ)], then
g(X) is AN(g(µ), c2

nD�D′).
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Let us introduce some new notation. For the process {Xt }, we write E[Xt ] = µX (as before)
and cov(Xt , Xt+h) = γ (h) for h ∈ Z. We consider the following estimators:

X̄ = 1

n

n∑
t=1

Xt (as before),

γ̃ (h) = 1

n

n−h∑
t=1

(Xt − µX)(Xt+h − µX), h = 0, 1, 2.

In practice, µX is replaced by its strongly convergent estimator X̄.

5.3. A central limit theorem

Results of [7] can be used to obtain asymptotic distributions. As an example, we can show that
if X1, . . . , Xn are observations from model (1.3), then

√
n X̄ is asymptotically normal. Indeed,

if in (3.6) we let p = 2 + δ, the sufficient conditions E[|Xt |2+δ] < ∞ and
∑

i i2/δθi < ∞ are
obviously satisfied.

Let V = (Xt , X
2
t , XtXt−1, XtXt−2)

′ and let λ = (a, b, c, d)′ ∈ R
4. We would like to give

a central limit theorem for λ′V . Bardet et al. in [4] proved a heredity lemma giving conditions
ensuring that a function h : R

k → R applied to a weakly dependent time series produces another
weakly dependent time series. Their proof can easily be adapted, giving Lemma 5.1, in which
we use the following norm:

‖(u1, . . . , uk)‖
 = |u1| + · · · + |uk|.

Lemma 5.1. Assume that {Xt }t∈Z is a k-vectorial stationary time series such that there exists a
p > 2 satisfying ‖X0‖p < ∞. Let {Yt }t∈Z be the stationary time series defined by Yt = h(Xt ),
t ∈ Z, where h : R

k → R is such that |h(x)| ≤ c‖x‖2
 and

|h(x) − h(x′)| ≤ c‖x − x′‖
(‖x‖
 + ‖x′‖
 + 1)

for x, x′ ∈ R
k , and c > 0. If {Xt }t∈Z is a θ -weakly dependent time series then {Yt }t∈Z is a

θ̃ -weakly dependent time series such that, for all r ∈ N, θ̃r = const. θ (p−2)/(p−1)
r , where the

constant is greater than 0.

Let U = (Xt , Xt−1, Xt−2). Let us define h : R
3 → R by h(x, y, z) = ax+bx2+cxy+dxz,

for constants a, b, c, and d in R. Obviously, |h(x)| ≤ const.‖x‖2
. Hence,

|h(x, y, z) − h(x′, y′, z′)| ≤ |a| |x − x′| + |b| |x2 − x′2| + |c| |xy − x′y′| + |d| |xz − x′z′|
≤ C‖(x − x′, y − y′, z − z′)‖
(‖(x, y, z)‖
 + ‖(x′, z′, z′)‖
 + 1),

with C = max(|a|, |b|, |c|, |d|). We deduce that {Yt } = {h(Xt , Xt−1, Xt−2)} is a θ̃ -weakly
dependent time series, with θ̃t ≤ const. θ (p−2)/(p−1)

t . Let Un = (u1, u2, u3, u4)
′ be the four-

vector (X̄, γ̃ (0), γ̃ (1), γ̃ (2))′. The vector
√

nUn has a normal distribution. Parameters of this
distribution can be obtained from classical results.

We know that X̄ is unbiased for µX (see [5, pp. 218–219]). Because γ (k) decreases at a
geometric rate as k → ∞, it is clear that σ11 = ∑∞

h=−∞ γ (r) < ∞: we conclude that the
asymptotic variance of X̄ is n−1σ11.
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With the notation used in Wei [33, p. 95], let the kth-order cumulant of Xt be denoted by
Ck(i1, . . . , ik−1). We have

C3(i, j) = E[(Xt − µX)(Xt+i − µX)(Xt+j − µX)],
C4(i, j, k) = E[(Xt − µX)(Xt+i − µX)(Xt+j − µX)(Xt+k − µX)]

− C2(i)C2(j − k) − C2(j)C2(k − i) − C2(k)C2(i − j).

