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Abstract
Many natural real-valued functions of closed curves are known to extend continuously to the larger space of geodesic
currents. For instance, the extension of length with respect to a fixed hyperbolic metric was a motivating example for
the development of geodesic currents. We give a simple criterion on a curve function that guarantees a continuous
extension to geodesic currents. The main condition of our criterion is the smoothing property, which has played a
role in the study of systoles of translation lengths for Anosov representations. It is easy to see that our criterion is
satisfied for almost all known examples of continuous functions on geodesic currents, such as nonpositively curved
lengths or stable lengths for surface groups, while also applying to new examples like extremal length. We use this
extension to obtain a new curve counting result for extremal length.
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1. Introduction

Geodesic currents on surfaces are measures that realise a suitable closure of the space of weighted
(multi-)curves on a surface. They were first introduced by Bonahon in his seminal paper [10]. Many
metric structures can be embedded in the space of currents, such as hyperbolic metrics [8, Theorem 12]
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or half-translation structures [20, Theorem 4]. Thus, geodesic currents allow one to treat curves and
metric structures on surfaces as the same type of object. Via this unifying framework, counting curves of
a given topological type and counting lattice points in the space of deformations of geometric structures
become the same problem [51, Main Theorem]. Geodesic currents also play a key step in the proof
of rigidity of the marked length spectrum for metrics, via an argument by Otal [47, Théorème 2].
Finally, they provide a boundary of the Teichmüller space, in both the compact [8, Proposition 17] and
noncompact [11, Theorem 2] cases.

In this article we consider the problem of extending continuously a function defined on the space of
weighted multi-curves to its closure, the space of geodesic currents.

Previous work of Bonahon extended the notion of geometric intersection number as a continuous
function of two geodesic currents [10, Proposition 4.5]. This allowed him to extend hyperbolic length to
geodesic currents by following the principle of realising it as an intersection number with a distinguished
geodesic current [8, Proposition 14].

The same principle using intersection numbers has been used by many authors to extend length for
many other metrics: Otal for negatively curved Riemannian metrics [47, Proposition 3], Croke–Fathi–
Feldman for nonpositively curved Riemannian metrics [16, Theorem A], Hersonsky–Paulin for nega-
tively curved metrics with conical singularities [32, Theorem A], Bankovic–Leininger for nonpositively
curved Euclidean cone metrics [2], Duchin–Leininger–Rafi more explicitly for singular Euclidean struc-
tures associated to quadratic differentials [20, Lemma 9] and Erlandsson for word length with respect
to simple generating sets of the fundamental group [22, Theorem 1.2].

Another line of results on extending functions to geodesic currents was also started by Bonahon, who
showed how to extend stable lengths to geodesic currents, not just for surface groups but for general
hyperbolic groups [9, Proposition 10]. This result was recently improved by Erlandsson–Parlier–Souto
[23, Theorem 1.5], who used the return map of the geodesic flow to remove technical assumptions.
These constructions apply, for instance, to arbitrary Riemannian metrics and the stable version of word
lengths for arbitrary generating sets.

The problem of extending functions to geodesic currents is interesting in itself, since, by a result
of Rafi and Souto reviewed in Section 5, it provides a way to compute asymptotics of the num-
ber of curves of a fixed type with a bounded ‘length’, for a notion of ‘length’ that extends to cur-
rents [51]. Their result builds on work by Mirzakhani [44, Theorem 7.1] and Erlandsson–Souto [24,
Proposition 4.1]. Recently, Erlandsson and Souto gave a new argument to compute these asymptotics
[26, Theorem 8.1].

Our main theorem gives a simple criterion on functions defined on multi-curves that guarantees
they extend to geodesic currents. Our result subsumes most of the previous extension results mentioned
above and provides new extensions for other notions of ‘length’, such as extremal length, thus yielding
counting asymptotics for them.

Our proof does not use Bonahon’s principle on intersection numbers. Although we drew
some inspiration from the dynamics of Erlandsson–Parlier–Souto [23], our techniques are
distinct.

1.1. Main results

We start by summarising our main results. Complete definitions of the terms are deferred to
Section 2.

Definition 1.1. For S a compact topological surface without boundary, let 𝑓 : C+(𝑆) → R be a function
defined on the space of oriented multi-curves, not-necessarily-simple oriented curves; see Definition
2.1, and see Table 1 for a summary of notation. We will also refer to f as a curve functional for short.
(Functional means that it takes values in scalars; it is not assumed to be linear.) We will also refer to
unoriented or weighted curve functionals for real-valued functions defined on the appropriate type of
multi-curves. We define several properties that f might satisfy.
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Table 1. Notation for the objects related to surfaces, curves
and geodesic currents..

Notation Meaning

S topological surface
Σ Riemannian surface
𝑈𝑇 Σ unit tangent bundle over Σ
𝜙𝑡 geodesic flow on 𝑈𝑇 Σ
𝜏 cross section to the geodesic flow
𝜓 bump function on a cross section
S(𝑆) unoriented simple multi-curves
C(𝑆) unoriented multi-curves
S+ (𝑆) oriented simple multi-curves
C+ (𝑆) oriented multi-curves
𝐺 (𝑆) unoriented geodesics on �̃�
𝐺+ (𝑆) oriented geodesics on �̃�
RS(𝑆) weighted unoriented simple multi-curves
RC(𝑆) weighted unoriented multi-curves
RS+ (𝑆) weighted oriented simple multi-curves
RC+ (𝑆) weighted oriented multi-curves
GC(𝑆) unoriented geodesic currents
GC+ (𝑆) oriented geodesic currents
𝛾 concrete multi-curve on S
C multi-curve on S

◦ Quasi-smoothing: There is a constant 𝑅 ≥ 0 with the following property. Let C be an oriented
curve on S, and let x be an essential crossing of C. Let 𝐶 ′ be the oriented smoothing of C at x. Then
𝑓 (𝐶) ≥ 𝑓 (𝐶 ′) − 𝑅. Schematically, we have

𝑓

( )
≥ 𝑓

( )
− 𝑅 (1.2)

See Definition 2.6 for ‘essential crossing’. Loosely, it is a crossing that cannot be removed by
homotopy. See Definition 2.7 for ‘oriented smoothing’.

◦ Smoothing: We take 𝑅 = 0 in the above definition of quasi-smoothing:

𝑓

( )
≥ 𝑓

( )
. (1.3)

◦ Convex union: Let 𝐶1 and 𝐶2 be two oriented curves on S. Then

𝑓 (𝐶1 ∪ 𝐶2) ≤ 𝑓 (𝐶1) + 𝑓 (𝐶2). (1.4)

◦ Additive union: The inequality in convex union becomes an equality:

𝑓 (𝐶1 ∪ 𝐶2) = 𝑓 (𝐶1) + 𝑓 (𝐶2). (1.5)

Many natural curve functionals satisfy the additive union property; for instance, length with respect
to an arbitrary length metric on S satisfies it by definition. The square root of extremal length is an
example of a curve functional satisfying convex union but not additive union (Subsection 4.8). The
name ‘convex union’ comes from the fact that if we extend to weighted curves and additionally assume
homogeneity (Definition 1.7), then for a fixed oriented multi-curve with varying weights, f is a convex
as a function of the weights (Proposition 3.4).

There are many curve functionals satisfying the smoothing property, such as hyperbolic length,
extremal length, intersection number with a fixed curve or length from a length metric on S. For an
example of a natural curve functional that satisfies quasi-smoothing but not smoothing, we have the
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word length with respect to an arbitrary generating set of 𝜋1 (𝑆) (Example 4.10). The (quasi-)smoothing
property is usually easy to check.

The smoothing property plays an important role in the study of translation lengths associated to
Anosov representations, as we discuss in Subsection 4.7, following Martone and Zhang [38] and Burger
et al. [13]. These works use the smoothing property to reduce the study of length systoles to the case of
simple closed curves. Although these papers point out the parallelism between the smoothing property
of Anosov translation lengths and that of hyperbolic length ([13, Section 4] or negatively curved lengths
[38, Corollary 1.3], the results in our article reveal the much more universal nature of the smoothing
property. Indeed, we show many other natural notions of lengths which are not associated to negatively
curved structures satisfy the smoothing condition, such as lengths on Riemannian metrics with no
curvature assumption, lengths coming from more general length space structures, extremal lengths or
word lengths with respect to certain generating sets; see Section 4.
Definition 1.6. For C an oriented multi-curve, 𝑛𝐶 is the oriented multi-curve that consists of n parallel
copies of C (so with n times as many components or, in the context of weighted oriented multi-curves,
with weights multiplied by n), and 𝐶𝑛 is the oriented multi-curve with as many components as C, in
which each component of C is covered by an n-fold cover. That is, if 𝑔 ∈ 𝜋1 (𝑆, 𝑥) represents C, 𝑔𝑛
represents 𝐶𝑛.
Definition 1.7. Let f be a curve functional and let 𝑛 > 0 be an integer. We define some properties f
might satisfy:
◦ Homogeneity: For an arbitrary oriented multi-curve C,

𝑓 (𝑛𝐶) = 𝑛 𝑓 (𝐶). (1.8)

◦ (Weak) stability: For an arbitrary oriented multi-curve C,

𝑓 (𝐶𝑛) = 𝑓 (𝑛𝐶). (1.9)

◦ Strong stability: For arbitrary oriented multi-curves 𝐶, 𝐷,

𝑓 (𝐷 ∪ 𝐶𝑛) = 𝑓 (𝐷 ∪ 𝑛𝐶). (1.10)

Additive union implies homogeneity, and if f satisfies convex union, 𝑓 (𝑛𝐶) ≤ 𝑛 𝑓 (𝐶). If f satisfies
quasi-smoothing, then 𝑓 (𝑛𝐶) − 𝑛𝑅 ≤ 𝑓 (𝐶𝑛), since the self-crossings in 𝐶𝑛 are essential crossings by
definition (see Definition 2.6).

