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Abstract

In this paper, we give certain analytic functional relations for the double harmonic series related to
the double Euler numbers. These can be regarded as continuous generalizations of the known discrete
relations obtained by the author recently.
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1. Introduction

Let N be the set of natural numbers, N0 = NU {0}, 2 the ring of rational integers, Q

the field of rational numbers, K the field of real numbers, and C the field of complex

numbers.

As multiple analogues of the Tornheim double series, Matsumoto defined the

Mordell-Tornheim zeta function

(1)
1

^—' m,'m'i • • • mr'(m\ + • • • + mr)
s

m | ,ni2 m, = 1

for complex variables s\, s2, • •., sr, s, where the sum is over r-tuples of positive

integers (see [3]). He showed that this function can be continued meromorphically to
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320 Htrofumi Tsumura [2]

<Cr+1. In the 1950's, the values £M7\2(#I. k2;k) for kltk2,keN were investigated by
Tornheim [6] and Mordell [4]. After that, various explicit evaluation formulas for them
were obtained (see, for example, [2,5,8]). Recently, as continuous generalizations
of the discrete relations in [8], the author has given certain functional relations for
W,2(si . S2~, s), which essentially include both Tornheim's and Mordell's results (see
[7])'.

More recently we considered the multiple Euler numbers and the related multiple
series, and obtained some relations for the values of them at positive integers (see
[10]).

In the present paper, we consider

(2)
{2m + a)Sl(2n + by2{lm + 2n + a + by

,n—0

for a, b € {1, 2). Note that r£\.\{su s2\s) is what we considered in [9,10]. The aim
of this paper is to give certain functional relations between these double series and
the Riemann zeta function %(s) (see Theorem 4.7), by the same method as in [7]. For
example, we have

(3) T,.,(2, s; 3) + T,,2(2, 3;*) - X,,2(s, 3;2)

= | (1 - 2" '-3)S(s + 3)?(2) - 4 (1 - 2-!"5)<(5 + 5 )

for all s e C with Re(s) > 0. In particular, putting s = 2 in (3), we have a non-trivial
relation

(4) Ti i (2 , 2;3) = £(5)£(2) £(7).

Indeed, this is a concrete example derived from [ 10, Theorem 1.1] (see also [9]). Thus
we can regard our present results as analytic generalizations of our previous discrete
results in [9,10].

2. Preliminaries

We make use of the same notation as in [7,9,10]. For M € [1, 1 + <5], we define a
set of numbers {£,„(«)} by

2ue
(5) F(x\u) = J ] „ ( )

e2x + u ^-^ m!
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[3] Double harmonic series related to the double Euler numbers 321

We denote £m(l) by Em which is called the /nth Euler number (see [1, Chapter 1]).
We see that (see [9, Section 2])

(6) £2;+1(l) = E2>+, = 0 O'eNo),

(7)
TO! / " 2

For s € C with Re(s) > 0, we define

oo

(8) p(s;u) =
m=0

(2m + 1)'

LEMMA 2.1. For u e [1, 1 + S], p(s; u) is defined and holomorphic for all s 6 C.
Let e e l with 0 < c < 1. For any y e K vv/r/z 0 < y < 7r/2, r/zere e^wr̂  a constant
M = M(y) > 0 independent ofu e [1, 1 + 5 ]

(9) ] p ( c n ; u ) | ^ M ( y )
n! y"

/« particular,

(10) hmminf ; > - .
n-*oo \ n) J 2

PROOF. Let y e K with 0 < y < JT/2, and Cy : z = ye" for 0 < t < 2n, where
i = y/—l. We can easily check that

(11) / F(z;M)z" ' r fz = • (H € No).
Jcr n\

LetM,(y) = max \F(z, u)\ for (z, u) € Cy x [1, 1 +8]. Then we obtain

n\ ~ 2n Jc

Now we use the method of contour integrals (see, for example, [11, Proof of The-
orem 4.2]). We consider the path Q which consists of the positive real axis [y, oo]
(top side), a circle CY around 0 of radius y, and the positive real axis [y, oo] (bottom
side), where 0 < y < n/2. Note that we interpret t* to mean exp(s log r), where the
imaginary part of log / varies from 0 (on the top side of the real axis) to 2n (on the
bottom side). Let

H(s\u) = I F(-t;u)tx~]dt
Jn

= (el!"s - 1) I F(-t\u)ts-x dt+l F{-t;u)t*-x dt.
Jy Jcy
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322 Hirofumi Tsumura [4]

Note that H(s; u) is defined and holomorphic for all s e C. For s e CwithRe(s) > 1,
letting y —• 0, we have

H(s; u) = (e2nis - l) / F(-t; u)ts~' dt
Jo

= 2(e2nis -l)r(s)p(s;u).