Anderson in [3, Chapter 8], assuming that

∞∑
r=−∞

|C3(r − h, r)| < ∞ and
∞∑

r=−∞
|C4(h, −r, g − r)| < ∞,

provided results that are useful in computing the parameters of the asymptotic joint distribution
of our estimators. These conditions are satisfied by the cumulants of the process considered
here. In Appendix A we prove that these series are finite.

It is well known that γ̃ (h) is asymptotically unbiased for γ (h), h = 0, 1, 2. For i = 2, 3, 4
and j = 2, 3, 4, let us denote by σij the following expression:

σij =
∞∑

r=−∞
[γ (r)γ (r + i − j) + γ (r − j + 2)γ (r + i − 2) + C4(i − 2, −r, j − 2 − r)].

Clearly we have
∑∞

r=−∞ γ (r)2 < ∞, and, for i = 2, 3, 4 and j = 2, 3, 4, n−1σij is the
asymptotic covariance between γ̃ (i − 2) and γ̃ (j − 2). The covariance between X̄ and γ̃ (h),
h = 0, 1, 2, is also required. We only need to compute E[(X̄ − µX)γ̃ (h)] to obtain the
asymptotic covariances. Simple computations yield:

cov(X̄, γ̃ (h))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n
σ

(n)
12 := 1

n

n−1∑
r=−n+1

(
1 − |r|

n

)
C3(r, r) if h = 0,

1

n
σ

(n)
13 := 1

n

−1∑
r=−n+1

(
1 − |r|

n

)
C3(r, r + 1) +

n−1∑
r=1

(
1 − |r|

n

)
C3(r − 1, r) if h = 1,

1

n
σ

(n)
14 := 1

n

−2∑
r=−n+1

(
1 − |r|

n

)
C3(r, r + 2) +

(
1 − 2

n

)
C3(−1, 1)

+
n−1∑
r=2

(
1 − |r|

n

)
C3(r − 2, r) if h = 2.

We conclude that

lim
n→∞ σ

(n)
1j =

∞∑
r=−∞

C3(r − j + 2, r), j = 2, 3, 4.

The vector Un has an asymptotic normal distribution with mean µU = (µX, γ (0), γ (1), γ (2))

and covariance matrix n−1�U , where �U is the matrix whose (i, j)th entry is σij . Using the
definition of the estimators, in order to have

g(µX, γ (0), γ (1), γ (2)) = (µ, a, b)
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we let

g1(u1, u2, u3, u4) = (u3 − u4)(u1 + 1)u1 + u2u4 − u2
3

u3(u1 + 1)
,

g2(u1, u2, u3, u4) = u4(u1 + u2 + 1) − u2
3

u3(u1 + 1)
,

g3(u1, u2, u3, u4) = u2
3 − u2u4

(u3 − u4)(u1 + 1)u1 + u2u4 − u2
3

.

The matrix D′ of Proposition 5.1 is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(u3 − u4)(u1 + 1)2 − u2u4 + u2
3

D1(u1 + 1)

u2
3 − u2u4

D1(u1 + 1)

(u2
3 − u2u4)(2u1 + 1)(u4 − u3)

D2
2

u4

D1

u4

D1

u1u4(u1 + 1)(u3 − u4)

D2
2

u4(u1(u1 + 1) − u2) − u2
3

u3D1
−u2

3 + u4(u1 + u2 + 1)

D1u3

u1(u1 + 1)(u2
3 − (2u3 − u2)u4)

D2
2

−u1(u1 + 1) − u2

D1

u1 + u2 + 1

D1

u1u3(u1 + 1)(u3 − u2)

D2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where D1 = u3(u1 + 1), D2 = (u3 − u4)(u1 + 1)u1 + u2u4 − u2
3, u1 = µx , u2 = γ (0),

u3 = γ (1), and v4 = γ (2).

6. Applications

In this section we give two examples to illustrate the fact that the model described in this
article can be used to represent series encountered in epidemiology. Two real series of length
143 are considered: the first (series 1) is the weekly number of cases of E. coli O157:H7
infections and the second (series 2) the weekly number of meningitis cases. Both series start
in January 1990 (see Figure 1). The data set comes from the Infectious Disease Services of the
Public Health Department in Roberval, Canada.

