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Abstract

We consider a branching particle system where an individual particle gives birth to a
random number of offspring at the place where it dies. The probability distribution of
the number of offspring is given by pk, k = 2, 3, . . . . The corresponding branching
process is related to the semilinear partial differential equation ∂u/∂t = Au(t, x) +∑∞

k=2 pk(x)uk(t, x) for x ∈ Rd , where A is the infinitesimal generator of a multiplicative
semigroup and the pks, k = 2, 3, . . . , are nonnegative functions such that

∑
k pk = 1.

We obtain sufficient conditions for the existence of global positive solutions to semilinear
equations of this form. Our results extend previous work by Nagasawa and Sirao (1969)
and others.
Keywords: Branching particle system; semilinear partial differential equation; global
solution
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1. Introduction

In this paper we investigate the existence of global solutions to the semilinear initial value
problem

∂u

∂t
= Au(t, x) + F(t, x, u), u(0, x) = f (x), x ∈ Rd . (1)

Here A is the infinitesimal generator of a linear contraction semigroup on the space B(Rd) of
bounded measurable functions on Rd , and

F(t, x, u) =
∞∑

k=2

pk(x)uk(t, x), t ≥ 0, x ∈ Rd ,

where the pk : Rd → [0, 1] are measurable functions such that
∑∞

k=2 pk(x) = 1.
In 1966 Fujita [1] studied finite-time blow up and existence of global solutions for the

following semilinear equation:

∂u

∂t
= �u(t, x) + u1+α, u(0, x) = f (x), x ∈ Rd ,

where � is the Laplacian and α > 0. By means of analytic tools, he showed that if α > 2/d

then the equation possesses both global and nonglobal solutions. This was considered to be
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Nonexplosion of a class of semilinear equations 251

pioneering work at the time, inspiring both mathematicians and probabilists to come up with new
and interesting results concerning global solutions and blow ups for semilinear equations. In
fact, the authors of the first such work, Nagasawa and Sirao [8], mentioned in their introduction
that they were motivated by Fujita’s work.

Ikeda et al. [2], [3], [4], [5] gave a full description of branching Markov processes, which
actually worked as a foundation for Nagasawa and Sirao to come up with the first probabilistic
study of existence of global solutions and finite-time blow up for the equation

∂u

∂t
= Au(t, x) + c(x)uβ(t, x), u(0, x) = f (x), x ∈ Rd , (2)

where A is the infinitesimal generator of a linear nonnegative contraction semigroup on the space
B(Rd) of bounded measurable functions on Rd , c(x) is a nonnegative bounded measurable
function, and β ≥ 2. They studied both the existence and nonexistence of global solutions
of the above equation. Their method was based on probabilistic arguments relating to the
branching Markov processes described in the work of Ikeda et al. They derived Fujita’s result
as a corollary of their result for the α-Laplacian A = −(−�)α/2, 0 < α ≤ 2. The space–time
evolution of the branching population is as follows: an individual in the population develops
a motion with generator A and after an exponential lifetime, it is replaced by a population
consisting of β individuals at the site where it died.

Using a representation theorem in terms of branching particle systems, López-Mimbela [6]
and López-Mimbela and Wakolbinger [7] extended the results of [8] to systems of semilinear
equations with integral powers in their nonlinearities. Along the line of Nagasawa and Sirao’s
approach, López-Mimbela [6] showed that the solution ut (x) of the Nagasawa–Sirao equation
(with initial condition u0 = f ) has the representation

ut (x) := E

[
exp(St )

∏
y∈Xx

t

f (y)

]
,

where Xx
t is a branching particle system in Rd (with exponential individual lifetimes and

offspring number β) starting from one ancestor at x and St is the total length of the family tree
up to time t . This approach not only works for the α-Laplacian but also for a wider class of
generators.

In our case the offspring number is not fixed. It may vary from 0 to ∞. The motivation
behind this is as follows. We remove the restriction that an individual in the population
will give rise to a fixed number of offspring. Then instead of giving rise to β offspring
at any stage, we could have a probability distribution on the number of offspring. Such a
probability distribution may be concentrated on finitely many values, say β1, β2, . . . , βp, etc.
with coefficients c1(x), c2(x), . . . , cp(x), etc. or infinitely many values, say all nonnegative
integers 0, 1, 2, . . . with probabilities, p0, p1, p2, . . . , say, adding up to 1. In the former case
the number of offspring is bounded, and in the latter case the number of offspring may be
unbounded. Thus, in the former case we replace c(x)uβ(t, x) by

∑p
k=1 ck(x)uβk (x), where

ck(x) is bounded by a number, say ‖ck‖ for each k, and we consider

∂u

∂t
= Au +

p∑
k=1

ck(x)uβk (t, x), u(0, x) = f (x), x ∈ Rd . (3)

In the latter case we replace c(x)uβ(t, x) by some sort of probability generating function,
namely

∑∞
k=0 pk(x)uk(t, x) with p0 ≡ 0, p1 ≡ 0, and pk(x) ≡ pk for some constant pk for

https://doi.org/10.1239/aap/1208358895 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358895


252 S. CHAKRABORTY AND J. A. LÓPEZ-MIMBELA

all k. So, we consider

∂u

∂t
= Au +

∞∑
k=2

pku
k, u(0, x) = f (x), x ∈ Rd . (4)

In both (3) and (4) A is the infinitesimal generator of a linear nonnegative contraction semigroup
on the space B(Rd) of bounded measurable functions on Rd . In the latter case the pks are
constants adding up to 1.

By means of probabilistic representations of semilinear equations, here we shall study only
the existence of global solutions of (1). When A is the d-dimensional Laplacian and the number
of offspring is fixed, we have a global solution provided that f decays exponentially fast and
d is large enough. It is interesting to see if, in our case, similar conditions guarantee the
existence of global positive solutions, namely, large mobility of individuals and quick decay of
the initial value ensure boundedness of u(t, x) for all t ≥ 0. In the next section we introduce
the ingredients we need to verify this, following Ikeda et al. [2], [3], [4], [5]. In Section 3
we describe Nagasawa–Sirao’s condition for the existence of global solutions, and then we
consider the bounded setup, i.e. the number of offspring is finite. We obtain conditions for
global solutions which are similar to those of Nagasawa and Sirao. In Section 4 we consider
the unbounded setup and observe that we need extra conditions for the existence of global
solutions. In Section 5 we prove a preliminary result that precedes our main theorem for the
unbounded case, and in Section 6 we prove several lemmas that are necessary to carry out our
arguments in Section 5. In Section 7 we state and prove our main theorem, which actually gives
conditions for the existence of global solutions in our case. We conclude with some interesting
examples in Section 8.