We furthermore note that curve functionals are not necessarily positive.
With this background, we can state our main theorems on extensions of curve functionals to the space

GC+(𝑆) of oriented geodesic currents.
Theorem A. Let f be a curve functional satisfying the quasi-smoothing, convex union, stability and
homogeneity properties. Then there is a unique continuous homogeneous function 𝑓 : GC+(𝑆) → R≥0
that extends f.

In the case of unoriented curves, there are two possible smoothings of an essential crossing, not
distinguished from each other. Then we have the following version of the theorem, deduced from
Theorem A in Subsection 2.5.
Corollary 1.11. Let f be an unoriented curve functional satisfying quasi-smoothing for both possible
smoothings of a crossing, in addition to the convex union, stability and homogeneity properties. Then
there is a unique continuous homogeneous function 𝑓 : GC(𝑆) → R that extends f.

Theorem A should be thought of as an analogue of the classical theorem that a convex function
defined on the rational points in a finite-dimensional vector space automatically extends continuously to
a convex function defined on the whole vector space (Proposition 3.1(iv)). As in the classical case, the
functions on geodesic currents arising from this construction are restricted, as the next example shows.
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(This example is almost the only function we are aware of where our techniques do not suffice to prove
continuity of the extension. See Subsection 4.1.)

Example 1.12. Consider the curve curves given by the square root of self-intersection number; that
is, 𝑓 (𝐶) :=

√
𝑖(𝐶,𝐶). Since intersection number is a continuous two-variable function [10, Proposi-

tion 4.5], it follows that f extends continuously to geodesic currents. However, f does not satisfy convex
union. For instance, take 𝐶1 and 𝐶2 to be two simple closed curves intersecting once. For any multi-
curve, 𝑖(𝐶,𝐶) is twice the self-intersection number of C. Thus, 𝑓 (𝐶1∪𝐶2) =

√
2, but 𝑓 (𝐶1)+ 𝑓 (𝐶2) = 0,

contradicting convex union. On the other hand, f clearly satisfies smoothing.

On the other hand, the stability and homogeneous properties are necessary conditions for an extension
to exist for elementary reasons, as the multi-curves 𝑛𝐶 and 𝐶𝑛 should represent the same currents
(Example 4.10). However, a curve functional that satisfies quasi-smoothing and convex union can be
modified to get a curve functional satisfying all the hypotheses of Theorem A.

Theorem B. Let f be a curve functional satisfying quasi-smoothing and convex union. Then the stabilised
curve functional

‖ 𝑓 ‖(𝐶) := lim
𝑛→∞

𝑓 (𝐶𝑛)
𝑛

satisfies quasi-smoothing, convex union, strong stability and homogeneity and thus extends to a contin-
uous function on GC+(𝑆).

Theorem B is proved in Subsection 13, although the implication that weak stability implies strong
stability is used in the proof of Theorem A.

If the convex union property of f is strengthened to additive union and the quasi-smoothing property
is strengthened to smoothing, then in fact this extension to geodesic currents comes from intersection
with a fixed current (as in the proofs of extension that used Bonahon’s principle). This will appear in a
forthcoming paper. For this stronger result, the strict smoothing property is necessary, since intersection
number cannot increase after smoothing an essential crossing.

2. Background on curves and currents

Throughout this article, S is a fixed oriented compact 2-manifold without boundary. (For a discussion
of the more general surface case, see Remark 2.26.) If we fix an arbitrary (hyperbolic) metric on S, we
will denote it by Σ. The various types of curves and associated objects we consider are summarised in
Table 1.

2.1. Curves

Definition 2.1 (multi-curve). A concrete multi-curve 𝛾 on a surface S is a smooth 1-manifold without
boundary 𝑋 (𝛾) together with a map (also called 𝛾) from 𝑋 (𝛾) into S. 𝑋 (𝛾) is not necessarily connected.
We say that 𝛾 is trivial if it is homotopic to a point. Two concrete multi-curves 𝛾 and 𝛾′ are equivalent
if they are related by a sequence of the following moves:

◦ homotopy within the space of all maps from 𝑋 (𝛾) to S;
◦ reparametrisation of the 1-manifold; and
◦ dropping trivial components.

The equivalence class of 𝛾 is denoted by [𝛾], and we will call it a multi-curve. If 𝑋 (𝛾) is connected,
we will call [𝛾] a curve; a curve is equivalent to a conjugacy class in 𝜋1 (𝑆). When we just want to refer
to the equivalence class of a (multi-)curve, without distinguishing a representative, we will use capital
letters such as C. A concrete multi-curve 𝛾 is simple if 𝛾 is injective, and a multi-curve is simple if it
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has a concrete representative that is simple. We write S(𝑆) for the space of simple multi-curves on S
and C(𝑆) for the space of all multi-curves.

We also consider oriented multi-curves, which we will still denote by 𝛾, in which 𝑋 (𝛾) is ori-
ented. We add the further condition in the equivalence relation that the reparametrisations must
be orientation-preserving. In this article, unless stated otherwise, we will be working with oriented
multi-curves. The spaces of oriented simple and general multi-curves are denoted S+(𝑆) and C+(𝑆),
respectively.

Definition 2.2 (weighted multi-curve). A weighted multi-curve 𝐶 =
⋃

𝑖 𝑎𝑖𝐶𝑖 is a multi-curve in which
each connected component is given a nonnegative real coefficient 𝑎𝑖 . If coefficients are not specified,
they are 1. We add further moves to the equivalence relation:

◦ merging two parallel components and adding their weights and
◦ nullifying, deleting a component with weight 0.

For instance,𝐶∪𝐶 is equivalent to 2𝐶. The space of weighted multi-curves up to equivalence is denoted
by appending an R in front of their nonweighted names, so RS(𝑆) is the space of weighted simple multi-
curves and RC(𝑆) is the space of weighted general multi-curves. This is a slight abuse of notation since
the weights are required to be nonnegative.

Remark 2.3. Since the weighted curve functionals we are considering are not necessarily positive, they
may increase after dropping a component (see Definition 2.2).

2.2. Crossings

Loosely speaking, an essential crossing is a crossing of a multi-curve that cannot be homotoped away.
We make this definition precise as follows. We cover cases where 𝛾 does not have transverse crossings
for convenience of some of the examples.

Definition 2.4 (linked points on a circle). We say that two sets of two points {𝑎, 𝑏} and {𝑐, 𝑑} in 𝑆1 are
linked if the four points are distinct and both connected components of 𝑆1 − {𝑎, 𝑏} have an element of
{𝑐, 𝑑}.

Definition 2.5 (lift of a concrete curve). Given a concrete multi-curve 𝛾 on S and a choice 𝑝 ∈ 𝑋 (𝛾),
set 𝑥 = 𝛾(𝑝) ∈ 𝑆. Pick a lift �̃� ∈ 𝑆 of x. The unique lifting property gives a unique lift 𝛾𝑝 : 𝑋 (𝛾; 𝑝) → 𝑆

of 𝛾 with 𝛾𝑝 (𝑝) = �̃�, where 𝑋 (𝛾; 𝑝) is the component of 𝑋 (𝛾) containing p and 𝑋 (𝛾; 𝑝) is its universal
cover with basepoint 𝑝.