There is an important correlation at lag 1 for both series. Thus, assuming that they were
generated according to a model satisfying (1.3), the parameters are estimated as suggested in
Section 4. Results are given in Table 1.

In the second case, we notice that the value of b̂ seems to be small. It would be useful to
determine if this coefficient is significant or not. This may be seen as questioning the usefulness
of the bilinear component in the model. By using the asymptotic results given in Section 5, we
could compute a confidence interval. However, many computations are involved in producing
such a confidence interval, and in practice we prefer a simpler approach. In fact, the standard
error of the parameter can also be estimated by bootstrap (see [12] for details). The latter
approach is much more appropriate, and is indeed recommended if n is not very large.

A GINAR(1) process is a submodel of the bilinear model of (1.3). In a bootstrap framework,
one approach would thus be to model these two time series using a GINAR model as in
Latour [20] and assess if there is any gain in adding the bilinear component. (Estimation results
are presented in Table 2). Under the hypothesis that the appropriate model is a GINAR(1)
process, by bootstrap we can estimate the distribution of b̂ if we proceed to estimate all of the
parameters in the full model.
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Figure 1: Time series data on infectious diseases: we plot Xt against t for cases of
meningitis (left) and E. coli infection (right).

Table 1: Estimation of the parameters under the hypothesis that both series satisfy (1.3).

â b̂ µ̂

Series 1 0.145 0.196 1.198
Series 2 0.171 0.031 0.295

Table 2: Least-squares estimates of the parameters under the hypothesis
that both series are generated by a GINAR(1) process.

â µ̂

Series 1 0.441 1.311
Series 2 0.210 0.290

Table 3: Quantiles of the empirical distribution of b̂.

5% 10% 90% 95%

Series 1 −0.214 −0.148 0.121 0.147
Series 2 −1.045 −0.609 0.586 0.858

Under the hypothesis that the true model is a GINAR(1) process, the estimation of the
parameters leads to a model that can be written as

Xt = â ◦ Xt−1 + et (6.1)

with â ≈ 0.441 for the first series and â ≈ 0.210 for the second series.
We simulated 4000 series of length 143 using (6.1). We computed the value of the estimators

defined in Section 4 and determined the empirical distribution of b̂. In Table 3 some quantiles
are given. There we see that the percentage probability of observing a value as high as 0.196
for b̂ is less than 5% for the first time series. In the second case, by a similar argument, the
value b̂ = 0.0311 is not significant. A closer investigation may be performed to identify a better
model in the GINAR family to describe the second series. We refer the reader to Latour [20]
for a more complete example of fitting a GINAR model.
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7. Conclusion

The model defined in this article is an effort to supply to practitioners another tool specifically
designed for the analysis of integer-valued time series. Some other results are obviously needed
in order to offer a complete tool box for the analysis of integer-valued time series that exhibit
bilinear behavior.

Appendix A.

Here we use the following notation:
�

Xt stands for Xt − µx and x� = x ∧ T ∨ (−T ) is the
‘truncated value’ of x. A convenient value for T will be given later. Explicitly, we have

x� =

⎧⎪⎨
⎪⎩

−T if x < −T ,

x if − T ≤ x ≤ T ,

T if T < x.

The difference between the truncated and original values, x� − x, is denoted by x⊥. We will
show that

κ4 =
∞∑

i,j,k=−∞
|C4(i, i + j, i + j + k)| < ∞, (A.1)

a consequence of which is that we have
∑∞

r=−∞ |C4(h, −r, g − r)| < ∞.
The summation giving κ4 is less than or equal to the sum of three terms that we denote by

κ
(�)
4 , � = 1, 2, 3. The first term is a sum over indices i such that |i| ≥ |j |, |k|, the second

is a sum over indices j such that |j | ≥ |i|, |k| and the third is a sum over indices k such that
|k| ≥ |i|, |j |. We will give the details for the first sum, κ

(1)
4 , only.

We have

C4(i, j, k) = cov(X0, XiXjXk) − C2(i)C2(j − k) − C2(j)C2(k − i) − C2(k)C2(i − j).