2. Preliminaries

Before proceeding any further,following Ikeda et al. [2], [3], [4], [5], we need to introduce
some background related to branching Markov processes. Nagasawa and Sirao [8] considered
a branching Markov process where an individual in a particular generation gives birth to exactly
β offspring at the location of its death. Now we describe their setup.

Let D denote a compact Hausdorff space with a countable open base, and let B(D) denote the
space of bounded Borel measurable functions on D. Here B+(D) denotes the set of nonnegative
elements of B(D). Let {Tt ; t ≥ 0} be a nonnegative contraction semigroup on B(D) defined
through a kernel Tt (x, dy) such that the following four conditions are satisfied:

(i) Tt (x, ·) is a nonnegative Borel measure on D with Tt (x, D) ≤ 1;

(ii) T·(·, B) is measurable on [0, ∞) × D for any Borel subset B of D;

(iii) for any t, s ≥ 0, x ∈ D, and Borel subset B,

Tt+s(x, B) =
∫

Tt (x, dy)Tt (y, dB);

(iv) for f ∈ B(D),

Ttf (x) =
∫

Tt (x, dy)f (y).
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We shall deal with positive mild solutions v(t, x) to (1) with initial data f ∈ B+(D), which in
the finite case is given by

v(t, x) = Ttf (x) +
∫ t

0
dsTs

( p∑
k=1

ckv(t − s, ·)βk

)
(x)

and in the infinite case is given by

v(t, x) = Ttf (x) +
∫ t

0
dsTs

( ∞∑
2

pkv(t − s, ·)k
)

(x). (5)

We can apply the successive approximation method to obtain a (local) positive solution to (5).
However, instead we shall use a linear dilatation of this equation, which is more appropri-
ate for our purpose. We consider a linear integral equation on an enlarged space given by
S = ⋃∞

n=1 Dn, where Dn is a symmetric n-fold product of D, n ≥ 1; see [2], [3], [4], and [5]
for a detailed definition of S.

For f ∈ B+(D), Ikeda et al. [2], [3], [4], [5] set f̂ = ∏n
j=1 f (xj ) when x = (x1, x2, . . . ,

xn) ∈ Dn; f̂ is then a measurable function on S and f̂ ∈ B+(S) if f ≤ 1.
Now we state some fundamental facts which will play an important role in our work; see

[2], [3], [4], [5], and [8].

(i) There exist unique nonnegative kernels Tt (x, dy) and �(x, dsdy) defined on [0, ∞)×S ×S

and S × [0, ∞) × S, respectively, such that when x = (x1, x2, . . . , xn) ∈ Dn,

∫
S

Tt (x, dy)f̂ (y) =
n∏

j=1

Ttf (xj ),

and in the finite case
∫

�(x, dsdy)f̂ (s, y) = ds

n∑
k=1

Ts

( p∑
j=1

cjf (s, ·)k
)

(xk)

n∏
i 	=k, i=1

Ts(f (s, ·))(xi)

≤
p∑

j=1

‖cj‖ ds

n∑
k=1

Ts(f (s, ·)k)(xk)

n∏
i 	=k, i=1

Ts(f (s, ·))(xi)

=
p∑

j=1

‖cj‖
∫

Sn+j−1
�j(x, dsdy)f̂ (y),

and in the infinite case
∫

�(x, dsdy)f̂ (s, y) = ds

n∑
k=1

Ts

( ∞∑
j=2

pjf (s, ·)k
)

(xk)

n∏
i 	=k, i=1

Ts(f (s, ·))(xi)

=
∞∑

j=2

pj ds

n∑
k=1

Ts(f (s, ·)k)(xk)

n∏
i 	=k, i=1

Ts(f (s, ·))(xi)

=
∞∑

j=2

pj

∫
Sn+j−1

�j(x, dsdy)f̂ (y),

https://doi.org/10.1239/aap/1208358895 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358895


254 S. CHAKRABORTY AND J. A. LÓPEZ-MIMBELA

where
∑∞

2 pk = 1. It can be seen that �j(x, dsdy) is defined as follows:

∫
Sn+j−1

�j(x, dsdy)f̂ (y) =
n∑

k=1

Ts(f (s, ·)k)(xk)

n∏
i 	=k, i=1

Ts(f (s, ·))(xi).

Moreover, if x ∈ Dn, the support of Tt (x, ·) is concentrated on Dn and the support of �j(x, ds·)
is concentrated on Dn+j−1 for j = 1, . . . , p in the former case and j = 2, 3, . . . in the latter
case. Therefore,

∫
�(x, dsdy)f̂ (s, y) =

∞∑
j=2

pj

∫
Sn+j−1

�j(x, dsdy)f̂ (y). (6)

Having done this, we obtain the linear integral equation which is a linear dilatation of (1)
with initial data f , given by

u(t, x) = T̂t f (x) +
∫ t

0

∫
S

�(x, dsdy)u(t − s, y), x ∈ S, f ∈ B+(S),

where

T̂t f (x) =
∫

S

Tt (x, dy)f̂ (y).

Then, we set

u0(t, x) = T̂t f (x),

uk(t, x) =
∫ t

0

∫
S

�(x, dsdy) uk−1(t − s, y), k ≥ 1. (7)

(ii) The function uk(t, x) is well defined and
∑∞

k=0 uk(t, x) converges for sufficiently small
t > 0. Setting

u(t, x) =
∞∑

k=0

uk(t, x),

when the right-hand side converges, we conclude, as in [2], [3], [4], and [5], that u is the
minimal (local) solution of (5).

(iii) The most important property is considered to be the branching property:

u(t, x) =
n∏

j=1

u(t, xj ) when x = (x1, . . . , xn) ∈ Dn,

which is also due to Ikeda et al. [2], [3], [4], [5].

3. Conditions for the existence of global positive solutions in the bounded case

As mentioned earlier, Nagasawa and Sirao [8] considered global solutions and blow ups for
the following equation:

∂u

∂t
= Au(t, x) + c(x)uβ(t, x), u(0, x) = f (x),
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which is (2) above. Here A is the infinitesimal generator of a linear nonnegative contraction
semigroup on the space B(Rd) of bounded measurable functions on Rd , c(x) is a nonnegative
bounded measurable function, and β ≥ 2. Then the conditions for global solutions are given
by the following theorem.