Hence

(12) p(s\u) =
1

-H{s;u)= T{X. S)H(s-u).
Am enis2(e2nis - \)V{s)

Combining (8) and (12), we see that p(s; u) is defined and holomorphic for all s e C
For TV e No, we have

(13) H(c- N;u) = (e2RU - l) I F{-t\u)f-N'x dt + f F(-t;u)tc-N~l dt.
Jy Jcr

Assume N > 1. For simplicity, we denote by /, and I2 the first and second terms on
the right-hand side, respectively. Note that

C- N-l

Hence we have

(14) \Ii\<Yc~N~l\e2"

On the other hand, by using the fact that

2TTI

n=0

2n+ 1

-(2n + l)y

2n

L tbdt =
,b+\

e2nib _ j

b+ 1

for b e C and (11), we have

(2ni)EN(u)-
N\

(ifc = 0),

n=0

Note that the above infinite series in the second case is convergent because of the
assumption y < n/2. Hence we have

2n
N\

yc-N\e2xic_ H (-l)-y"

1 = 0 (n+c~N)n\

(ifc = 0),

(ifO < c < 1).
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[5] Double harmonic series related to the double Euler numbers 323

For the first case, as we mentioned above, there exists a constant M\ (y) > 0 indepen-
dent of u such that

(15) |/2 |

For the second case, we let d — min \c — m\ for all m e 2. Fix £ with 0 < y <
n/2. Then we see that the second case yields that

(16) \h\ < Yc-N \e2"ic -
d{\-YlH)

Hence, by combining (12)—(16), there exists a constant M2 = M2(y) > 0 which
depends on y but is independent of N and u such that

p(c — N;u)

+ N -c)
^\H(c~N-u)\<^p- (We No).
An yN

Since |F(1 + N - c)\ < N\\T{\ - c)|, we obtain the proof of (9). Furthermore, we
can immediately obtain (10) from (9). •

For t e C, r e 1 with r > 1 and u e [1, 1 + S], we let

(2n + \)r

n=0 v '

Here cF(f;r;M) is holomorphic for t e C with Re(O < 0. Suppose u e ( 1 , 1 + 5 ] ,
9 e (-n/2, n/2), I e N and c e t with 0 < c < 1, and let r = I + c. By (8), we
have

(17) y ^

It follows from Lemma 2.1 that the right-hand side of (17) is uniformly convergent
with respect to u e [1, l+<5] when 6 e (-n/2, n/2). Hence ^(iO; 1 + c; 1) is defined
by the right-hand side of (17) with u — 1 for 9 € (—n/2, n/2). Thus we can define

(18) ^ p ( / + c 7 ; M )

for M e [1, 1 +8]. Putting r = / + c > 1, we obtain the following.

LEMMA 2.2. Suppose r £ R with r > 1 and u € [1, 1 + 8]. Then ?(t\r;u) is
holomorphic on [t € C | |?| < n/2}.
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324 Hirofumi Tsumura [6]

3. Some lemmas

From (5), (11), (12) and (13) with c = 0, we see that

(19) /t>(-*;ii) = i £ t ( « ) (*€N 0 )

forw g [1, 1+8].
We denote the pth derivative of sin(X) by sin(p>(X). Furthermore, we denote

sm'p)(X)\x=a by sin(p)(a) fora e K. Let Xm = {1 + (- l )m}/2 for m e 1. Then we
have

(20) sin">(X) = ^ {e'x + ( - 1 ) ' " ' ^ ) = /""'

For k € N, p € No, '< e [ 1, 1 + S] and 6 e K, we define

( -« ) - " sin(p)((2n
(21)

and

(22)

(2n

7=0 J •

for k € N, p € No, u e [1, 1 + 8] and 0 6 R. When u e (I, 1+8], it follows from
(17), (19)-(22) that

(23) 2 „„
From Lemma 2.1, this is uniformly convergent with respect to w € [ 1 , 1 + 5 ] when

d 6 (-7T/2, nil). By (6), we have £, ,( l)An +, = 0 for n e N. Hence we obtain the

following.