Definition 2.6 (essential crossing). Let 𝛾 be a concrete multi-curve on S, and suppose we have points
𝑝, 𝑞 ∈ 𝑋 (𝛾) so that 𝑥 := 𝛾(𝑝) = 𝛾(𝑞) ∈ 𝑆. Pick a lift �̃� ∈ 𝑆 of x, and let 𝛾𝑝 and 𝛾𝑞 be the corresponding
lifts of components of 𝛾 following Definition 2.5. Then the pair (𝑝, 𝑞) form an essential crossing if the
following two conditions hold:

(1) both components of 𝑋 (𝛾) containing p and q are not null-homotopic, so that 𝛾𝑝 and 𝛾𝑞 are quasi-
geodesic components of �̃� and

(2) either
(a) the endpoints {𝑎, 𝑏} of 𝛾𝑝 and the endpoints {𝑐, 𝑑} of 𝛾𝑞 are linked in 𝑆1

∞ or
(b) p and q lie on the same component of 𝑋 (𝛾), [𝛾] = [𝛿𝑛] for some 𝑛 > 1 and some primitive

𝛿 ∈ 𝜋1 (𝑆, 𝑥), the loop from p to q in 𝑋 (𝛾) maps to [𝛿𝑚] for some 0 < 𝑚 < 𝑛 and so the loop
from q to p maps to [𝛿𝑛−𝑚].

In case (2)b, the endpoints of 𝛾𝑝 and 𝛾𝑞 are the same.
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This definition might be somewhat looser than expected. For instance, in the chain of three crossings

the circled middle crossing is essential iff the other two are, since ‘linking at infinity’ does not see the
direction of crossing. This does not matter for our purposes.

Definition 2.7 (smoothings). Let (𝑝, 𝑞) ∈ 𝑋 (𝛾) be an essential crossing of 𝛾 on S. To make a smoothing
𝛾′ of (𝑝, 𝑞), cut 𝑋 (𝛾) at p and q and reglue the resulting four endpoints in one of the two other possible
ways, getting a new 1-manifold 𝑋 (𝛾′). The map 𝛾′ agrees with 𝛾; this is well-defined since 𝛾(𝑝) = 𝛾(𝑞).
In pictures we will homotop 𝛾′ slightly to round out the resulting corners. If 𝛾 is oriented, then the
oriented smoothing is the smoothing that respects the orientation on 𝑋 (𝛾):

↘

If we obtain a concrete curve 𝛾′ from 𝛾 by a sequence of k smoothings of essential crossings, we will
write 𝛾 ↘𝑘 𝛾

′. (We check whether the crossings are essential at each stage of this process; this is more
restrictive than checking at the beginning.)

Lemma 2.8. Essential crossings are unavoidable in a homotopy class, in the sense that if 𝛾 and 𝛾′

are homotopic concrete multi-curves and (𝑝, 𝑞) ∈ 𝑋 (𝛾) is an essential crossing of 𝛾, then there is an
essential crossing (𝑝′, 𝑞′) ∈ 𝑋 (𝛾′) so that the smoothings of (𝑝, 𝑞) and (𝑝′, 𝑞′) are homotopic.

Proof. For both types of essential crossings, there is a representative 𝛾′ with minimal crossing number
for which the result is clear:

(a) For crossings of the first type, take the geodesic representative on S, perturbed slightly to make it
transverse.

(b) For crossings of the second type [𝛾] = [𝛿𝑛], take the geodesic representative and perturb it slightly
in a standard way in a neighbourhood of 𝛿.

In general, take the given representative 𝛾 and perturb it slightly to make it transverse (without
introducing new types of crossings). If 𝛾 is connected, then by a result of Hass and Scott [30, Theorems
1.8 and 2.1] (see also de Graaf and Schrijver [18]), 𝛾 can be turned into any desired minimal form 𝛾′

using only Reidemeister I, II and III moves, with the Reidemeister I and II moves being used only in the
forward (simplifying) direction. Since we know that 𝛾′ has a crossing of the desired type, we can trace
the crossings backwards through these moves: a Reidemeister III move does not change the homotopy
types of curves achievable by a single smoothing, and we can ignore the additional crossings created by
backwards Reidemeister I and II moves.

For multi-curves, the papers above also prove that any diagram can be connected to a minimal diagram
by a series of forward Reidemeister moves and that the only obstruction to connecting two minimal
diagrams for a multi-curve is swapping the location of two components 𝛾1, 𝛾2 that are homotopically
powers of the same primitive curve 𝛿 [30, pp. 31–32]. But any of these minimal representatives in a
neighbourhood of 𝛿 contain all essential crossings between 𝛾1 and 𝛾2 (necessarily related to an essential
self-crossing of 𝛿). �

Remark 2.9. We can also see directly that essential crossings of the first type exist by considering the
lift to the universal cover. Lemma 2.8 is false on nonorientable surfaces (consider the double cover of
the core curve of a Möbius strip).

We have similar notions for weighted curves.
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Definition 2.10. Let 𝐶 ∈ RC+(𝑆) be a weighted oriented curve, and let 𝛾 be a concrete representative
of the underlying unweighted curve. Let (𝑝, 𝑞) ∈ 𝑋 (𝛾) be an essential crossing of 𝛾 on S, and let 𝛾′ be
the smoothing as defined above. If the corresponding components of C have equal weight 𝑤 > 0, then
we can make a weighted curve 𝐶 ′ by giving every component in [𝛾′] not involved in the smoothing the
same weight it had in C and giving the one or two new components weight w. In this case we say that
𝐶 ′ is obtained from C by a smoothing of weight w and write 𝐶 ↘𝑤 𝐶 ′.

Using this, we define conditions on a weighted curve functional, extending Definition 1.1.

◦ Weighted quasi-smoothing: There is a constant 𝑅 > 0 so that 𝐶 ↘𝑤 𝐶 ′ are weighted curves
related by a smoothing of weight w,

𝑓 (𝐶) ≥ 𝑓 (𝐶 ′) − 𝑤𝑅.

◦ Weighted smoothing: Take 𝑅 = 0 in the definition of weighted quasi-smoothing.

See Proposition 3.6 for justification for these definitions.

2.3. Space of geodesics

Definition 2.11 (Boundary at infinity). Endow S with a complete hyperbolic metric g; we denote the
pair (𝑆, 𝑔) by Σ. Then we can consider the metric universal covering 𝑝 : Σ̃ → Σ, with Σ̃ isometric to the
hyperbolic plane. Two quasi-geodesic rays 𝑐, 𝑐′ : [0,∞) → Σ̃ are said to be asymptotic if there exists
a constant K for which 𝑑 (𝑐(𝑡), 𝑐′(𝑡)) ≤ 𝐾 for all 𝑡 ≥ 0. We define 𝜕∞Σ, the boundary at infinity of
S, to be the set of equivalence classes of asymptotic quasi-geodesic rays. This boundary at infinity is
independent of the hyperbolic structure on S up to canonical homeomorphism.

Definition 2.12 (Space of oriented geodesics). Let 𝐺+(Σ) denote the space of oriented geodesics in Σ̃;
that is,

𝐺+(Σ) := 𝜕∞Σ × 𝜕∞Σ − Δ .

Since this is independent of the hyperbolic structure, we will also write 𝐺+(𝑆).

2.4. Geodesic currents

Definition 2.13 (Geodesic current definition 1). We define GC+(𝑆), the space of oriented geodesic
currents on S, to be the space of 𝜋1 (𝑆)-invariant (positive) Radon measures on 𝐺+(𝑆).

Since the action of 𝜋1 (𝑆) on 𝐺+(𝑆) is not discrete, this definition is hard to visualise. We give
alternate definitions that play a key role in our proofs. For a hyperbolic surface Σ, let 𝑈𝑇Σ be the unit
tangent bundle and let 𝜙𝑡 be the geodesic flow on it.

Definition 2.14 (Geodesic current definition 2). We can also define oriented geodesic currents to be the
space of (positive) finite Radon measures 𝜇 on𝑈𝑇Σ which are invariant under the geodesic flow, in the
sense that (𝜙𝑡 )∗(𝜇) = 𝜇 for all 𝑡 ∈ R.

We can also look at induced measures on cross sections.

Definition 2.15 (Geodesic current definition 3). A geodesic current is a transverse invariant measure: a
family of measures {𝜇𝜏}𝜏 , where 𝜏 ⊂ 𝑈𝑇Σ is a submanifold-with-boundary of the unit tangent bundle
of real codimension 1 transverse to the geodesic foliation F, with the following invariance property: if
𝑥1 ∈ 𝜏1, 𝑥2 ∈ 𝜏2 are two points on transversal submanifolds on the same leaf of F and 𝜙 : 𝑈1 → 𝑈2 a
holonomy diffeomorphism between neighbourhoods of 𝑥1 and 𝑥2 respectively, then 𝜙∗𝜇𝜏1 = 𝜇𝜏2 .

The equivalence of the three definitions was known to Bonahon [10, Chapter 4]. Details can be found
in [1, Section 3.4]. Briefly, given a measure 𝜇 on 𝑈𝑇Σ as in Definition 2.14 and a cross section 𝜏,
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there is an induced flux 𝜇𝜏 on 𝜏, as explained in Definition 7.15; this gives a geodesic current in the
sense of Definition 2.15. Lifting to the universal cover then gives a geodesic current in the sense of
Definition 2.13. We can also relate Definitions 2.13 and 2.14 directly by connecting both to measures
on𝑈𝑇H2 that are invariant under both 𝜋1 (Σ) and the geodesic flow, as described by Benoist and Oh [7,
Proposition 8.1].