Theorem 1. For f ∈ B+(D) satisfying

(β − 1)‖c‖
∫ ∞

0
sup
y∈D

(Ttf (y))β−1 dt < 1,

there exists a global solution u(t, x) of (2). Moreover, there exists a constant M > 0 such that

u(t, x) ≤ MT̂tf (x).

The offspring number is β in Nagasawa and Sirao’s paper. In our case the offspring number
is not fixed, it varies from β1 to βp in the former case and from 2 to ∞ in the latter case. As
mentioned earlier, in our setup, we replace c(x)uβ(t, x) by either

p∑
k=1

ck(x)uβk (x) or
∞∑

k=2

pk(x)uk(t, x).

Hence, our semilinear equation is given by (3) or (4) accordingly. In this section we consider
the former case when the number of offspring is bounded:

∂u

∂t
= Au(t, x) +

p∑
k=1

ck(x) uβk (t, x), u(0, x) = f (x). (8)

Then, following the approach adopted in Nagasawa–Sirao’s work, we can prove the following
proposition.

Proposition 1. For any t ≥ 0 and x = (x1, . . . , xn), we have

uk(t, x) ≤
∏k−1

i=0 (n + i(βmax − 1))

k! ‖c‖kpk

(∫ t

0
σs

βmin−1 ds

)k

T̂tf (x),

where σs = sups Tsf , βmin = min(β1, . . . , βp), βmax = max(β1, . . . , βp), and ‖c‖ =
max(‖c1‖, . . . , ‖cp‖).

Proof. We have

u1(t, x) ≤ ‖c‖n
( p∑

j=1

∫ t

0
σs

βj −1 ds

)
T̂t f (x)

≤ ‖c‖np
(∫ t

0
σs

βmin−1 ds

)
T̂t f (x).
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Then,

u2(t, x) ≤
∫ t

0

p∑
j=1

cj (x)

∫
S

n+βj −1
�j(x, dsdy)u1(t − s, y)

≤
∫ t

0
ds

p∑
j=1

‖c‖
∫ t−s

0
‖c‖p(n + βj − 1)σβmin−1

r dr

×
n∑

i=1

Ts(Tt−sf (xi)
βj )

∏
l=1, l 	=i

Ts(Tt−sf )(xl)

≤
∫ t

0
ds‖c‖2

( p∑
j=1

(∫ s

0
p(n + βj − 1)σβmin−1

r dr

)
σ

βj −1
s

)
T̂t f (x)

≤
∫ t

0
ds‖c‖2

( p∑
j=1

∫ s

0
p(n + βj − 1)σβmin−1

r dr

)
σβmin−1

s T̂t f (x)

≤ n(n + βmax − 1)

2
p2‖c‖2

(∫ t

0
σβmin−1

s ds

)2

T̂t f (x).

In general, using mathematical induction on k, we shall show that

uk(t, x) ≤
∏k−1

i=0 (n + i(βmax − 1))

k! ‖c‖kpk

(∫ t

0
σs

βmin−1 ds

)k

T̂tf (x). (9)

So, suppose that we have shown this for all k ≤ m. Then, we shall show this for k = m + 1.
Now because of (9), we have

um(t, x) ≤
∏m−1

i=0 (n + i(βmax − 1))

m! ‖c‖mpm

(∫ t

0
σs

βmin−1 ds

)m

T̂tf (x).

Now because of (7), we have

um+1(t, x) =
∫ t

0

∫
S

�(x, dsdy) um−1(t − s, y)

≤
∫ t

0

p∑
j=1

ci(x)

∫
S

n+βj −1
�j(x, dsdy)uk(t − s, y)

≤
∫ t

0
ds‖c‖

p∑
j=1

∏m−1
i=0 (n + (βj − 1) + i(βmax − 1))

m! ‖c‖mpm

×
(∫ t−s

0
σr

βmin−1 dr

)m n∑
i=1

Ts(cj (xi)Tt−sf (xi)
βj )

∏
l=1, l 	=i

Ts(Tt−sf )(xl)

≤ ‖c‖m+1pm

p∑
j=1

∏m−1
i=0 (n + (βj − 1) + i(βmax − 1))

m!

×
(∫ s

0
σr

βmin−1 dr

)m

σ
βj −1
s T̂t f (x)
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≤ ‖c‖m+1pm

p∑
j=1

∏m−1
i=0 (n + (βj − 1) + i(βmax − 1))

m!

×
(∫ s

0
σr

βmin−1 dr

)m

σβmin−1
s T̂t f (x)

≤ ‖c‖m+1pm

p∑
j=1

∏m−1
i=0 (n + (βj − 1) + i(βmax − 1))

(m + 1)!

×
(∫ t

0
σs

βmin−1 ds

)m+1

T̂t f (x)

≤ ‖c‖m+1pm+1
∏m−1

i=0 (n + (i + 1)(βmax − 1))

(m + 1)!
(∫ t

0
σs

βmin−1 ds

)m+1

T̂t f (x).

Thus, by the induction hypothesis, the proof is complete.

The next result is the analog of Corollary 3.2 of [8].

Corollary 1. Let u(t, x) be the probabilistic solution of (8). Then,

u(t, x) ≤ Ttf (x)

(
1 +

∞∑
k=1

vk(t)

)
,

where

vk(t) =
∏k−1

i=0 (1 + i(βmax − 1))

k!
(

‖c‖p
∫ t

0
σs

βmin−1 ds

)k

.

Hence, we obtain Theorem 2, below, which is similar to Theorem 1.

Theorem 2. For f ∈ B+(D) satisfying

(βmax − 1)‖c‖
∫ ∞

0
sup
y∈D

(Ttf (y))βmin−1 dt < 1,

there exists a global solution u(t, x) of (8). Moreover, there exists a constant M > 0 such that

u(t, x) ≤ MT̂tf (x).

So, we have seen that if there are finitely many terms instead of just one term in the branching
part of the semilinear equation, we can solve the problem more easily by closely following the
steps of Nagasawa and Sirao. But, if there are infinitely many terms, as in (4), we have to be
a little careful. In this case the idea of a common bound for the coefficients in the summation
will not help. We need some extra conditions in order to obtain global solutions for our setup.
These conditions are given in our main theorem (Theorem 4) in Section 4.

