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Summary

A new deterministic method for predicting simultaneous inbreeding coefficients at three and four
loci is presented. The method involves calculating the conditional probability of IBD (identical
by descent) at one locus given IBD at other loci, and multiplying this probability by the prior
probability of the latter loci being simultaneously IBD. The conditional probability is obtained
applying a novel regression model, and the prior probability from the theory of digenic measures
of Weir and Cockerham. The model was validated for a finite monoecious population mating at
random, with a constant effective population size, and with or without selfing, and also for an
infinite population with a constant intermediate proportion of selfing. We assumed discrete
generations. Deterministic predictions were very accurate when compared with simulation results,
and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were
more sensitive to changes in effective population size than in marker spacing. Extensions to predict
simultaneous inbreeding coefficients at more than four loci are now possible.

1. Introduction

The inbreeding coefficient F is one of the most widely
used parameters in population and quantitative gen-
etics. Statistically, F is the probability that the two
alleles at a locus in an individual are identical by de-
scent (IBD), and two alleles are IBD if they descend
from, and are exact copies of, the same ancestral allele
(Malécot, 1948).

An increase in F lowers genetic variance within
populations, and can lead to inbreeding depression
and to a higher frequency of genetic diseases (Wright,
1977). These adverse consequences of high F are of
prime interest in a wide range of biological sciences.
For example, genetic disorders, such as cardiovascular
disease, are more common in small and isolated popu-
lations than in large and open ones (Wright et al.,
1999), and breeding programmes aim at maximizing
genetic gain whilst restricting F (Bijma et al., 2000).

Wright (1922) calculated F for each individual
by tracing pedigree loops. Malécot (1948) overcame
the computational difficulties of Wright’s method in

large and complex pedigrees by expressing F as a
population average. Currently, marker data can be
combined with pedigree records to calculate F at
each chromosomal position for each individual
(Thompson, 1994).

In the above, F denoted the expected inbreeding at
a single locus, a single individual or a single popu-
lation. Weir & Cockerham (1969, 1974) developed a
recurrence equation to predict the average inbreeding
coefficient at two loci simultaneously, in a population.
No extensions were available for three or more loci.
Such multilocus inbreeding coefficients were key el-
ements in a method for predicting co-ancestry at a
locus, given population history and marker data, but
without pedigree information (Hernández-Sánchez,
Haley & Woolliams, unpublished). Moreover, they
can also be useful in mapping genes, designing breed-
ing programmes, detecting population structure, and
studying linkage disequilibrium.

We have developed an efficient and simple ap-
proximation, based on multiple regression models,
and using the theory of digenic measures of Weir and
Cockerham, to predict simultaneous F at three and
four loci. We describe this method, test its accuracy,
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and study the sensitivity of simultaneous inbreeding to
changes in population parameters.

2. Materials and methods

Table 1 shows themain variables and parameters used,
where inbreeding coefficient and IBD probability are
synonymous. The inbreeding coefficient at locus A is
FA. The simultaneous inbreeding coefficient at two
loci, A and B, is FAB=FAFB|A, where FB|A=FB+gAB/
FA is the conditional probability of locus B being IBD
given that locus A is IBD, and where gAB=FABxFAFB
is the identity disequilibrium coefficient (Weir &
Cockerham, 1969). We used exact recurrence for-
mulae to calculate FAB directly for different population
histories (Weir & Cockerham, 1969, 1973, 1974;
Weir et al., 1980). The Appendix contains the original
formulae for FAB when a monoecious population is
mating and selfing at random.

(i) Prediction of three-loci inbreeding coefficients

The simultaneous inbreeding coefficient at three neu-
tral loci A, B and C, where C is located between A and
B, is

FABC=FABFC jAB, (1)

where FC|AB is the conditional probability of IBD at
locus C given IBD at loci A and B simultaneously. The
effect of linkage is already accounted for in the two-
loci theory of Weir and Cockerham. The conditional
probability in (1) is obtained assuming IBD at loci A
and B, and then using this information to predict IBD
at a linked locus C. This method obtains IBD prob-
abilities as means of indicator random variables yi
taking a value of 1 when locus i is IBD or 0 otherwise,
and also yij=1 when loci i and j are simultaneously
IBD or 0 otherwise. Hence, one can calculate an ap-
proximation to FC|AB using the following regression
equation:

FC jAB�FC+XkR, (2)

where R is a vector of partial regression coefficients,
and

Xk=[yAxȳA, yBxȳB]=[1xFA, 1xFB],

is the transposed vector of corrected indicator vari-
ables, since this probability is conditional on loci A
and B being IBD, i.e. yA=yB=1. The vector R is ob-
tained asVx1G, whereV is a covariance matrix of IBD
among loci A and B, and G a vector of covariances
between IBD at loci A or B and IBD at locus C (see
upper left 2r2 corner of matrix V, and the first two
elements from vectors Gk and Xk in Table 2).