Because Definitions 2.13 and 2.15 are invariant under the mapping class group, we will also write
𝐺+(𝑆) and GC+(𝑆) in the sequel. We will also write 𝜋1 (𝑆). On the other hand, we will emphasise the
dependence of𝑈𝑇Σ on the hyperbolic structure.

Remark 2.16. For Σ,Σ′ hyperbolic surfaces, any homeomorphism 𝜓 : Σ → Σ′, there is a homeomor-
phism �̂� : 𝑈𝑇Σ → 𝑈𝑇Σ′ that is an orbit equivalence, and it is tempting to use this to define an induced
map between geodesic currents in the sense of Definition 2.14. But this does not quite work: �̂�∗ does
not take geodesic currents to geodesic currents. Orbit equivalence means that 𝜓(𝜙𝑡 (𝑥)) = 𝜙 𝑓 (𝑡) (𝜓(𝑥))
for some monotonic function 𝑓 : R → R, but this is not enough to guarantee that (𝜙𝑡 )∗(�̂�∗𝜇) = �̂�∗𝜇,
and, indeed, this is usually false. See Wilkinson [61, Theorem 3.6].

2.5. Oriented vs unoriented currents

We will be mostly working in the setting of oriented geodesic currents, but most of our natural examples
(like measured laminations) use unoriented currents.

Definition 2.17 (Unoriented geodesic currents). To define the subspace GC(𝑆) ⊂ GC+(𝑆) of unoriented
geodesics currents, let 𝜎 : 𝐺+(𝑆) → 𝐺+(𝑆) be the flip map that switches the two factors in the definition
of 𝐺+(𝑆), reversing the orientation of the geodesic. This induces a map 𝜎∗ : GC+(𝑆) → GC+(𝑆). Set

GC(Σ) := {𝜇 ∈ GC+(Σ) | 𝜎∗(𝜇) = 𝜇}.

There is a map Π : GC+(𝑆) → GC+(𝑆) given by Π(𝜇) := 1
2 (𝜇 + 𝜎∗(𝜇)) with image the subset of

unoriented currents.

In the proof of the main result, we shall work with oriented currents GC+(𝑆); oriented currents are
more general and just as easy to work with for our proof.

The maps 𝜎 and Π have obvious analogues for curves.

Proof of Corollary 1.11, assuming Theorem A. For a curve functional as in the statement, let
𝑔 : RC+(𝑆) → R be 𝑓 ◦ Π. Then g satisfies quasi-smoothing, with the same constant as f, and thus
by Theorem A extends uniquely to a continuous function �̄� : GC+(𝑆) → R. The desired extension 𝑓 is
the restriction of �̄� to the subspace of unoriented currents. �

2.6. Curves as currents

For an oriented multi-curve C on a hyperbolic surface Σ, we can construct a geodesic current as follows.
For Definition 2.13, consider all lifts of all nontrivial components of C to Σ̃. Each lift gives a quasi-

geodesic in Σ̃ and thus a unique fellow-travelling geodesic in 𝐺+(𝑆); we thus get an infinite countable
subset of 𝐺+(𝑆), which is easily seen to be discrete and 𝜋1 (𝑆)-invariant. Define the geodesic current to
be the 𝛿-function of this subset.

For Definition 2.14, take the geodesic representative 𝛾 of C and consider the canonical lift �̃� of 𝛾 to
𝑈𝑇Σ; this is an orbit of 𝜙𝑡 . Let 𝜇𝐶 be the length-normalised 𝛿-function on this orbit. That is, for an open
set U we set 𝜇𝐶 (𝑈) to be the total length of �̃�∩𝑈 with respect to the natural Riemannian metric on𝑈𝑇Σ.

For Definition 2.15 on a cross section 𝜏, again take �̃� ⊂ 𝑈𝑇Σ, and let 𝜇𝜏 be the 𝛿-function on the
discrete set of points �̃�∩𝜏. (This is compatible with the length normalisation in the previous paragraph.)

From any of these points of view the inclusion naturally extends to weighted multi-curves.
Weighted closed (multi-)curves are dense in the space of geodesic currents [10, Proposition 4.4].
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Geometric intersection number extends continuously to geodesic currents, as shown by Bonahon [10,
Proposition 4.5]. The space of measured laminations (defined by Harer and Penner [49, Section 1.7])
can be characterised, as in Bonahon [8, Proposition 17], as a subset of (unoriented) geodesic currents:

ML(𝑆) := {𝛼 ∈ GC(𝑆) | 𝜎(𝛼) = 𝛼, 𝑖(𝛼, 𝛼) = 0}.

The following square of inclusions is useful to keep in mind:

RS(𝑆) ML(𝑆)

RC(𝑆) GC(𝑆).

Here the horizontal inclusions have dense image: Douady and Hubbard showed that weighted simple
multi-curves are dense in ML [19, Theorem]. Soon after, Masur showed that weighted simple curves
are also dense [39, Theorem 1].

2.7. Topology on currents and measures

Let M(𝑋) denote the space of positive Borel measures on a topological space X. M1 (𝑋) will denote
the space of Borel probability measures on X. The topology on M(𝑋) is the weak∗ topology; that is, the
smallest topology so that, for all continuous, compactly supported functions f on 𝐺+(𝑆), the functional

𝜇 ↦→
∫
𝐺+ (𝑆)

𝑓 𝑑𝜇

is continuous.
The topology on GC+(𝑆) (in Definition 2.13) is the weak∗ topology as a subspace of measures on

𝐺+(𝑆), We could also look at the weak∗ topology on currents as a subspace of measures on 𝑈𝑇Σ
(Definition 2.14); these two points of view give the same topology [7, Proposition 8.1]. On the other
hand, if we take 𝜏 to be a closed cross section (including the boundary), the map 𝜇 ↦→ 𝜇𝜏 relating
Definitions 2.14 and 2.15 is not usually continuous with respect to the weak∗ topologies, so it is delicate
to use the weak∗ topology on M(𝜏); see Lemma 10.4 and Remark 10.6.

There are in fact two topologies on spaces of measures that are sometimes called the weak∗ topology;
the one above is also called the wide topology [41, interalia]. There is also the narrow topology on
measures M(𝑋) on a space X, defined as the smallest topology so that, for all continuous bounded f on
X, the functional 𝜇 ↦→

∫
𝑋
𝑓 𝑑𝜇 is continuous. (That is, replace compactly supported with bounded in

the functions considered.)

Remark 2.18. Some authors call the weak∗ topology the vague topology and use the term weak topology
for the narrow one (for example, Bauer’s textbook [6]). However, this conflicts with the notion of weak
topology used for Banach spaces, and we prefer the wide/narrow usage.

In general, the weak∗ or wide topology is weaker than the narrow topology, but in some particular
cases they are equivalent.

A topological space X is called Polish if its topology has a countable base and can be defined by a
complete metric.

Theorem 2.19 ([6, Theorem 31.5]). Let X be a locally compact topological space. Then X is Polish if
and only if M(𝑋) is Polish with respect to the weak∗-topology.

Thus, GC+(𝑆) is second countable completely metrisable and second countable and so in particular
sequential continuity is the same as continuity. Although we will be dealing with Radon measures, for
Polish spaces it is equivalent to consider the a priori more general class of Borel measures.
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Theorem 2.20 ([6, Theorem 26.3]). On a Polish space, a locally finite Borel measure is a 𝜎-finite
Radon measure.

The narrow and wide topology agree in certain sequences on locally compact spaces.

Theorem 2.21 ([6, Theorem 30.8]). Let X be a locally compact topological space and 𝜇𝑛 a sequence
of Radon measures of uniformly bounded mass converging to a Radon measure 𝜇 in the wide topology.
Then 𝜇𝑛 converges to 𝜇 in the narrow topology if and only if lim𝑛 𝜇𝑛 (𝑋) → 𝜇(𝑋).

Proposition 2.22 ([6, Corollary 30.9]). Let X be a locally compact topological space and 𝜇, 𝜇𝑛 Borel
probability measures. Then 𝜇𝑛 → 𝜇 in the wide topology if and only if 𝜇𝑛 → 𝜇 in the narrow topology.

In particular, when X is Polish, the two topologies agree for the space M1(𝑋) of Borel probability
measures.

Proposition 2.23. If X is a locally compact Polish space, the weak∗ and narrow topologies agree on
M1(𝑋).