Note that

XiXjXk = X�
i X�

j X�
k + X�

i X�
j X⊥

k + X�
i X⊥

j Xk + X⊥
i XjXk.

Let us have a closer look at cov(X0, XiXjXk), writing this term as

cov(X0, XiXjXk) = cov(X0, X
�
i X�

j X�
k )

+ cov(X0, X
�
i X�

j X⊥
k + X�

i X⊥
j Xk + X⊥

i XjXk)

= cov(X0, X
�
i X�

j X�
k ) + RT ,

(A.2)

where RT is the second term in (A.2). By weak dependence, we have

cov

(
X0,

1

T 3 X�
i X�

j X�
k

)
≤ 1

T
3θ|i| and cov(X0, X

�
i X�

j X�
k ) ≤ 3 T 2θ|i|,

from which we deduce that

cov(X0, XiXjXk) ≤ cov(X0, X
�
i X�

j X�
k ) + RT .
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By applying Hölder’s inequality with p = 4 and q = 4
3 , we obtain

RT ≤ E[| �

X0(X
�
i X�

j X⊥
k + X�

i X⊥
j Xk + X⊥

i XjXk)|]
≤ ‖ �

X0‖4‖X�
i X�

j X⊥
k + X�

i X⊥
j Xk + X⊥

i XjXk‖4/3.

Applying Minkowski’s inequality to the last term yields

‖X�
i X�

j X⊥
k + X�

i X⊥
j Xk + X⊥

i XjXk‖4/3

≤ ‖X�
i X�

j X⊥
k ‖4/3 + ‖X�

i X⊥
j Xk‖4/3 + ‖X⊥

i XjXk‖4/3.

By applying Lyapunov’s inequality to each term, we find that

RT ≤ ‖ �

X0‖4(‖X�
i X�

j X⊥
k ‖4 + ‖X�

i X⊥
j Xk‖4 + ‖X⊥

i XjXk‖4).

Because |X�
� | ≤ |X�|, we finally obtain

RT ≤ 6‖X0‖3
4‖X⊥

0 ‖4.

Next, we show that ‖X⊥
0 ‖4

4 ≤ 24T 4−p E[|X0|p]. Note that

‖X⊥
0 ‖4

4 = ‖X0 − X�
0 ‖4

4 = E[|X0 − X�
0 |4].

Clearly, |X0 − X�
0 | = 0 when |X0| ≤ T . Otherwise, we have |X0 − X�

0 | ≤ |X0|+T ≤ 2|X0|.
We conclude that |X0 − X�

0 | ≤ 2|X0|1{|X0|≥T }. Thus,

‖X0 − X�
0 ‖4

4 ≤ 24 E[|X0|41{|X0|≥T }].
Now apply Hölder’s inequality with p∗ = p/4 and q∗ = p/(p − 4). The last expectation can
be bounded by

24 E[|X0|p]4/p E[1{|X0|≥T }]1−4/p = 24 E[|X0|p]4/p P{|X0| ≥ T }1−4/p.

Applying Markov’s inequality yields

‖X0 − X�
0 ‖4

4 ≤ 24‖X0‖4
p

(
1

T p
E[|X0|p]

)1−4/p

= 24‖X0‖p
p T 4−p.

We can thus assert that

| cov(X0, XiXjXk)| ≤ 3T 2θ|i| + 6‖X0‖3
4‖X0‖p/4

p × 2 T 1−p/4.

If we take T 1+p/4 = θ−1
|i| , the orders of the two terms are therefore the same and

| cov(X0, XiXjXk)| ≤ const. θ(−1+p/4)/(1+p/4)
|i| = const. θ(p−4)/(p+4)

|i| .

Then, in κ
(1)
4 , j and k take on 2|i| + 1 values, implying that

κ
(1)
4 ≤ const.

∞∑
r=0

(2r + 1)2θ
(p−4)/(p+4)
r < ∞.

The other terms are easier to control. For example, if |j | ≥ |i|, |k| then cov(X0Xi, Xi+jXi+j+k)

is approximated by cov(X0Xi, X
�
i+jX

�
i+j+k). Thus, as claimed above, the series in (A.1)

converges.
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