LEMMA 3.1. With the above notation and under the assumption that p =k (mod 2)
and 9 e ( -TT /2 , TT/2),

(24) \imyp(i0;k;u) = 0.
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[7] Double harmonic series related to the double Euler numbers 325

Foru e [1, 1 + 8], we define

(25) 6(sus2,s;u) :=

(26)
(2m 4- 1 )S| (2/i 4- 2)« (2m 4- 2n

By [9, Lemma 2.2], we have the following.

LEMMA 3.2. For u € (1, 1 4- 8],

(27)

(28)

Forn € Z, p e N 0 , t e N . r e l S with r > 1 and u e (1, 1 + S], we define

(29) £"(«;&, r;M)

= i f©(Jk, r, n; M) + ^—— {<«(*, n, r; M) + (-l)"K(r, n, jfe;«)} 1
2 L u J

* /—

Note that if n e N then we can define 'Bp(n;k, r\ 1) by the right-hand side of (29)
with u = 1.

LEMMA 3.3. With the above notation and for u G (1, 1 + 8],

(30) yp(id\k\

/V=0 ' m=0

PROOF. We use the same method as in the proof of [9, Lemma 2.3]. By combining
(21) and Lemma 3.2, we can calculate Xp(i9\k;u)3:(i9;r\u). On the other hand, by
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326 Hirofumi Tsumura [8]

combining (17) and (22) and using the binomial theorem, we have

j=0 J' v=0

._n \ J /
= E I E ( , )P{k >: "> V . ^ P ^ + J N ; u ) \

Hence, by (29), we obtain the assertion. •

LEMMA 3.4. Suppose k € N, p € No, r € 1 w/f/j r > 1 a«J u e ( 1 , 1 + 5 ] . For
any y € K vvj'f/z 0 < y < ^ / 2 , r/iere ejc/i/i a constant M = M(y) > 0 independent
ofu e (1, 1 + 5] 5MC/Z

(31) ', < - ^ («6N 0 ) .
n\ y"

In particular,

(32) liminff "~ v • - ' - • • - ' • ' *
n\ ) ~ 2

Furthermore, if p = k (mod 2), then

(33) \in\lBp(-N\k,r;u) = 0 (W e N),

(-Dp "
(34) \\m'Bp(0\k,r;u) =

1 2 ^ ( 2 m + l)*+r

PROOF. By (21), (22) and Lemma 2.2, ^p(t;k;u) can be defined and holomorphic
on {/ e C | \t\ < n/2] when u e [1, 1 + 5]. So is ̂ p(t;k\u)J{t\r\u). In particular,
when u € (1, 1 + 5], it follows from (30) that

(35) y,(r;jfc;M)7a;r;ii)
3 0 , , -2m

for/ e C with |? | < n/2. By the same method as in the proof of Lemma 2.1, we obtain
(31) and (32). Hence the right-hand side of (35) is uniformly convergent with respect
to u € (1, 1 + 5 ] , namely (35) holds for u = 1. On the other hand, by Lemma 3.1, we
see that the left-hand side of (35) tends to 0 as u -> 1, when p = k (mod 2). Thus
we obtain (33) and (34). D
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[9] Double harmonic series related to the double Euler numbers 327

4. Double series Xa,i(si, s2;s)

By the same method as in [7], we aim to give some relation formulas for
%.b(si,S2\s) defined by (2).