Convention 2.24. For any topological space X, we will always use the weak∗ topology on M(𝑋). We
will also work with the dense subspace R𝑋 ⊂ M(𝑋) of finitely supported measures on X (also called
weighted linear combinations of X), with its inherited subspace topology. (The weights are positive, but
we usually omit that from the notation.)

Remark 2.25. If we limit to sums with at most k terms in the linear combination (or points in the support
of the measure), we get a further subspace temporarily denoted R(𝑘)𝑋 ⊂ R𝑋 ⊂ M(𝑋). We can view
R(𝑘)𝑋 as a quotient of (R≥0 × 𝑋)𝑘 , quotienting by the action of the symmetric group and other evident
equivalences; as such, it inherits an obvious topology, which agrees with the subspace topology.

Remark 2.26. Geodesic currents can also be defined more generally for finite type hyperbolic surfaces.
Depending on if we consider ends as cusps or funnels, we get two different spaces, which we will
call GCcusp(𝑆) and GCopen(𝑆), respectively. In the first case, we define the space of geodesic currents
analogously to Definition 2.13 for closed surfaces; that is, as invariant measures supported on the space
of geodesics of the universal cover, noting that now the space of geodesics contains arcs going from
cusp to cusp. In the second case, we consider geodesic currents supported on geodesics projecting to the
convex core of the surface. Extending continuously curve functionals to these spaces is more delicate.

In the case of GCcusp (𝑆), let S be a surface with two open ends and let Σ be a complete hyperbolic
metric of finite area, with respect to which the ends of S are cusps. Let a be an arc going from cusp to
cusp. Let 𝐶𝑛 be the closed curve going along for some time a, winding n times around one cusp, going
along a again and winding n times around the other cusp. Observe that although 𝐶𝑛 → 𝑎 in the weak∗
topology and 𝑖(𝑎, 𝑎) = 0, we have 𝑖(𝑎, 𝐶𝑛) = 2𝑛, so intersection number is not a continuous function
on geodesic currents.

The case of GCopen(𝑆) is different, since intersection number is continuous. Indeed, let Σ denote the
convex core of the complete hyperbolic surface of infinite area, which is a compact surface with geodesic
boundary. We can consider the intersection number on the double 𝐷 (Σ) of Σ, which is a closed surface
Σ embeds into. This intersection number on 𝐷 (Σ) is continuous [10, Proposition 4.5]. Restricting this
intersection number to Σ, we obtain continuity of intersection number on GCopen(𝑆). However, the
conditions of Theorem A alone are not enough to guarantee a continuous extension 𝑓 : GCopen (𝑆) → R.
Indeed, let ℓ be the restriction to Σ of the hyperbolic length on 𝐷 (Σ) and consider the modified curve
functional ℓ′ obtained by setting

ℓ′(𝐶) :=

{
0 𝐶 is a boundary curve
ℓ(𝐶) otherwise.

We note that ℓ′ satisfies additivity, stability and homogeneity properties because ℓ does. Also, it satisfies
smoothing because ℓ does and nonboundary curves do not intersect boundary curves. However, ℓ′ does
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not extend to a continuous function on GCopen(𝑆): let 𝛾, 𝛽 ∈ 𝜋1 (𝑆, 𝑝) be elements based at a point 𝑝 ∈ 𝑆
and denote 𝐶 = [𝛽], 𝐷 = [𝛾]. Assume that C is a boundary curve and D is not. For each n, define a
nonsimple, nonboundary parallel curve by 𝐶𝑛 := [𝛾𝛽𝑛]. Observe that the sequence 1

𝑛𝐶𝑛 converges to
C in the weak∗ topology but

ℓ′(𝐶𝑛) � 𝑛,

whereas

ℓ′(𝐶) = 0,

so ℓ′ cannot be a continuous function onGCopen(𝑆). So additional conditions on f are needed to guarantee
a continuous extension to GCopen(𝑆).

3. Convexity and continuity

3.1. Convexity on the reals

The curve functionals f we study have some convexity property as a function of the weights, because of
the convex union and homogeneity properties. We first review some background on convex functions
and their continuity properties.

A function 𝑓 : R𝑛 → R is called R-convex (respectively Q -convex) if

𝑓 (𝑎𝑥 + (1 − 𝑎)𝑦) ≤ 𝑎 𝑓 (𝑥) + (1 − 𝑎) 𝑓 (𝑦)

for all 𝑥, 𝑦 ∈ R𝑛 and 𝑎 ∈ [0, 1] (respectively text 𝑎 ∈ [0, 1] ∩Q). A function 𝑓 : Q𝑛 → R might also be
Q-convex, with the same definition. We furthermore say that f is midpoint-convex if

𝑓
( 1

2𝑥 +
1
2 𝑦

)
≤ 1

2 𝑓 (𝑥) +
1
2 𝑓 (𝑦).

Proposition 3.1. The following are true:

(i) A midpoint-convex function 𝑓 : Q𝑛 → R is Q-convex.
(ii) An R-convex function 𝑓 : R𝑛 → R is continuous.

(iii) A Q-convex function 𝑓 : Q𝑛 → R is continuous.
(iv) Every Q-convex function 𝑓 : Q𝑛 → R has a unique continuous extension to an R-convex function

𝑓 : R𝑛 → R.

Proof.

(i) This proof is due to Ivan Meir [40], following Hardy, Littlewood, and Pólya [29, P. 17]. We first
prove that midpoint inequality extends to arbitrary means:

𝑔((𝑥1 + · · · + 𝑥𝑚)/𝑚) ≤ (𝑔(𝑥1) + · · · + 𝑔(𝑥𝑚))/𝑚

for any 𝑚 ∈ Z≥1. We can prove this first for 𝑚 = 2𝑘 by using midpoint convexity repeatedly. For
general 𝑚 ≤ 2𝑖 , we take 𝑥1, . . . , 𝑥𝑚 plus 2𝑖 − 𝑚 copies of 𝑥 ′ = (𝑥1 + · · · + 𝑥𝑚)/𝑚, yielding

𝑔(𝑥 ′) = 𝑔
(
(2𝑖 − 𝑚)𝑥 ′ + 𝑥1 + · · · + 𝑥𝑚

2𝑖

)
≤ (2𝑖 − 𝑚)𝑔(𝑥 ′) + 𝑔(𝑥1) + · · · + 𝑔(𝑥𝑚)

2𝑖
,

which implies 𝑔(𝑥 ′) = 𝑔((𝑥1 + · · · + 𝑥𝑚)/𝑚) ≤ (𝑔(𝑥1) + · · · + 𝑔(𝑥𝑚))/𝑚.
To prove Q-convexity, taking a copies of x and b copies of y we obtain

𝑔

(
𝑎𝑥 + 𝑏𝑦
𝑎 + 𝑏

)
≤ 𝑎𝑔(𝑥) + 𝑏𝑔(𝑦)

𝑎 + 𝑏 =
( 𝑎

𝑎 + 𝑏

)
𝑔(𝑥) +

(
𝑏

𝑎 + 𝑏

)
𝑔(𝑦)

for 𝑎, 𝑏 ∈ Z≥0 not both zero.
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(ii) See Kuczma [37, Theorem 7.1.1].
(iii) The proof of [37, Theorem 7.1.1] can be adapted for functions onQ𝑛. The proof relies on Bernstein–

Doetsch theorem, which works in high generality for topological vector spaces (see Kominek and
Kuczma [36, Theorem B]) and the fact that any point 𝑥 ∈ Q𝑛 is the interior of some full-dimensional
Q-simplex on which f is bounded.

(iv) Define the extension by

𝑓 (𝑥) := lim inf
𝑦→𝑥
𝑦∈Q𝑛

𝑓 (𝑦).

By continuity of f on Q𝑛, 𝑓 is an extension of f. To study 𝑓 (𝑎𝑥 + (1 − 𝑎)𝑦), let 𝑥𝑖 , 𝑦𝑖 be sequences
in Q𝑛 with lim 𝑥𝑖 = 𝑥, lim 𝑦𝑖 = 𝑦, lim inf 𝑓 (𝑥𝑖) = 𝑓 (𝑥) and lim inf 𝑓 (𝑦𝑖) = 𝑦. Let 𝑎𝑖 ∈ [0, 1] ∩ Q
be a sequence with lim 𝑎𝑖 = 𝑎. Then

𝑓 (𝑎𝑥 + (1 − 𝑎)𝑦) ≤ lim inf 𝑓
(
𝑎𝑖𝑥𝑖 + (1 − 𝑎𝑖)𝑦𝑖

)
≤ lim inf

(
𝑎𝑖 𝑓 (𝑥𝑖) + (1 − 𝑎𝑖) 𝑓 (𝑦𝑖)

)
= 𝑎 𝑓 (𝑥) + (1 − 𝑎) 𝑓 (𝑦).