The diagonal elements of V are the variances
s2
i=y2

ix(ȳi)
2=Fi(1xFi), since y

2
i=ȳi=Fi, where i=A

or B. The off-diagonal elements of V are the covari-
ances si, j=ȳijxȳi ȳj=FijxFiFj=gij for ilj=A or B.
The transpose ofG isGk=[gAC, gCB]. Therefore, FC|AB

can be approximated as

FCjAB � FC

+
[(1xFA), (1xFB)]

FB(1xFB) xgAB

xgAB FA(1xFA)

� �
gAC

gBC

� �

FA(1xFA)FB(1xFB)xg2
AB

,

(3a)

which simplifies to:

FCjAB � FC+(1xF )(gAC+gCB)=(F(1xF )+gAB),

(3b)

when FA=FB=F. This prediction model does not in-
clude a regression term corresponding to loci A and B
being simultaneously IBD, i.e. yAB=1, because the
additional covariance in G, i.e. sAB,C=FABCxFABFC,
requires FABC.

Two special cases can be studied here. First, if loci
A, B and C are completely unlinked to each other, and
assuming all identity disequilibrium parameters are
zero on average (which is true for a very large popu-
lation with a mating structure that excludes selfing),
then (3a) and (3b) simplify to FC|AB=FC, reflecting the
fact that IBD at locus C does not depend on IBD at

Table 1. Parameters and variables

F, Fi Inbreeding coefficient, or IBD probability, at any locus or at locus i,

respectively

Fij Simultaneous inbreeding coefficient at loci i and j

Fi| jk Conditional IBD at locus i given IBD at loci j and k

gij, gi, jk, gij, jk =FijxFiFj, FijkxFiFjk and FijkxFijFjk, respectively

yi( ȳi) Indicator variable: 1 if locus i is IBD, 0 otherwise (Expected yi)

yij( ȳij) Indicator variable: 1 if loci i and j are IBD, 0 otherwise (Expected yij)

si
2 Variance of IBD at locus i, equal to Fi(1xFi)

si,j, si,ij, si, jk, sij,ik Covariances among loci i, j and k

N Effective and actual sample size

T Total number of generations

d Vector of interloci distances in cM
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loci A and B in the absence of linkage. Nevertheless,
(3a) and (3b) can account for random associations
between unlinked loci (e.g. those caused by drift) be-
cause the terms gij can be greater than zero even
without linkage, and hence allowing for FC|AB>FC.
Second, if loci A and B are completely linked so that
FA=FB=F, gAC=gBC and gAB=F(1xF ), then (3a)
reduces to FCjAB=FCjA=FC+gAC=F, which appeared
above in the two-loci case. If locus C lies in between A
and B, then gAC=F(1xF ) and FC=F, leading to
FC|AB=1, reflecting the fact that conditional on A and
B being IBD, C must be also IBD with probability 1 if
linkage is complete.

(ii) Prediction of four-loci inbreeding coefficients

A similar procedure can be used to predict the simul-
taneous inbreeding coefficient at four loci, FABCD.
Assuming the locus order A-B-C-D, then

FABCD=FABDFCjABD: (4)

The parameter FABD is equivalent to the parameter
FABC of the previous section. The conditional prob-
ability FC|ABD can be calculated using an extended
version of model (2) that includes the interactions due
to loci pairs AB, AD and BD, as well as the main
effects of each locus (A, B and D). The new vectorR of
partial regression coefficients was obtained with the
full matrix V and the full vector G given in Table 2.
This table also shows the full vector X of corrected
indicator variables for IBD. The additional elements
in matrix V are variances and covariances of the form

sij
2 , and si,ik, si,jk, sij,ik, respectively, and the additional

elements in vector G are covariances of the form sij,C,
where iljlk=A, B, D. In the special case of com-
pletely unlinked loci in a large population, the vector
G is zero, and therefore FC|ABD=FC, because the con-
ditioning is over uninformative markers. On the other
hand, if C is completely linked to any of the other three
loci, then FC|ABD=1.