LEMMA 4.1. Suppose k e N, p e N0( r e R with r > I, d € K 9 e R and
1(6(1,1 +<$]. Then

I V^ j ( " ) cos((2m + 2n + 2 ) 0 )j
2 ^ n I (2m + l)*(2n + l)'(2m + 2n + 2)d

)p (-u)-2"'-" cos((2n + 2)9)
+

-" cos((2n + 2)9)

u (2m + l)r(2n + 2)d{2m + 2n + 3)k

;=0 u=0 •

{-u)~m cos'l"((2m + 1)0)

PROOF. By (25) and (26), we have

(-M)-"-ncos((2m + 2n + 2)9)
6 2 ^

n (2m + 1)"(2n + 1)«(2m +2n + 2)» ^ (Si'S2'Si 'U) (2N)!
m,n=:U /V=U

and

n (2m + 1)" (2n

Furthermore, we recall

( Q\v / I \

u=0 • V ' m=0

= ~ / a +c -2N\

~ jj^o \ c /

(i6>)
2/v
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328 Hirofumi Tsumura [10]

for a, c € Mo, b e {1, 2} and r e K with r > 1 (see [8, (3.2)]). By applying this
equation with (a,b,c) = (d — 1, 1, j), we have

-u)-mcos(v)((2rn + l)9)

(2m + r
_ j \ c;m2/v

A/=0

because

By (29), we obtain the assertion. •

When d > 2 and 0 € (—n/2, n/2), it follows from (31) that there exists a constant
M > 1 independent of u e (1, 1 + 8] such that

(2N -d)\ /n\<> M

(2N)\
\ /n\" m /n\"
~\2/ ~ (2N - I)2 \2~)(2N - I ) 2

for any N with 2/V > d. This means that if d > 2 then the right-hand sides of (36) is
uniformly convergent with respect to u 6 (1, 1+8]. So we can let u —> 1 in both sides
of (36), namely (36) holds for u = 1 when 6 e (—n/2, JT/2). Using Lemma 3.4,
we have the following proposition. Note that each side of (37) is continuous for
0 € [-TT/2, n/2], hence (37) holds for 9 € [-n/2, n/2].

PROPOSITION 4.2. Suppose k e N, p e No, r e R wirt r > 1, d € N with d > 2
and 9 e [-TT/2, n/2]. Ifk s p (mod 2),

- x • i (-ir+"cos((2m+2n
(Jo)

(2m + l)*(2n + l)r(2m + 2n + 2)d

+ (-1)" (-D"cos((2n
(2m + l)k(2n + 2)d(2m + 2n + 3)r

frf (- l)"cos((2ii + 2)g)
(2m + l)r(2n + 2)d(2m + 2n + 3)'

v \ / — v
=0 X ^

(-l)mcos("»((2m
(2m-

https://doi.org/10.1017/S1446788700010922 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010922


[11] Double harmonic series related to the double Euler numbers 329

When d > 3, we can differentiate (37) with respect to 9 because of its uniform
convergency. Using the known relation

-OCX';1)
we have the following.

PROPOSITION 4.3. Suppose k e M, p e No, r e K with r > I, d e M with d > 3
and 6 e [-n/2, n/2]. Ifk = p (mod 2), then

(39) 1 | (-!)"•+" sm((2m

(2m + l)k(2n + l)r(2m + 2n + 2)d~

(2m + l)*(2n + 2)d-i(2m + 2n + 3)r

+(-\)p+d

(2m + lY(2n+2)d-i(2m + 2n + 3)k

j=0 v=0

(-l)mcos(l<+1)((2m

m=0

{_V)N92N-l

N=l ' ' (2N - 1)!

We apply Proposition 4.2 and Proposition 4.3 with 9 = n/2. In particular, in (39)
we replace d - 1 with d. Let \j/(s) = £n>0(2w + I)"1 = (1 - 2~s)Z(s). Then we
have the following relations for Xa,/,(si, s2\ s).

COROLLARY 4.4. Suppose k e N, p e No, r e K with r > 1 and d <E N with
d>2. Ifk = p (mod 2),

(40) -\-%u(k,r;d) +

J=o

g
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330 Hirofumi Tsumura [12]

COROLLARY 4.5. Suppose k € N, p e No, r e K w/tfi r > 1 and d € H wii

d>2. Ifk = p (mod 2),

it

(41) J2
;=0

lw+n/21

(2/V-l)!

Now we give the explicit relation formulas for %a,b(si, s2;s). We make use of the
following lemma which is equivalent to [7, Lemma 4.4].

LEMMA 4.6. Let {A2h}h€Ho, {B2i,}hzN0 and {C2h}hen0
 be sequences such that

>=0

Then

A2h = -2x-2"Y^22vB2vK{2h - 2v) (h e No).