Thus, 𝑓 is convex and therefore continuous.here

�

It is not true that all Q-convex functions 𝑓 : R𝑛 → R must be continuous, but all counterexamples
are highly pathological. In particular, any measurable Q-convex function 𝑓 : R𝑛 → R is necessarily
continuous (see [37, Theorem 9.4.2]).

Remark 3.2. Proposition 3.1(ii) does not hold for infinite-dimensional topological vector spaces: an
unbounded linear functional is convex but not continuous.

3.2. Convexity for curve functionals

We now apply the results above to our setting of real-valued functions on curves.
As an immediate consequence of Proposition 3.1 (iv), for a curve functional f satisfying convex

union and homogeneity, we can extend f to a weighted curve functional that is convex and therefore
continuous for a fixed set of components. This will play a role in the proof of Theorem A, specifically
in Proposition 10.3.

First, for any curve functional satisfying homogeneity, we adopt the convention that we extend f to
rationally weighted curves QC+(𝑆) in the usual way by clearing denominators: set

𝑓
(∑

𝑎𝑖𝐶𝑖

)
:=

1
𝑑
𝑓
(∑

𝑑𝑎𝑖𝐶𝑖

)
(3.3)

for some integer d sufficiently large so all the 𝑑𝑎𝑖 are integers. By homogeneity of f, the extension does
not depend on d.

Proposition 3.4. Let 𝐶 = (𝐶𝑖)𝑖=1,...,𝑛 be a finite sequence of multi-curves and consider combinations∑𝑛
𝑖=1 𝑎𝑖𝐶𝑖 . Let f be a curve functional that satisfies homogeneity and convex union. Define a function

𝑓𝐶 : Q𝑛 → R by

𝑓𝐶 (𝑎1, . . . , 𝑎𝑛) := 𝑓

(
𝑛∑
𝑖=1

𝑎𝑖𝐶𝑖

)
.

Then 𝑓𝐶 is Q-convex and thus continuous.
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Proof. It is immediate from the definitions that 𝑓𝐶 is midpoint convex. The result follows from
Proposition 3.1. �

Corollary 3.5. If a curve functional f satisfies homogeneity and convex union, then there is a unique
continuous homogeneous extension of f to weighted curve functional.

Proposition 3.6. If a curve functional satisfies convex union, homogeneity and quasi-smoothing, the
extension from Corollary 3.5 satisfies weighted quasi-smoothing with the same constant.

Proof. We first observe that f, as a function on integrally weighted multi-curves, satisfies weighted
quasi-smoothing. If 𝐶 = [𝛾], 𝛾 ↘ 𝛾′ and k is an integer, then 𝑘𝛾 ↘𝑘 𝑘𝛾′, since 𝑘𝛾 are k disjoint
parallel copies of 𝛾. Thus,

𝑓 (𝑘𝐶) ≥ 𝑓 (𝑘𝐶 ′) − 𝑘𝑅.

By the method of clearing denominators and homogeneity, as in equation (3.3), we obtain rational
weighted quasi-smoothing.

Finally, by continuity of f as a function of the weights of a fixed multi-curve, we get real weighted
quasi-smoothing. �

Theorems A and B as stated start from a curve functional of various types. Many curve functionals
naturally come as functions on weighted curves (see Section 4). On the other hand, we have seen in
Proposition 3.6 that a curve functional satisfying convex union and homogeneity and stability properties
yields weighted curve functional satisfying the same properties.

4. Examples

We give several examples of curve functionals that extend to functions on currents, mostly as a conse-
quence of our main theorems. This includes known results, such as hyperbolic lengths and intersection
numbers, or, more generally, lengths for any length metric structure, as well as new results, such as
extremal lengths with respect to a conformal structure or with respect to a graph. In the following
applications we consider unoriented curves unless otherwise stated.

4.1. Intersection number

Fix a multi-curve D and consider the curve functional C(𝑆) defined by 𝑓 (𝐶) = 𝑖(𝐶, 𝐷), where 𝑖(𝐶, 𝐷)
is the minimal number of intersection points between representatives of C and D in general position.
Then f is homogeneous, additive and stable.

There is a simple geometric argument, which we will use repeatedly, to see that f satisfies smoothing.
Fix a minimal representative 𝛿 for D. Take a curve C with an essential self-intersection x and a
representative 𝛾 with minimal intersection with 𝛿. Then 𝛾 has a self-intersection point 𝑥 ′ of the
homotopy type of x. If we consider the curve representative 𝛾′ ∈ 𝐶 ′ obtained by smoothing at 𝑥 ′, then,
since 𝑖(𝐶 ′, 𝐷) is an infimum, we have

𝑖(𝐶 ′, 𝐷) ≤ 𝑖(𝛾′, 𝛿) = 𝑖(𝛾, 𝛿) = 𝑖(𝐶, 𝐷),

as desired.
By Theorem A, intersection number with D extends to a continuous function on geodesic currents

𝑖(·, 𝐷) : GC(𝑆) → R.

We can then fix C and vary D to show that, for 𝜇 a geodesic current, 𝑖(·, 𝜇) is a continuous function
on GC(𝑆). In [10, Proposition 4.5], Bonahon shows that the geometric intersection number 𝑖 : RC(𝑆) ×
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RC(𝑆) → R≥0 between two weighted multi-curves extends to a continuous two-variable function

𝑖 : GC(𝑆) × GC(𝑆) → R≥0.

Question 4.1. Can the arguments in this article be extended to give an alternate proof that geometric
intersection number is a continuous two-variable function?

Following Example 1.12, proving that there is a continuous extension of
√
𝑖(𝐶,𝐶) to a function

on GC(𝑆) is equivalent to proving continuity of i as a two-variable function, by a simple polarisation
argument:

𝑖(𝐶, 𝐷) = 𝑖(𝐶 ∪ 𝐷,𝐶 ∪ 𝐷) − 𝑖(𝐶,𝐶) − 𝑖(𝐷, 𝐷)
2

.

4.2. Hyperbolic length

We continue with the original motivating example for geodesic currents in Bonahon’s paper [8, Propo-
sition 14]. Fix a hyperbolic metric g on S and denote the hyperbolic structure by Σ. Then, for any
closed curve C on S (not necessarily simple), we can consider its hyperbolic length with respect to the
Riemannian metric. In terms of the holonomy representation 𝜌𝑔 : 𝜋1 (𝑆) → PSL2(R), this is given by

ℓ𝑔 (𝐶) = 2 cosh−1
(

1
2 tr(𝜌(𝑐))

)
where 𝑐 ∈ 𝜋1 (𝑆) is a representative of C. We extend ℓ𝑔 to a weighted curve functional by additivity and
homogeneity:

ℓ𝑔 (𝑡1𝐶1 ∪ · · · ∪ 𝑡𝑛𝐶𝑛) =
𝑛∑
𝑖=1

𝑡𝑖ℓ𝑔 (𝐶𝑖).

By definition, ℓ𝑔 is additive and homogeneous. Stability follows from properties of the trace of 2 × 2
matrices or geometrically from the length. Smoothing follows by the argument for intersection number.
Thus, by Theorem A, ℓ𝑔 extends to a continuous function on geodesic currents.

We recall that Bonahon shows that

ℓ𝑔 (𝐶) = 𝑖(LΣ, 𝐶)

where ℓ𝑔 (𝐶) denotes the hyperbolic length of C – that is, the length of the g-geodesic representative –
and LΣ denotes the Liouville current, a geodesic current induced by the volume form on 𝑈𝑇Σ. (For an
equivalent formulation in terms of Definition 2.13, see Bonahon [8, Section 2].)

4.3. Length with respect to arbitrary metrics

The argument from Subsection 4.2 applies equally well to show that for any Riemannian or, more
generally, length metric g on S, length ℓ𝑔 with respect to g satisfies smoothing. For completeness and
later use, we prove that these curve functionals are stable. (Freedman–Hass–Scott give a proof in the
Riemannian case [27, Lemma 1.3].)

Lemma 4.2. For any orientable surface S and length metric g on S, the curve unctional ℓ𝑔 is stable:
ℓ𝑔 (𝐶𝑛) = 𝑛ℓ𝑔 (𝐶).

Proof. One inequality is true in any length space: by taking the obvious n-fold representative of 𝐶𝑛, we
see that ℓ𝑔 (𝐶𝑛) ≤ 𝑛ℓ𝑔 (𝐶). The other inequality follows from the smoothing property: since 𝐶𝑛 ↘ 𝑛𝐶,
we have ℓ𝑔 (𝐶𝑛) ≥ 𝑛ℓ𝑔 (𝐶). �
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Remark 4.3. Lemma 4.2 is false if S is not orientable. For instance, if S is the projective plane, g is
any metric and C is the nontrivial curve on Σ, then ℓ𝑔 (𝐶) > 0 but 𝐶2 is null-homotopic so ℓ𝑔 (𝐶2) = 0.
We can get a similar inequality without torsion on a Möbius strip by removing a small disk from this
projective plane.