4. Conditions for the existence of global positive solutions in the unbounded case

Before examining the conditions for global solutions for the case in which the number
of offspring is unbounded, let us study our setup carefully. As mentioned earlier, A is the
infinitesimal generator of a linear nonnegative contraction semigroup on the space B(Rd) of
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bounded measurable functions on Rd . Then, we study the existence of global solutions from a
probabilistic point of view.

We follow the same approach used by Nagasawa and Sirao [8]. We first prove the following
intermediate theorem which gives an upper bound for uk(t, x) for all k.

Theorem 3. Let X be an integer-valued random variable taking values l with probability pl

for l = 2, 3, . . . with
∑∞

i=2 pl = 1. Let uk(t, x) be as defined in Section 2 for each k. Then,
for f ∈ B+(Rd) and x = (x1, x2, . . . , xn) ∈ (Rd)n, we have

uk(t, x) ≤ (c1(k) E[Ak(X)Bk,t (X)] + c2(k) E[Ak(X)] E[Bk,t (X)])T̂tf (x),

where

Ak(X) =
∏k−1

i=0 (n + i(X − 1))

k! ,

Bk,t (X) =
(∫ t

0
σX−1

s ds

)k

,

σs = sup
s

Tsf,

c1(k) = c1(k − 1) + 2c2(k − 1),

and

c2(k) = 2c1(k − 1) + 7c2(k − 1),

for k = 1, 2, 3, . . . with the convention that c1(1) = 1 and c2(1) = 0.

Once we prove this theorem, the following corollary is an immediate result.

Corollary 2. Let u(t, x) be the mild solution of (2). Then,

u(t, x) ≤ u0(t, x) +
∞∑

k=1

(c1(k) E[Ak(X)Bk,t (X)] + c2(k) E[Ak(X)] E[Bk,t (X)])T̂tf (x).

Proof. We have

u(t, x) =
∞∑

k=0

uk(t, x) = u0(t, x) +
∞∑

k=1

uk(t, x).

Then, we apply the upper bound for uk(t, x) from Theorem 2 to complete the proof.

Next we state our main theorem, which provides the conditions under which we have global
solutions to (4).

Theorem 4. Let X be an integer-valued random variable taking the value l with probability
pl for l = 2, 3, . . . with

∑∞
i=2 pl = 1. Define

ρ(j) = 9(j − 1)

∫ ∞

0
σ

j−1
s ds.

Then if u(t, x) is a mild solution of (4), the series in Corollary 2 is convergent if and only if ρ(j)
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is less than 1 for all j ranging from 1 to ∞ and inequalities (i) and (ii) below hold, where

(i)

E

[∫ ∞
0 σX−1

s ds

1 − ρ(X)

]
< ∞;

and

(ii)

E

[
(n + X − 1)(

∫ ∞
0 σX−1

s ds)2

1 − ρ(X)

]
< ∞.

Remark. We can replace (4) in Theorem 4 with the equation

∂u

∂t
= Au + a

∞∑
k=2

pku
k, u(0, x) = f (x), x ∈ Rd ,

where a is an arbitrary positive constant. By normalizing, in this case it is sufficient to assume
that the pj s are summable.

It is clear that the last two conditions for the existence of global solutions actually give us
the following conditions on the pj s:

(i)
∞∑

j=2

pj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞;

and

(ii)
∞∑

j=2

(n + j − 1)
∫ ∞

0 σ
j−1
s dspj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞.

So, we shall prove these two conditions while proving Theorem 4 in Section 7.

Note. We can compare conditions (i) and (ii) above with Theorems 1 and 2, which basically give
the conditions for global solutions in Nagasawa and Sirao’s case and its subsequent intermediate
extension. We can see that ‘ρ(j) = 9(j − 1)

∫ ∞
0 σs

j−1 ds < 1 for all j ≥ 2’ is basically the
condition ‘(β − 1)‖c‖ ∫ ∞

0 σs
β−1 ds < 1’ when we have a fixed number of offspring β instead

of a random number of offspring varying over all positive integers larger than 1 as in our case.

5. Proof of Theorem 3

From (7), we observe the following:

u1(t, x) ≤
∫ t

0
E[nσX−1

s ] dsT̂tf (x),

u2(t, x) ≤
(

E

[
n(n + X − 1)

2

(∫ t

0
σX−1

s ds

)2]

+ 2 E

[
n(n + X − 1)

2

]
E

[∫ t

0
σX−1

s ds

]2)
T̂t f (x), (10)
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where n is the number of individuals in the initial population x = (x1, . . . , xn). This is obtained
as follows. In (6) we have the relation between � and �k . Using this, from (7), we have the
following:

u2(t, x) =
∫ t

0

∫
S

�(x, dsdy)u1(t − s, y)

=
∫ t

0

∞∑
k=2

pk

∫
Sn+k−1

�k(x, dsdy)u1(t − s, y)

≤
∫ t

0
ds

∞∑
k=2

pk

∫ t−s

0
E[(n + k − 1)σX−1

r ] dr

×
n∑

i=1

Ts(Tt−sf (xi)
k)

∏
l=1, l 	=i

Ts(Tt−sf )(xl)

=
∫ t

0
ds

∞∑
k=2

pk

(∫ s

0
E[n(n + k − 1)σX−1

r ] dr

)
σk−1

s

n∏
l=1

Ttf (xl)

=
∫ t

0
ds

(∫ s

0
E[n(n + Y − 1)σX−1

r σ Y−1
s ] dr

)
T̂t f (x),

where Y is an integer-valued random variable identically distributed as X. Now, in order to
simplify this, we use the following. If X and Y are independent and identically distributed
random variables then the expectation of a function of these two variables, say H(X, Y ), is
given by

E[H(X, Y )] =
∞∑

m=0

∞∑
k=0

H(m, k) P[X = m, Y = k]

=
∞∑

k=0

H(k, k) P[X = k] P[Y = k]

+
∞∑

k=0

∞∑
m=k+1

H(m, k) P[X = m] P[Y = k]

+
∞∑

m=0

∞∑
k=m+1

H(m, k) P[X = m] P[Y = k].

