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Unsolvability of the knot problem for

surface complexes

John C. Stillwell

It is shown that the problem of deciding whether a polygonal

curve c in a finite surface complex K is knotted in K is

complete recursively enumerable, and hence unsolvable.

We refer to [6] for the definition of a finite surface complex,

introductory remarks, and general references. In [6] it was shown that the

problem of deciding whether an edge path c in a 2-dimensional simplicial

complex K bounds a disc in K is HP-complete. Generalizing to an

arbitrary polygonal path o in K gives an equivalent problem, since K

may be simplicially subdivided to make e an edge path in polynomial time.

Bounding a disc is equivalent to the existence of an isotopy which

contracts a to a point without pulling it over any point twice.

In the present paper we discuss the equivalence of simple curves under

more general isotopies in K , namely simplicial isotopies in an arbitrary

simplicial decomposition of K . Curves a , a are called simplicially

isotopia with respect to a simplicial decomposition Z of K , if there is

a finite sequence of simple edge paths of £ ,

= (1) (2) <*) =

such that c is the result of pulling c from one side to the

other of a triangle in I . A curve e is called simpliaially unknotted

with respect to Z if it is simplicially isotopic to a curve which bounds

a disc, and unknotted in K if it is simplicially unknotted with respect
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to some simplicial decomposition E of K . By the Hauptvermutung for

surface complexes, [7], c is unknotted if it is simplicially unknotted in

a sufficiently fine simplicial decomposition, for example the nth

barycentric subdivision for sufficiently large n .

The reason we do not use general isotopies in K to define knotting

was pointed out by Alexander [7] in the case of classical knots in R

Alexander's example may be adapted to surface complexes using a "book with

three leaves" K (see page 133).

The curve c is a trefoil knot when K is embedded in R ;

nevertheless the isotopy (l) •* (2) •+ (3) reduces it to a curve bounding

a disc.

It is clear that we can decide whether a curve is unknotted with

respect to a given E by enumerating the finitely many possible simplicial

isotopies. (in fact this can be done by a non-deterministic linear bounded

Turing machine, or using Savitch's Theorem [4], by a deterministic Turing

machine on quadratically bounded tape.) By applying this decision process

in successive barycentric subdivisions of K we see that the set of pairs

{K, c) for which c is an unknotted polygonal curve in K is recursively

enumerable.

We now show that the set is complete recursively enumerable by

reducing the word problem for finitely presented groups to it.

THEOREM 1. Given a finite presentation G of a group, and a word w

in G , we can effectively construct a finite surface complex K(G) and a

simple polygonal curve c(w) such that

c(w) is unknotted in K{G) *=» w = 1 in G .

Proof. K{G) is a slight modification of the complex used by Dehn [2]

to realize an arbitrary finitely presented group

Dehn takes a bouquet B of circles a,, ..., a to realize the

J- n
generators, and realizes each relation r . = 1 by attaching a disc D.

3 J
a l o n g i t s b o u n d a r y t o t h e p a t h r . ( s p e l l e d a s a p r o d u c t o f a.'s ) i n

B .
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( 1 )

(2)

(3)
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We rea l ize each a- by an annulus A. which has a. as i t s centre-

l i n e , and l e t the different A . meet along a common transverse segment

[0, l ] (and nowhere e l s e ) . Given a word

£ £ £

w = a i a i ••• ai ' H = ±x '
X. C Is.

we construct a simple arc a(w) in U A^ by taking points

to P, n0 < P < P2 < ... < P-,+1 < 1 on [0, l] and connecting each

by the "geodesic" (in a natural sense) in A_. with orientation implied by

E- . For example if

ll

then a(u) will resemble the curve in the figure on page 135- (it is not

unique because of the arbitrariness in the choice of P, ..., Pj.+1 i

however, different a(w)'s will be isotopic - a fact which is exploited

below.)

It is clear that any word w is representable by a simple arc in this

way, and hence if we attach [0, l] to the top side of a square 5 which

is otherwise disjoint from U A . we can close a{w) to a simple curve

i v

a(w) by running round the other three sides of the square. Furthermore,

the fundamental group of A = U A. u 5 is the free group generated by
i V

a.,...,a , since there is a deformation retraction of A onto the

bouquet of circles U a- , and o{w) represents the element w .
i

We now attach a disc D . which will allow us to insert or remove a
3

subarc a[r.) of a o(w) by an isotopy. Namely, take any points Q,~ R
J

with 0 < Q < R < 1 and let a[r.) be any fixed a(r.) which runs from
3 3

Q to R . Then b[r.) = a{r.) u RQ is taken as the boundary of D. .
3 0 3

Notice that the simple arc a[r .) may be deformed isotopically into the
3
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line segment QR by pulling it across D. . We let K(G) = A u U D. .
3 j 3

Then to remove a subarc a[v.) of e(u) we first deform c(w)
3

isotopically so that a(y-) is carried onto a[r.) , then pull a(^-)
3 3 3

across 0. to the position QR . A further isotopy contracts QR to a
3

point and gives a curve a(w') where w' is the result of removing r .
3

from w . The reverse process simulates the insertion of r. in w' to
3

produce w . Insertion or removal of trivial relators a.aT. or a~. a.
i v ^ ^

can obviously be accomplished by isotopies in A itself.

Since any word w which equals 1 in G can be converted to the
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empty word by a finite sequence of insertions or removals of relators, the

corresponding curve c(w) will be convertible to the boundary of the

square 5 by a finite sequence of isotopies of the above type [which can

be realized in a sufficiently fine simplicial decomposition of K(G) ) and

hence unknotted. On the other hand, it is clear from the Seifert-Van Kampen

Theorem [5j that the fundamental group of K(G) is precisely G ; hence

when W t 1 in G the curve e{w) will not even be homotopic, let alone

isotopic, to the boundary of a disc. Q

COROLLARY. The set of pairs {K, c) for which a is a knotted

polygonal curve in a finite 2-dimensional simplicial complex K is not

recursively enumerable.

Proof. If it were, the set {(K, c) \ c is unknotted in K) would be

recursive, and the construction of Theorem 1 would yield an algorithm for

the word problem for groups. O

Another obvious corollary to this theorem is that the problem of

deciding whether a polygonal curve in a surface complex is isotopic (in the

general sense) to a point is unsolvable. Furthermore, we obtain

unsolvability of both problems in a fixed K(G) by choosing a G with

unsolvable word problem. This shows that surface complexes constitute an

exception to the remark of Haken [3] that isotopy problems are easier to

solve than homotopy problems.
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