4.4. Length with respect to embedded graphs

We can generalise further beyond length metrics. Let 𝜄 : Γ ↩→ 𝑆 be an embedding of a finite graph in S
that is filling, in the sense that the complementary regions are disks or, equivalently, 𝜄∗ is surjective on
𝜋1. Endow Γ with a length metric g. Then any closed multi-curve C on S can be homotoped so that it
factors through Γ, in many different ways. Let ℓΓ (𝐶) be the length of the smallest multi-curve D on Γ so
that 𝜄(𝐷) is homotopic to C. It is easy to see that this length is realised and is positive. (In fact, we can
see ℓΓ as a limit of lengths with respect to Riemannian metrics, by fixing an embedding of Γ and making
the metric on the complement of a regular neighbourhood of Γ be very large, following Shepard [53].)

As before, ℓΓ is clearly additive and homogeneous and is stable by the argument of Lemma 4.2. To
see that ℓΓ satisfies smoothing at an essential crossing, take a minimal-length concrete representative 𝛿
of D on Γ. Since the image 𝜄◦𝛿 has a corresponding crossing by Lemma 2.8 and 𝜄 is an embedding, there
is a corresponding crossing of 𝛿 that can be smoothed and then tightened to get the desired inequality.

As a special case, we can consider the case when Γ is a rose graph with only one vertex ∗ and edges
of length 1. Since 𝜄 is filling, the image of the edges of Γ give generators for 𝜋1 (𝑆, 𝜄(∗)). Then the length
ℓΓ (𝐶) of a curve C is the length of C as a conjugacy class in 𝜋1 (𝑆) with respect to these generators. This
is a simple generating set in the sense of Erlandsson [22], who proved this continuity and constructed
an explicit multi-curve K so that ℓΓ (𝐶) = 𝑖(𝐶, 𝐾).

4.5. Stable lengths

Generalising the previous example, let 𝜄 : Γ → 𝑆 be an immersion from a finite graph to S so that
𝜄∗ : 𝜋1 (Γ) → 𝜋1 (𝑆) is surjective, and again give a length metric on Γ. For instance, if Γ has a single
vertex and all edges have length 1, this is equivalent to giving an arbitrary generating set for 𝜋1 (𝑆). We
can define ℓΓ (𝐶) as before, as the minimum length of any multi-curve D on Γ so that 𝜄∗(𝐷) = 𝐶.

The curve functional ℓΓ is still additive, but unlike the previous examples it is not stable (see Example
4.10). Thus, we cannot hope to extend ℓΓ to currents but rather extend the stable curve functional ‖ℓΓ‖
(defined in Section 13). We do have quasi-smoothing.

Lemma 4.4. For any connected, 𝜋1-surjective immersion of a length graph 𝜄 : Γ → 𝑆, the curve
functional ℓΓ satisfies quasi-smoothing.

This is a special case of a more general result. Let V be a connected length space, with a continuous,
𝜋1-surjective map 𝜄 : 𝑉 → 𝑆. Then for C a multi-curve on S, a lift of C is a multi-curve �̃� in V so that
𝜄∗�̃� = 𝐶. (Both �̃� and C are defined up to homotopy.) Define ℓ𝜄,𝑉 (𝐶) to be the infimum, over all lifts �̃�
of C, of the length of �̃� in V.

Proposition 4.5. Let V be a connected, compact length space, with a continuous, 𝜋1-surjective map
𝜄 : 𝑉 → 𝑆. Then ℓ𝜄,𝑉 : C(𝑆) → R+ satisfies quasi-smoothing.

As a corollary of Proposition 4.5 and Theorems B and A, ‖ℓ𝑉 ‖ extends continuously to a function
on GC(𝑆). This continuous extension was first proved by Bonahon [9, Proposition 10] in the context of
a hyperbolic group acting discretely and cocompactly on a length space (replacing 𝜋1 (𝑆) acting on 𝑉),
with an additional technical assumption that the space is uniquely geodesic at infinity. Later, Erlandsson,
Parlier, and Souto [23, Theorem 1.5] lifted this assumption.

We remark that given a properly discontinuous action of 𝜋1 (𝑆) on X a CW-complex, we can construct
a 𝜋1 (𝑆)-surjective map 𝜄 : 𝑋/𝜋1 (𝑆) → 𝑆. In fact, we will construct a 𝜋1 (𝑆)-equivariant map 𝜄 : 𝑋 → 𝑆.
First, we define 𝜄 : 𝑋0 → 𝑆 by picking a value on each 𝜋1 (𝑆) orbit of the 0-skeleton arbitrarily and
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extending equivariantly. Similarly, on the 1-skeleton 𝑋1, for each 𝜋1 (𝑆) orbit on 𝑋1, pick a path in 𝑆
between the images of the endpoints. Continue the construction inductively. This construction works
because 𝜋1 (𝑆) acts freely – since 𝜋1 (𝑆) is torsion-free and acts properly discontinuously – and 𝑆 is
contractible.

In this construction, proper discontinuity of the action is crucial. For example, it was shown by
Bonahon in [9, Proposition 11] that if W is a finite graph which is a deformation retract of S, the action
of 𝜋1 (𝑆) on the universal cover 𝑊 of W is cocompact but not properly discontinuous and translation
length of conjugacy classes of 𝜋1 (𝑆) acting on X does not extend continuously to GC(𝑆).

Proof of Proposition 4.5. Let �̃� : 𝑉 → 𝑆 be the pull-back of 𝜄 along the universal cover 𝜋𝑆 of S, part of
the pullback square

𝑉 𝑉

𝑆 𝑆

𝜋𝑉

𝜄

𝜋𝑆

𝜄 (4.6)

where𝑉 = 𝑉 ×𝑆 𝑆. Since 𝜄 is 𝜋1-surjective,𝑉 is a connected covering space of V. For �̃� ∈ 𝑆, let diam 𝜄 (�̃�)
be the diameter of �̃�−1 (�̃�) ⊂ 𝑉 . (Set diam 𝜄 (�̃�) = 0 if �̃� is not in the image of �̃�.) Set

diam 𝜄 (𝑉) := sup
�̃�∈𝑆

diam 𝜄 (�̃�).

We wish to see that diam 𝜄 (𝑉) is finite. First, since 𝜄 is 𝜋1-surjective, for every 𝛾 ∈ 𝜋1 (𝑆, 𝑥) there exists
𝛿𝛾 ∈ 𝜋1 (𝑉, 𝑥) so that 𝜄∗𝛿𝛾 = 𝛾. This implies

𝛿𝛾 · 𝜄−1 (𝑥) = 𝜄−1(𝛾 · 𝑥).

But 𝛿𝛾 is a deck transformation and thus acts as an isometry on 𝑉 , so diam(𝜄−1 (𝛾 · 𝑥)) = diam(𝜄−1 (𝑥))
and so we can define

diam 𝜄 (𝑥) = diam 𝜄 (�̃�) (4.7)

for 𝑥 ∈ 𝑆 and any lift �̃� of x. (Note that diam 𝜄 (𝑥) is not in general the diameter of 𝜄−1 (𝑥); rather than
looking at the length of a shortest path connecting two points in 𝜄−1 (𝑥), we restrict to paths that map to
null-homotopic loops.)

Lemma 4.8. In the above setting, the diameter diam 𝜄 (𝑥) is upper semi-continuous as a function of x.

Proof. For each 𝑥0 ∈ 𝑆, consider an evenly covered neighbourhood U of 𝑥0 and fix a lift 𝑥0 ∈ 𝑆. We want
to show that for all sequences {𝑥𝑖} ⊂ 𝑈 with 𝑥𝑖 → 𝑥 and for all 𝜀 > 0, there exists 𝑖0 so that for all 𝑖 ≥ 𝑖0

diam(𝜄−1(𝑥𝑖)) < diam(𝜄−1 (𝑥)) + 𝜀.

Now, 𝜄 is a pullback of a proper map, so it is a closed map.

Lemma 4.9 ([54, Theorem 005R].). Let X be a metric space and 𝑓 : 𝑋 → 𝑌 a proper map. For any
continuous map 𝑔 : 𝑍 → 𝑌 , the pullback map 𝑋 ×𝑌 𝑍 → 𝑍 is closed.

By definition of diameter, and since the fibres 𝜄−1 (𝑥) are compact for any 𝑥𝑖 , we can find points
𝑝𝑖 , 𝑞𝑖 ∈ 𝜄−1(𝑥𝑖) so that diam(𝜄−1 (𝑥𝑖)) = 𝑑 (𝑝𝑖 , 𝑞𝑖). Also, by closedness of 𝜄, a subsequence of the 𝑝𝑖 and
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1

x

1 − x

x

a

b

Figure 4.1. A punctured torus with, in blue, a train track carrying a slice of measured laminations
on the punctured torus depending on a parameter 𝑥 ∈ [0, 1]. In red, the parallel loop a. In green, the
meridian loop b.