Using this,
∫ t

0 ds(
∫ s

0 E[n(n + Y − 1)σX−1
r σ Y−1

s ] dr)T̂tf (x) can be written as the sum of three
terms. The first term simplifies as follows:

∫ t

0
ds

∫ s

0
dr

∞∑
k=2

(p2
kn(n + k − 1)σ k−1

r σ k−1
s ) ≤

∞∑
k=2

p2
kn(n + k − 1)

∫ t

0
dsσ k−1

s

∫ s

0
σk−1

r dr

≤
∞∑

k=2

p2
k

n(n + k − 1)

2

(∫ t

0
σk−1

s ds

)2

≤ E

[
n(n + X − 1)

2

(∫ t

0
σX−1

s ds

)2]
.
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The second term simplifies as follows:

∫ t

0
ds

∫ s

0
dr

∞∑
k=2

∞∑
m=k+1

(pkpmn(n + k − 1)σm−1
r σ k−1

s )

≤
∞∑

k=2

∞∑
m=k+1

pkpmn(n + k − 1)

∫ t

0
dsσ k−1

s

∫ s

0
σk−1

r dr

≤
∞∑

k=2

∞∑
m=k+1

pkpm

n(n + k − 1)

2

(∫ t

0
σk−1

s ds

)2

≤
∞∑

k=2

∞∑
m=2

pkpm

n(n + k − 1)

2

(∫ t

0
σk−1

s ds

)2

≤ E

[
n(n + X − 1)

2

]
E

[(∫ t

0
σX−1

s ds

)2]
.

The third term simplifies as follows

∫ t

0
ds

∫ s

0
dr

∞∑
m=2

∞∑
k=m+1

(pkpmn(n + k − 1)σm−1
r σ k−1

s )

≤
∞∑

m=2

∞∑
k=m+1

pkpmn(n + k − 1)

∫ t

0
dsσ k−1

s

∫ s

0
σk−1

r dr

≤
∞∑

m=2

∞∑
k=m+1

pkpm

n(n + k − 1)

2

(∫ t

0
σk−1

s ds

)2

≤
∞∑

m=2

∞∑
k=2

pkpm

n(n + k − 1)

2

(∫ t

0
σk−1

s ds

)2

≤ E

[
n(n + X − 1)

2

]
E

[(∫ t

0
σX−1

s ds

)2]
.

Combining all these, we obtain
∫ t

0
ds

(∫ s

0
E[n(n + Y − 1)σX−1

r σ Y−1
s ] dr

)
T̂t f (x)

≤
(

E

[
n(n + X − 1)

2

(∫ t

0
σX−1

s ds

)2]

+ 2 E

[
n(n + X − 1)

2

]
E

[(∫ t

0
σX−1

s ds

)2])
T̂t f (x).

Thus, we have obtained (10). Now suppose that we have proved that

uk(t, x) ≤ (c1(k) E[Ak(X)Bk,t (X)] + c2(k)E(Ak(X)) E[Bk,t (X)])T̂tf (x),

where Ak(X), Bk,t (X), σs , c1(k), and c2(k) are as defined in the statement of Theorem 3. Now
we want to prove the inequality for uk+1. In order to do this, first of all, we introduce Dk,t (X, Y )
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which is defined as

Dk,t (X, Y ) = n
∏k−1

i=0 (n + (Y − 1) + i(X − 1))

k! σY−1
t = Sk(X, Y )σY−1

t ,

where Sk(X, X) = (k + 1)−1Ak+1(X). Then we use the following lemmas to complete the
proof.

Lemma 1. We have

uk+1(t, x) ≤ (c1(k)P (k, t) + c2(k)Q(k, t))T̂tf (x),

where P(k, t) and Q(k, t) are given by

P(k, t) =
∫ t

0
ds E[Dk,s(X, Y )Bk,t−s(X)],

Q(k, t) =
∫ t

0
ds E[Dk,s(X, Y )] E[Bk,t−s(X)].

Lemma 2. We have

P(k, t) ≤ E

[∏k
i=0(n + i(X − 1))

(k + 1)!
(∫ t

0
σX−1

s dr

)k+1]

+ 2 E

[∏k
i=0(n + i(X − 1))

(k + 1)!
]

E

[(∫ t

0
σX−1

s dr

)k+1]
.

Lemma 3. We have

Q(k, t) ≤ 2 E

[∏k
i=0(n + i(X − 1))

(k + 1)!
(∫ t

0
σX−1

s dr

)k+1]

+ 7 E

[∏k
i=0(n + i(X − 1))

(k + 1)!
]

E

[(∫ t

0
σX−1

s dr

)k+1]
.

Lemma 4. Using Lemmas 1, 2, and 3, the upper bound for uk+1(t, x) is given by

(c1(k + 1) E[Ak+1(X)Bk+1,t (X)] + c2(k + 1) E[Ak+1(X)] E[Bk+1,t (X)])T̂tf (x),

where

c1(k + 1) = c1(k) + 2c2(k)

and

c2(k + 1) = 2c1(k) + 7c2(k).

Once these four lemmas are proved, the proof of Theorem 3 is also complete by the induction
hypothesis.

We prove the lemmas in the next section.
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6. Proof of Lemmas 1–4

Proof of Lemma 1. To start with, we observe that

uk+1(t, x) =
∫ t

0

∫
S

�(x, dsdy)uk(t − s, y)

=
∫ t

0

∞∑
l=2

pl

∫
Dn+k−1

�(l)(x, dsdy)uk(t − s, y)

≤
∫ t

0

∞∑
l=2

pl ds(c1(k)P0(k, t − s) + c2(k)Q0(k, t − s))Ls,t−s(x)

= c1(k)M(k, t) + c2(k)N(k, t),

where

Ls,t−s(x) =
n∑

j=1

Ts(h
l
t−s)(xj )

n∏
j∗=1, j∗	=j

Ts(ht−s)(xj∗) ≤ nσ l−1
t−s T̂t f (x),

ht (x) = Tt (f (x)),

P0(k, t − s) = E

[∏k−1
i=0 (n + (l − 1) + i(X − 1))

k!
(∫ t−s

0
σX−1

r dr

)k]
,

Q0(k, t − s) = E

[∏k−1
i=0 (n + (l − 1) + i(X − 1))

k!
]

E

[(∫ t−s

0
σX−1

r dr

)k]
,

M(k, t) =
∫ t

0

∞∑
l=2

pl dsP0(k, t − s)Ls,t−s(x),

N(k, t) =
∫ t

0

∞∑
l=2

pl dsQ0(k, t − s)Ls,t−s(x).