(iii) Simulation results versus deterministic predictions

Empirical observations of FABC and FABCD were ob-
tained with computer simulations. In each replicate, a
population was created with N unrelated and non-
inbred founders, and its evolution by drift was moni-
tored over 100 discrete generations (T ). The size N
remained constant across generations, with random
mating and selfing. Under these circumstances, N de-
noted both the actual and the effective population size.
The IBD status of three (ABC) and four loci (ABCD)
was scored as 1/0 in each individual within each gen-
eration, and averages were taken over 1000 (or 10 000)
replicates. The distances between adjacent loci, in
centimorgans (cM), were given in vector d. These dis-
tances were transformed to recombination rates using
Haldane’s mapping function (Haldane, 1919). Em-
pirical results were compared against deterministic
predictions obtained with equations (1) and (4). An
exact knowledge of population parameters (d, N and
T ) was assumed.

Other population histories were considered to
demonstrate the generality of (1) and (4). For example,

Table 2. Matrix V of covariances of IBD among loci A, B and D, and vector G of
covariances between IBD at these loci and IBD at locus C. This table provides the necessary
elements to predict both FC|AB and FC|ABD. See Table 1 for relevant notation

Matrix V of co-variances among loci A, B and D

V A B D AB AD BD

A FA(1xFA) gAB gAD FAB(1xFA) FAD(1xFA) gA,BD

B FB(1xFB) gBD FAB(1xFB) gB,AD FBD(1xFB)

D FD(1xFD) gD,AB FAD(1xFD) FBD(1xFD)

AB FAB(1xFAB) gAB,AD gAB,BD

AD FAD(1xFAD) gAD,BD

BD FBD(1xFBD)

Vector Gk of covariances between loci A, B or D and locus C

Vector Xk of corrected indicator variables of IBD

Gk A B D AB AD BD

C gAC gBC gDC gC,AB gC,AD gC,BD

A B D AB AD BD

1xFA 1xFB 1xFD 1xFAB 1xFAD 1xFBD
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we also studied the behaviour of simultaneous inbreed-
ing coefficients using the previous population model
excluding selfing, and when N=‘ and there were
equal proportions of random mating and random
selfing. In the latter scenario, computer simulations
were generated for a population with 1000 individuals,
in which 500 random individuals selfed each gener-
ation whereas the other 500 mated at random con-
ditional on being non-inbred and unrelated.

The issues studied regarding (1) and (4), were: (a)
accuracy of predictions, and robustness of method
of implementation for a finite monoecious popu-
lation with or without selfing, and also for an infinite
population with a fixed proportion of selfing, and
(b) sensitivity of FABC and FABCD to changes in N or d
in a finite monoecious population with randommating
and selfing.

3. Results

(i) Accuracy of predictions, and robustness
of implementation

Deterministic predictions of FABC and FABCD obtained
with (1) and (4), respectively, are compared against
simulation results (averages of 10 000 replicates) in
a monoecious population mating at random with
(Fig. 1), or without selfing (Fig. 2). The predictions
were more accurate with tight linkage (1 cM spacing),
than with loose linkage (10 cM spacing), although
differences were small.

This high accuracy was achieved without fitting an
interaction between loci A and B in the model for

predicting FC|AB, because FABC is required in such an
interaction. Although an iterative scheme could be
developed, the accuracy of the approximation makes
such a scheme unnecessary, at least when linkage is
tight. Similarly, two but not three loci interactions
were fitted to the model that predicted FC|ABD.

In general, we observed slightly larger prediction
errors for FABCD than for FABC. One potential reason
for this is that FABC is included in the model for pre-
dicting FABCD, and therefore the prediction error of
FABC is also included in the prediction error of FABCD.

Fig. 3 compares deterministic and empirical pre-
dictions of inbreeding at one, two, three and four loci
in an infinite population undergoing 50% random
mating and 50% selfing. Empirical predictions were
obtained averaging over 1000 replicated histories of a
large population (N=1000). It can be seen that all
inbreeding coefficients reach an equilibrium between 0
and 1 in only 5 generations. Only when migration and
mutation are negligible compared with the effect of
drift in finite populations, do these inbreeding coef-
ficients reach 1 eventually, i.e. the population becomes
fixed at all loci.