PROOF. Putting (a2j, p2j, Yij) = (2~2JA2j, 2~2JB2j, 2-2)C2j) in [7, Lemma 4.4],
we immediately obtain the assertion. D

We simply write p(s) = p(s; 1). It is well-known that

(42) p(2j + l) = ^0!^E2j 0-6 No)

(see [1, Chapter 1]). Then, from Corollary 4.4, Corollary 4.5 and Lemma 4.6, we
obtain the following result.
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[13] Double harmonic series related to the double Euler numbers 331

THEOREM 4.7. Letk, I e N. Then

(43) - Su(Jfc, s-21) + (-1)*+1 {Tli2(jfc, 2l;s) + ZU2(s, 2/;ft)}

= 2

•

>^i (mod 2)

)£k {mini 2)

I

X

(44) - < r u ( j f c , s ; 2 / + l ) + ( - l ) * + 1 [%U2(k,2l + l;s)-%l<2(s,2l
k

= 2
7=0

(mod 2)

o3-2/

X

u=0

hold for all s € C w/r/i fto//i Re(i) > 0 anJ Re(^) > 1 — k, where \(f(s) =

{I-2-')

PROOF. In Lemma 4.6, let Alh be the left-hand side of (40) in the case d = 2h,
B2h the left-hand side of (41) in the case d = 2li + 1 divided by —n/2 for h e H.
Furthermore, let C2h = 'Bk(2h;k; r; 1) for h 6 N and

o = Bo - C() = 3*(0;Jt, r; 1) =
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(see (34)). Then, applying Lemma 4.6 and putting h = I e N, we see that (43) holds
for any 5 = r e K with r > 1. We can easily check that (2) is convergent absolutely
when ReCs,) > 0, Re(s2) > 0, Re(s) > 0, and Re(s, + s) > 1, Re(s2 + s) > 1,
R e ^ + s2 + s) > 2 (see [2,6]). Hence (43) holds for any i € C with Re(s) > 0 and
k + Re(s) > 1. Similarly, let A2h be the left-hand side of (40) in the case d = 2h + 1
for h € M, B2h the left-hand side of (41) in the case d = 2h + 2 divided by -n/2
for h 6 No- Furthermore, C2h = "Bk(2h + l;k;r; 1) for h e No. Then, applying
Lemma 4.6, putting h = I € N, and using the same consideration as above, we
obtain (44). •

EXAMPLE 1. Applying (44) with (k, 1) = (2, 1), we obtain (3). Applying (43) with
(k, I) — (1, 1) and replacing s with s -I- 2, we have

(45) - T u ( l , 5 + 2;2) + 1U2(\, 2\s + 2) + S,.2(s + 2, 2; 1)

= l- (1 - 2-'~3) f (s + 3K(2) - (1 - 2"'-s) f (s + 5).

This means that the left-hand side of (45) can be continued meromorphically to the
whole complex plane. Combining (3) and (45), we have

(46) T,.,(2, s;3) + T,.2(2, 3;s) - X,.2(s, 3;2)

- 4 {-T,.,(l, s + 2;2) + 1,.2(1, 2;s + 2) +T,,2(s + 2, 2; 1)}

= i (1 - 2—3) ?(5 + 3)?(2).

From the functional equation for Z(s), we can trivially obtain the functional equation
for the left-hand side of (46).

REMARK. From Theorem 4.7, we obtain the fact that Ti,i(&, m; n) can be expressed
as a rational linear combination of products of the Riemannzeta values, when/:, m,n e
N with n > 2 and k + m + n is odd. Indeed, applying (43) with s = m 6 N such that
k ^ m (mod 2), we see that

-T,.,(*. m;2/) + (-l)"{Ti,2(it, 2/;m) + T,,2(m, 2l\k)}

can be expressed as a rational linear combination of products of the Riemann zeta
values, by (42). Replacing k with m and s with k in (43), we also see that so is

- T u ( w , k;2l) + (-l)m+1{T,,2(m, 21;k) + 1u2(k, 21;m)).

Hence, so is X|.i(/t, m;2l). Furthermore, applying (44) with s = m e N such that
k = m (mod 2), we see that so is 1\.i(k, m;2l + 1). Thus we obtain the assertion.
This fact is a special case of known results for multiple series (see [10, Theorem 1.1]).
So we can regard Theorem 4.7 as analytic generalizations of the discrete results for
double series given in [9, 10].
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