Therefore,
uk+1(t, x) ≤ c1(k)M(k, t) + c2(k)N(k, t).

Then, we can show that

M(k, t) ≤ P(k, t)T̂tf (x),

N(k, t) ≤ Q(k, t)T̂tf (x),

where

P(k, t) =
∫ t

0
ds E[Dk,s(X, Y )Bk,t−s(X)]

and

Q(k, t) =
∫ t

0
ds E[Dk,s(X, Y )] E[Bk,t−s(X)].

Thus,
uk+1(t, x) ≤ (c1(k)P (k, t) + c2(k)Q(k, t))T̂tf (x).

So, Lemma 1 is proved.
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Proof of Lemma 2. We observe that

P(k, t) =
∫ t

0
ds E[Dk,s(X, Y )Bk,t−s(X)]

=
∫ t

0
ds

∞∑
l=2

∞∑
m=2

plpmDk,s(m, l)Bk,t−s(m)

= F(k, s, t − s) + G(k, s, t − s) + H(k, s, t − s),

where

F(k, s, t − s) =
∫ t

0

∞∑
l=2

p2
l Sk(l, l)

(∫ t−s

0
σ l−1

r dr

)k

σ l−1
s ds,

G(k, s, t − s) =
∫ t

0

∞∑
l=2

∞∑
m=l+1

plpmSk(l, m)

(∫ t−s

0
σ l−1

r dr

)k

σm−1
s ds,

H(k, s, t − s) =
∫ t

0

∞∑
m=2

∞∑
l=m+1

plpmSk(l, m)

(∫ t−s

0
σ l−1

r dr

)k

σm−1
s ds.

Upon simplifying, we obtain the following:

F(k, s, t − s) ≤ E[Ak+1(X)Bk+1,t (X)],
G(k, s, t − s) ≤ E[Ak+1(X)] E[Bk+1,t (X)],
H(k, s, t − s) ≤ E[Ak+1(X)] E[Bk+1,t (X)].

Thus, we have

P(k, t) ≤ E[Ak+1(X)Bk+1,t (X)] + 2 E[Ak+1(X)] E[Bk+1,t (X)].

Hence,

P(k, t) ≤ E

[∏k
i=0(n + i(X − 1))

(k + 1)!
(∫ t

0
σX−1

s ds

)k+1]

+ 2 E

[∏k
i=0(n + i(X − 1))

(k + 1)!
]

E

[(∫ t

0
σX−1

s ds

)k+1]
.

Thus, we have an upper bound for P(k, t).

Proof of Lemma 3. We observe that

Q(k, t) =
∫ t

0
ds E[Dk,s(X, Y )] E[Bk,t−s(X)]

=
∫

ds

∞∑
l=2

∞∑
m=2

∞∑
j=2

plpmpjDk,s(m, l)Bk,t−s(j)

= U(k, s, t − s) + V (k, s, t − s) + W(k, s, t − s),

https://doi.org/10.1239/aap/1208358895 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358895


Nonexplosion of a class of semilinear equations 265

where

U(k, s, t − s) =
∫ ∞∑

l=2

∞∑
m=2

plp
2
mSk(l, m)σm−1

s

(∫ t−s

0
σm−1

r dr

)k

ds,

V (k, s, t − s) =
∫ ∞∑

l=2

∞∑
m=2

∞∑
j=m+1

plpmpjSk(l, m)σm−1
s

(∫ t−s

0
σ

j−1
r dr

)k

ds,

W(k, s, t − s) =
∫ ∞∑

l=2

∞∑
j=2

∞∑
m=j+1

plpmpjSk(l, m)σm−1
s

(∫ t−s

0
σ

j−1
r dr

)k

ds.

Now, we can show that both U(k, s, t − s) and V (k, s, t − s) are less that Z(k, s, t − s), where

Z(k, s, t − s) =
∞∑
l=2

∞∑
m=2

plpm(k + 1)−1Sk(l, m)

(∫ t

0
σm−1

s ds

)k+1

.

We can show that

Z(k, s, t − s) ≤ E[Ak+1(X)Bk+1,t (X)] + 2 E[Ak+1(X)] E[Bk+1,t (X)].

Also,

W(k, s, t − s) = E[(k + 1)−1Sk(X, Y )] E

[∫ t

0
σX−1

s ds

]k+1

.

But,

E[(k + 1)−1Sk(X, Y )] ≤ 3 E[Ak+1(X)].
Therefore,

W(k, s, t − s) ≤ 3 E[Ak+1(X)] E[Bk+1,t (X)].
Thus, we have

Q(k, t) = U(k, s, t − s) + V (k, s, t − s) + W(k, s, t − s)

≤ 2Z(k, s, t − s) + W(k, s, t − s)

≤ 2(E[Ak+1(X)Bk+1,t (X)] + 2 E[Ak+1(X)] E[Bk+1,t (X)])
+ 3 E[Ak+1(X)] E[Bk+1,t (X)]

= 2 E[Ak+1(X)Bk+1,t (X)] + 7 E[Ak+1(X)] E[Bk+1,t (X)].

Hence,

Q(k, t) ≤ 2 E

[∏k
i=0(n + i(X − 1))

(k + 1)!
(∫ t

0
σX−1

s ds

)k+1]

+ 7 E

[∏k
i=0(n + i(X − 1))

(k + 1)!
]

E

[(∫ t

0
σX−1

s ds

)k+1]
.

Thus, we have an upper bound for Q(k, t) also.
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Proof of Lemma 4. Combining the upper bounds for P(k, t) and Q(k, t) from Lemma 2 and
Lemma 3, we ultimately obtain an upper bound for uk+1(t, x):

(c1(k)P (k, t) + c2(k)Q(k, t))T̂tf (x)

≤ ((c1(k) + 2c2(k)) E[Ak+1(X)Bk+1,t (X)]
+ (2c1(k) + 7c2(k)) E[Ak+1(X)] E[Bk+1,t (X)])T̂tf (x)

≤ (c1(k + 1) E[Ak+1(X)Bk+1,t (X)] + c2(k + 1) E[Ak+1(X)] E[Bk+1,t (X)])T̂tf (x).