Fig. 4 demonstrates that the prediction method was
robust to the precise form used, given that (1) and (4)
can be written differently with respect to locus order.
For example, the lines showing FABCD using either
FABCFD|ABC or FABDFC|ABD were indistinguishable,
within each set of distances d. Likewise, FABC can be
expressed as in (1), or alternatively, as FACFB|AC or
FBCFA|BC (results not shown). Hence, for a given set of
distances d, the choice of loci to obtain conditional
probabilities is of negligible significance.

Fig. 1. Empirical averages over 10 000 replicates (continuous lines) versus deterministic predictions (dashed lines) of FABC

and FABCD, plotted against generations (T). A monoecious population mated at random including selfing. Two different
scenarios were considered: N=10 and d=[1, 1, 1] cM in the two upper graphs, and N=20 and d=[10, 10, 10] cM in the
two lower graphs.
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(ii) Sensitivity of FABC and FABCD to changes
in N or d

Fig. 5 shows deterministic predictions of FABC for
equidistant markers, spaced 1 cM from each other,
and N equal to 5, 10, 20, 50, 100 or 200. Fig. 6 shows
deterministic predictions of FABC for N=10, and
equidistant markers spaced 1

2, 1, 2, 5, 10, 20 or 30 cM

from each other (FABC was very similar for distances
o30 cM between adjacent markers). It is easy to ap-
preciate that FABC responds with a wider range of
values to changes in N (Fig. 5) than in d (Fig. 6).
Hence, wrong effective population sizes may lead to
more strongly biased predictions of FABC than wrong
genetic distances.

Fig. 3. Empirical averages over 1000 replicates (continuous lines) versus deterministic predictions (dashed lines) of FA,
FAB, FABC and FABCD, plotted against generation time (T). A large monoecious population mated at random with one half
of all matings being selfing. Deterministic predictions assumed an infinite population, whereas empirical predictions were
averages for a population of size N=1000. The distance between adjacent loci was 1 cM.

Fig. 2. Empirical averages over 10 000 replicates (continuous lines) versus deterministic predictions (dashed lines) of FABC

and FABCD, plotted against generations (T). A monoecious population mated at random excluding selfing. Two different
scenarios were considered: N=10 and d=[1, 1, 1] cM in the two upper graphs, and N=20 and d=[10, 10, 10] cM in the
two lower graphs.
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The high sensitivity of FABC and FABCD to changes
inN was also observed (results not shown) when FABC

was predicted with N=50, and FABCD with N=10
(d was the same for both). Under this situation, and
because of a stronger drift effect in the latter case, four
loci became inbred faster than three.

Differences in distribution of loci over the same
genetic distance caused significant differences in the

expected multilocus inbreeding coefficient. For ex-
ample, Fig. 4 shows differences in FABCD between
equidistant loci (d=[10, 10, 10]) and non-equidistant
loci (d=[1, 28, 1]), over a 30 cM chromosomal region.
This result indicates that it is more likely to sample
four loci simultaneously inbred when they are un-
evenly distributed over a given distance than when
they are evenly distributed.

Fig. 4. FABCD predicted with FABCFD|ABC and FABDFC|ABD, for two different sets of distances (d) in cM, plotted against
generation time (T). The plots overlap completely within each set d, proving that FABCFD|ABC=FABDFC|ABD. There
were differences in FABCD between scenarios representing equidistant and non-equidistant loci. In both cases, the total
length was 30 cM, and N=10.

Fig. 5. Deterministic predictions of FABC at generation T for N=5, 10, 20, 50, 100, or 200, given equidistant markers,
spaced 1 cM from each other.
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4. Discussion

Population parameters such as inbreeding coefficients
are the basic building blocks of quantitative genetic
theory. Hence, the usefulness of this theory depends
on our ability to predict these parameters in accurate
and efficient ways. We have contributed to the theory
of inbreeding by developing a new method, which is
both accurate and instantaneous, to predict simul-
taneous inbreeding coefficients at three (FABC) and
four (FABCD) loci in any generation.

This method uses a multiple linear regression model
to predict the conditional probability of IBD at a locus
given IBD at other linked loci, and then multiplies this
probability by the prior probability of the latter loci
being IBD. Although most of our results have been
obtained assuming a finite population with constant
size, and randomly mating and selfing over T discrete
generations, the same level of accuracy has been ob-
served without selfing and for a fixed proportion of
selfing in an infinite population. Deterministic pre-
dictions are very accurate when the parameters N,
(effective) population size, and d, genetic distances,
are known without error. A violation of any of the
previous assumptions reduces the accuracy of the
method.