Thus,

uk+1(t, x) ≤ (c1(k+1) E[Ak+1(X)Bk+1,t (X)]+c2(k+1) E[Ak+1(X)] E[Bk+1,t (X)])T̂tf (x),

where c1(k + 1) = c1(k) + 2c2(k) and c2(k + 1) = 2c1(k) + 7c2(k). Here,

Ak+1(X) =
∏k

i=0(n + i(X − 1))

(k + 1)! and Bk+1,t (X) =
(∫ t

0
σX−1

s ds

)k+1

.

Thus, the bounds are correct for all k ≥ 1. For k = 1, c1(1) = 1 and c2(1) = 0.

7. Proof of Theorem 4: conditions for global solutions

It was shown in Corollary 2 that if u(t, x) is a mild solution then

u(t, x) ≤ u0(t, x) +
∞∑

k=1

(c1(k) E[Ak(X)Bk,t (X)] + c2(k) E[Ak(X)] E[Bk,t (X)])T̂tf (x).

We are interested in the series appearing on the right-hand side of the above inequality. If this
series is convergent then it is clear that we have global solutions to (4). So, we show that this
series is convergent. We can observe that the given series is actually a sum of two series, namely

∞∑
k=1

c1(k) E[Ak(X)Bk,t (X)]

and ∞∑
k=2

c2(k) E[Ak(X)] E[Bk,t (X)].

Firstly, we shall look at the former series. Now,

∞∑
k=1

c1(k) E[Ak(X)Bk,t (X)] =
∞∑

k=1

c1(k)

∞∑
j=2

pjAk(j)Bk,t (j).

We shall verify that, under the assumptions in Theorem 4, the series

∞∑
k=1

c1(k)

∞∑
j=2

pjAk(j)Bk(j)
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is convergent, where

Bk,t (j) =
(∫ t

0
σ

j−1
s ds

)k

≤ Bk(j) =
(∫ ∞

0
σ

j−1
s ds

)k

for all t.

Now,
∞∑

k=1

c1(k)

∞∑
j=2

pjAk(j)Bk(j) =
∞∑

j=2

pj

∞∑
k=1

c1(k)Ak(j)Bk(j).

So, let us first obtain conditions for the convergence of the inner series on the right-hand side.
By the ratio test, the inner series is convergent if

c1(k + 1)

c1(k)

Ak+1(j)

Ak(j)

Bk+1(j)

Bk(j)
< 1,

c1(k + 1)

c1(k)
(j − 1)

∫ ∞

0
σ

j−1
s ds < 1,

or

9(j − 1)

∫ ∞

0
σ

j−1
s ds < 1,

since c1(k + 1)/c1(k) ≤ 9.
Now, 9(j − 1)

∫ ∞
0 σ

j−1
s ds = ρ(j) < 1 for all j by hypothesis. Then,

∞∑
k=1

c1(k)Ak(j)Bk(j) < ∞.

Let c1(k)Ak(j)Bk(j) = ak,j for all j . As a consequence,

∞∑
k=1

ak,j <

∞∑
k=1

ρ(j)k−1a1,j = a1,j

1 − ρ(j)
.

Then we have

∞∑
j=2

pj

∞∑
k=1

ak,j <

∞∑
j=2

pj

a1,j

1 − ρ(j)

=
∞∑

j=2

pj

c1(1)A1(j)B1(j)

1 − ρ(j)

= n

∞∑
j=2

pj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

,

which is less than ∞ by Theorem 4(i). So, we have verified that the first series is convergent
under the given hypothesis.

Now we shall look at the latter series,
∑∞

k=2 c2(k) E[Ak(X)] E[Bk,t (X)]. As before, we
shall verify that

∞∑
k=2

c2(k) E[Ak(X)] E[Bk(X)] < ∞,
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where Bk(X) = (
∫ ∞

0 σX−1
s ds)k . Now,

∞∑
k=2

c2(k) E[Ak(X)] E[Bk(X)]

=
∞∑

k=2

c2(k)

∞∑
j1=2

∞∑
j2=2

pj1pj2Ak(j1)Bk(j2)

=
∞∑

j1=2

∞∑
j2=2

pj1pj2

∞∑
k=2

c2(k)Ak(j1)Bk(j2).

We write this as the sum of three terms, namely

∞∑
j1=2

p2
j1

∞∑
k=2

c2(k)Ak(j1)Bk(j1),

∞∑
j2=2

∞∑
j1=j2+1

pj1pj2

∞∑
k=2

c2(k)Ak(j2)Bk(j1),

and

∞∑
j1=2

∞∑
j2=j1+1

pj1pj2

∞∑
k=2

c2(k)Ak(j1)Bk(j2).

Now the first term satisfies
∞∑

j1=2

p2
j1

∞∑
k=2

c2(k)Ak(j1)Bk(j1) ≤
∞∑

j1=2

pj1

∞∑
k=2

c2(k)Ak(j1)Bk(j1). (11)

The second term satisfies
∞∑

j2=2

∞∑
j1=j2+1

pj1pj2

∞∑
k=2

c2(k)Ak(j2)Bk(j2) ≤
∞∑

j2=2

pj2

∞∑
k=2

c2(k)Ak(j2)Bk(j2). (12)

And the third term satisfies
∞∑

j1=2

∞∑
j2=j1+1

pj1pj2

∞∑
k=2

c2(k)Ak(j1)Bk(j2) ≤
∞∑

j1=2

pj1

∞∑
k=2

c2(k)Ak(j1)Bk(j1). (13)

Thus, from (11), (12), and (13), we can conclude that the second series satisfies

∞∑
k=2

c2(k) E[Ak(X)] E[Bk(X)] ≤ 3
∞∑

j=2

pj

∞∑
k=2

c2(k)Ak(j)Bk(j). (14)

Now, we can argue exactly as in the case of the first series and conclude that the right-hand side
satisfies

3
∞∑

j=2

pj

∞∑
k=2

c2(k)Ak(j)Bk(j) ≤ 3
∞∑

j=2

pj

c2(2)A2(j)B2(j)

1 − ρ(j)
.
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The right-hand side of the above inequality can be simplified to arrive at condition (ii) in the
hypothesis, i.e.

∞∑
j=2

(n + j − 1)
∫ ∞

0 σ
j−1
s dspj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞.

Thus, the second series is also finite by condition (ii) of Theorem 4. Hence, since both series
are finite under the given conditions, the proof of Theorem 4 is complete. So, we conclude that
the conditions given in Theorem 4 are indeed the required conditions for global solutions in
our case.

8. Some interesting examples

Here we apply Theorem 4 to some interesting cases.
The first example that we consider is the following:

∂u

∂t
= Au(t, x) +

∞∑
k=2

pku
k(t, x), u(0, x) = f (x),

where we are assuming that A is such that σs = sups Tsf = e−10s and that the pj s are of
the order of (j − 1)−2. Then, we go back to the conditions of Theorem 4. Condition (i) of
Theorem 4 leads us to

∞∑
j=2

pj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

=
∞∑

j=2

pj

(j − 1)
.

Now this is finite because of the assumption that the pj s are of the order of (j −1)−2. To verify
condition (ii) of Theorem 4, we proceed as follows. We have to show that

∞∑
j=2

(n + j − 1)
∫ ∞

0 σ
j−1
s dspj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞.

This is now equal to
∞∑

j=2

pj

(j − 1)

n + j − 1

10(j − 1)
= n

10

∞∑
j=2

pj

(j − 1)2 +
∞∑

j=2

pj

10(j − 1)
.

The first term on the right-hand side is always finite and the second term on the right-hand side
is finite because of the assumption that the pj s are of the order of (j − 1)−2.

In the second example we consider symmetric α-stable processes. Let Tt be a d-dimensional
symmetric α-stable process. Then, it is known that

Ttf (x) =
∫

Rd

p(t, x − y)f (y) dy

and

exp(−t |z|α) =
∫

Rd

ei(z,x)p(t, x) dx.

Then Theorem 3.5 of [8] gives us a condition on f under which their semilinear equation had
a global solution provided that d(β − 1)/α > 1, where β was the fixed number of offspring
generated by each parent. We shall now see that a similar condition will give rise to global
solutions in our setup as well.
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Theorem 5. Let Tt be a d-dimensional symmetric α-stable process, where d > 4. Let η be a
positive number. Also, assume that our initial data satisfies

0 ≤ f (x) ≤ δp(t + η, x)

for a sufficiently small positive number δ. Then there exists a global solution u(t, x) to our
semilinear equation (4) where a(x) is identically equal to 1.

Proof. Since d ≥ 4, we know that d/α is bigger than 2. Then d(j − 1)/α is bigger than 2
for all j ≥ 2. Also, by hypothesis, our initial data f satisfies

0 ≤ f (x) ≤ δp(t + η, x)

for some positive numbers δ and η. Then, following the steps in Theorem 3.5 of [8], we arrive
at ∫ ∞

0
σ

j−1
s ds ≤ δj−1p(1, 0)j−1 η1−d(j−1)/α

d(j − 1)/α − 1
. (15)

Now, for the existence of global solutions, we need to verify the conditions of Theorem 4,
namely

(i)
∞∑

j=2

pj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞;

and

(ii)
∞∑

j=2

(n + j − 1)
∫ ∞

0 σ
j−1
s dspj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞.

So, from (15), we have

(∫ ∞

0
σ

j−1
s ds

)−1

− 9(j − 1) ≥ d(j − 1)/α − 1

δj−1p(1, 0)j−1η1−d(j−1)/α
− 9(j − 1).

This implies that

(∫ ∞

0
σ

j−1
s ds

)−1

− 9(j − 1) ≥ d(j − 1)/α − 1 − 9(j − 1)δj−1p(1, 0)j−1η1−d(j−1)/α

δj−1p(1, 0)j−1η1−d(j−1)/α
,

which then implies that

((∫ ∞

0
σ

j−1
s ds

)−1

− 9(j − 1)

)−1

≤ δj−1p(1, 0)j−1η1−d(j−1)/α

d(j − 1)/α − 1 − 9(j − 1)δj−1p(1, 0)j−1η1−d(j−1)/α
. (16)

Now, since η1−d(j−1)/α ≤ 1, the numerator on the right-hand side of (16) is less than or
equal to δj−1p(1, 0)j−1. Similarly, the denominator on the right-hand side of (16) is greater
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than or equal to d(j − 1)/α − 1 − 9(j − 1)δj−1p(1, 0)j−1. Now, we can choose δ so small
that, for large j (say j > J ), we have

δj−1p(1, 0)j−1 < M−(j−1) < (j − 1)−2

for some positive number M . Then (16) becomes

((∫ ∞

0
σ

j−1
s ds

)−1

− 9(j − 1)

)−1

≤ (j − 1)−2

d(j − 1)/α − 1 − 9(j − 1)−1 .

Now, for large j , we have 9(j − 1)−1 ≤ 1, so the denominator is greater than or equal to
d(j − 1)/α − 2. As a result, the right-hand side of the above inequality is of the order of
(j − 1)−3. So, for some large J ∗ > J , we have

∞∑
j=J ∗

pj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

≤
∞∑

j=J ∗

pj

d(j − 1)3/α − 2(j − 1)2 ,

which is less than ∞, and, hence,

∞∑
j=0

pj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

< ∞.

Now, because of the observation made while verifying Theorem 4(i) we have, for large j ,

((∫ ∞

0
σ

j−1
s ds

)−1

− 9(j − 1)

)−1

≤ (j − 1)−2

d(j − 1)/α − 1 − 9(j − 1)−1 .

Now, because of the discussion above with respect to verifying Theorem 4(i), from (15), we
have ∫ ∞

0
σ

j−1
s ds ≤ (j − 1)−2

d(j − 1)/α − 1
.

Therefore, from the second condition, for some large j = J ∗∗, we have

∞∑
j=J ∗∗

(n + j − 1)
∫ ∞

0 σ
j−1
s dspj

(
∫ ∞

0 σ
j−1
s ds)−1 − 9(j − 1)

≤
∞∑

j=J ∗∗

(n + j − 1)pj

(j − 1)4(d(j − 1)/α − 1)(d(j − 1)/α − 2)
,

which is obviously less than ∞ and, hence, the whole series is less than ∞. Therefore, using
similar arguments as in the case of Theorem 4(i), we can conclude that Theorem 4(ii) is also
satisfied.

Hence, we have seen that the conditions for the existence of global solutions are satisfied
for symmetric α-stable processes.

Remark. The assumptions for the existence of global solutions for symmetric α-stable pro-
cesses in the case of a fixed number of offspring for each individual (Nagasawa and Sirao’s
case) are exactly the same as the case of a random number of offspring for an individual parent
(our case). This follows by comparing Theorem 3.5 of [8] and our Theorem 5.
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