This theory can accommodate other population
histories as long as simultaneous inbreeding coef-
ficients at two loci can be predicted accurately. Weir
et al. (1980) predicted exact two-loci coefficients for a
monoecious population with random mating without
selfing, for a dioecious population randomly mating,

and for a dioecious population with a hierarchical
mating structure. Moreover, Weir & Cockerham
(1969, 1974) also considered mating systems where
gametes are sampled without replacement (i.e. mon-
ogamy) in either monoecious or dioecious popu-
lations. In the case of an infinite population, inbreed-
ing can only arise if there is a non-zero probability of
random selfing, and for this case, exact equations for
the simultaneous inbreeding coefficient at two loci can
be found in Weir & Cockerham (1973).

The sensitivity of FABC, i.e. the range of possible
values, is greater toN than to d. This fact makes multi-
locus inbreeding coefficients more robust to mis-
specifications of d than of N. In practice, a researcher
could reduce the standard error of d by increasing the
sample size, because d is usually obtained from ob-
served recombination rates, which are more reliably
estimated with large samples. On the contrary, N is
less controllable experimentally because it depends on
the particular evolution of each population and our
knowledge of its history. Accurate methods for esti-
mating N given molecular information may comp-
lement this methodology. Nevertheless, the need for
accurateN to predict multilocus F is no different from
the case of predicting single-locus F, and likewise, the
need for accurate d is common to all tasks involving
multiple loci.

The order in which loci were considered did not
affect the accuracy of predictions. For example, (1)
and (4) were equivalent to FAC FB|AC and FABC FD|ABC,
respectively. However, the distribution of loci over a
given distance, although not affecting the accuracy,

Fig. 6. Deterministic predictions of FABC plotted against the single locus F for N=10. The plots of FABC for do30 cM
were very similar, so they are not shown. The genetic distances (in cM) between adjacent and equidistant loci are given in
the graph.
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had a significant effect on the predicted value. For
example, four unevenly distributed loci were more
likely to be simultaneously inbred than four evenly
distributed ones.

Theoretically, this method can be extended to
predict any n-loci (n>4) simultaneous inbreeding co-
efficient. However, as these coefficients are approxi-
mations and they depend on all lower simultaneous
inbreeding coefficients (from 1 locus to nx1 loci), the
prediction error may increase with n.

These coefficients are useful in many areas of re-
search. For example, they have been incorporated in a
new method for predicting co-ancestry among in-
dividuals without pedigree. These co-ancestry coef-
ficients will be used in gene mapping. Moreover, these
coefficients may be used in designing marker assisted
selection/introgression programs in animal breeding,
in studying linkage disequilibrium in populations, or
detecting population structure.

Appendix

Parameters used in calculating H11(t+1), which is
equivalent to FAB

H11(t) Digametic digenic descent measure, equivalent
to FAB

C11(t) Trigametic digenic descent measure
D11(t) Quadrigametic digenic descent measure
H1(t) Digametic monogenic descent measure,

equivalent to F
l (1x2c), where c is the recombination rate
N Effective population size
V Matrix of sampling probabilities assuming

random mating
t Time variable (generations)

Formulae to calculate H11(t+1), from Appendix B in
Weir & Cockerham (1974) :

H11(t+1)=V11H11(t)+V12C11(t)+V13D11(t)

+[(1xl2)=2N]H1(t)+[(1+l2)=4N]:

C11(t+1)=V21H11(t)+V22C11(t)+V23D11(t)

+[(2Nx1)=2N2]H1(t)+(1=4N2):

D11(t+1)=V31H11(t)+V32C11(t)+V33D11(t)

+[(2Nx1)=2N
2
)H1(t)+(1=4N2):

H1(t)=1x((2Nx1)=2N)t:

Vij=

(1+l)2

4
x

l

2N

(Nx1)(1xl2)

2N

(Nx1)(1xl)2

4N

1+l

4N
x

l

4N2

(Nx1)[N+1+l(Nx2)]

2N2

(Nx1)(2Nx3)(1xl)

4N2

2Nx1

4N3

(Nx1)(2Nx1)

N3

(Nx1)(2Nx1)(2Nx3)

4N3

2
6666666664

3
7777777775
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