𝑞𝑖 converges to points 𝑝, 𝑞 ∈ 𝜄−1 (𝑥). Furthermore, by continuity of distance, for any 𝜀 > 0, we have, for
i large enough,

diam(𝜄−1 (𝑥𝑖)) = 𝑑 (𝑝𝑖 , 𝑞𝑖) < 𝑑 (𝑝, 𝑞) + 𝜀 ≤ diam(𝜄−1 (𝑥)) + 𝜀,

finishing the proof of Lemma 4.8. �

As a result of Lemma 4.8, the function diam 𝜄 (𝑥) is bounded on S; let 𝑅(𝑉) be this global bound.
We now finish the proof of Proposition 4.5. We are given a curve C with an essential crossing p and

corresponding smoothing 𝐶 ′. Pick a concrete curve �̃� on V that comes within 𝜀 of realising ℓ𝜄,𝑉 (𝐶); in
particular, 𝜄 ◦ �̃� represents C. By Lemma 2.8, there are points 𝑥, 𝑦 ∈ 𝑋 (�̃�) so that 𝜄(�̃�(𝑥)) = 𝜄(�̃�(𝑦)) is
a crossing corresponding to p. We wish to find another curve �̃�′ on V, with length not too much longer,
so that 𝜄 ◦ �̃�′ represents 𝐶 ′. We can do this by cutting �̃� at x and y, yielding endpoints 𝑥1, 𝑥2 and 𝑦1, 𝑦2
and reconnecting 𝑥1 to 𝑦2 and 𝑦1 to 𝑥2 by paths in V that project to the identity in 𝜋1 (𝑆).

But the maximal length of a path connecting any two points 𝑥, 𝑦 ∈ 𝑉 with 𝜄(𝑥) = 𝜄(𝑦) that projects to
a null-homotopic path is exactly diam 𝜄 (𝜄(𝑥)). We can therefore construct a desired representative �̃�′ with

ℓ𝑉 (�̃�′) ≤ ℓ𝑉 (�̃�) + 2𝑅(𝑉) ≤ ℓ𝜄,𝑉 (𝐶) + 𝜀 + 2𝑅(𝑉).

Since 𝜀 was arbitrary, we have proved the result with quasi-smoothing constant 2𝑅(𝑉). �

We show now an example of a curve functional that satisfies quasi-smoothing but not strict smoothing.

Example 4.10. Consider the torus with one puncture with fundamental group generated by the usual
horizontal loop a and vertical loop b, as in Figure 4.1. (This does not, strictly speaking, fit in the context
of closed surfaces considered in this article, but we can embed this punctured torus in a larger surface
without essential change.) Its fundamental group is the free group 𝐹2 = 〈𝑎, 𝑏〉. We will consider word
length f with respect to the generating set (𝑎, 𝑎2, 𝑏). Word length satisfies quasi-smoothing and additive
union but not stability. (For instance, 𝑓 (𝑎2) = 1 ≠ 𝑓 (2𝑎) = 2.) The stable word length ‖ 𝑓 ‖ satisfies
stability and still satisfies quasi-smoothing, but it does not satisfy strict smoothing. We will show it
behaves more erratically than word length with respect to embedded generating sets.

Consider, for example, the collection of weighted curves𝐶 (𝑥) carried by the train track in Figure 4.1,
with weights depending on a rational parameter 𝑥 ∈ [0, 1]. For instance, for 𝑥 = 2/5, the curve is
1/5[𝑎𝑎𝑏𝑎𝑏], with stable length (1/5) · 4. If we plot the stable word length of 𝐶 (𝑥) multiplied by the
weight, we obtain the saw-tooth graph in Figure 4.2. We note the erratic behavior as a function of x.
In particular, it is far from convex. If ‖ 𝑓 ‖ satisfied the smoothing property, then it would be a convex
function of the train track weights, since if 𝑤1 and 𝑤2 are two rational weights on a train track T, the
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Figure 4.2. We consider the curve 𝐶 (𝑥) carried by a train track depending on a parameter x and plot
the stable word length of 𝐶 (𝑥) as a function of x. The graph has vertices at

( 1
2𝑛+1 ,

𝑛+1
2𝑛+1

)
and

( 1
2𝑛 ,

𝑛+1
2𝑛

)
.

weighted multi-curve 𝑇 (𝑤1) ∪ 𝑇 (𝑤2) can be smoothed to 𝑇 (𝑤1 + 𝑤2) (observed by Mirzakhani in [42,
Appendix A] and the second author in [55, Subsection 3.2]).

4.6. Asymmetric lengths

The arguments in Subsection 4.5 apply equally well to cases where distances may be zero or not
symmetric. For instance, we can take a directed graph Γ with a nonnegative length on each edge,
together with a map 𝜄 : Γ → 𝑆 so that the corresponding cover Γ̃ is strongly connected (every vertex can
be reached from any other vertex). The same arguments apply to show that ℓΓ ( �𝐶) satisfies the oriented
quasi-smoothing property and so its stabilisation ‖ℓΓ‖ extends to a continuous function GC+(𝑆) → R≥0.

One example would be to take a generating set for 𝜋1 (𝑆) as a monoid. This corresponds to taking Γ
to be a graph with a single vertex and one edge for each monoid generator.

4.7. Generalised translation lengths from higher representations

Let G be a real, connected, noncompact, semi-simple, linear Lie group. Let K denote a maximal compact
subgroup of G, so that 𝑋 = 𝐺/𝐾 is the Riemannian symmetric space of G. Let [𝑃] be the conjugacy
class of a parabolic subgroup 𝑃 ⊂ 𝐺. Then there is a natural notion of [𝑃]-Anosov representation
𝜌 : 𝜋1 (𝑆) → 𝐺; see, for example, Kassel’s notes [34, Section 4]. When rankR(𝐺) = 1 there is essentially
one class [𝑃], so we can simply refer to them as Anosov representations, and they can be defined as
those injective representations 𝜌 : 𝜋1 (𝑆) → 𝐺 where Γ := 𝜌(𝜋1 (𝑆)) preserves and acts cocompactly on
some nonempty convex subset V of X.

Rank 1 Anosov representations include two familiar examples:

(1) Fuchsian representations into 𝐺 = PSL(2,R). Here, 𝐾 = SO(2) and 𝑋 = H2. The convex set V in
this case is the lift of the convex core of the hyperbolic surface.

(2) Quasi-Fuchsian representations of surface groups into 𝐺 = PSL(2,C). In this case, 𝐾 = SU(2),
𝑋 = H3, and V is the lift of the convex core of the hyperbolic quasi-Fuchsian manifold.
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In general, the conjugacy classes of parabolic subgroups of G correspond to subsets 𝜃 of the set of
restricted simple roots Δ of G. For a given [𝑃]-Anosov representation and each 𝛼 ∈ 𝜃, Martone and
Zhang define [38, Definition 2.21] a curve functional

𝑙
𝜌
𝛼 : C(𝑆) → R≥0

and show that for a certain subset of Anosov representations, these can be extended to geodesic currents
as intersection numbers with some fixed geodesic current.

For the two rank 1 examples above, this length 𝑙𝜌𝛼 (𝐶) corresponds to hyperbolic length of the closed
geodesic in the homotopy class C in the quotient hyperbolic manifold H2/𝜌(𝜋1 (𝑆)) or H3/𝜌(𝜋1 (𝑆)).

Bonahon showed the length in the Fuchsian case extends to geodesic currents [8, Proposition 14]. Our
techniques give an extension to geodesic currents of the quasi-fuchsian length; that is, the hyperbolic
length of the geodesic representatives in the quasi-Fuchsian manifold.

Proposition 4.11. Translation length 𝑙𝜌, for 𝜌 : 𝜋1 (𝑆) → PSL(2,C) a quasi-Fuchsian representation,
extends to geodesic currents.

Proof. Let V to be the convex core of H3/𝜌(𝜋1 (𝑆)). We have an obvious retract 𝑟 : 𝑉 → 𝑆 (defined up
to homotopy). Now use Proposition 4.5, taking 𝜄 = 𝑟 . �

Question 4.12. Bridgeman and Taylor show that a complex length function of a quasi-Fuchsian repre-
sentation coming from a Patterson–Sullivan measure also extends continuously to a function on geodesic
currents, as [12, Section 6]. Is there a version of our main theorem that would prove that a complex-
valued curve functional like this extends to currents?

Remark 4.13. Extending the definition of convex cocompact representation for higher rank groups
turns out to yield products of representations of rank 1 (see Kleiner–Leeb [35, Theorem 1.3] and Quint
[50, Théorème]) so it is not clear that the approach using Proposition 4.5 will allow one to extend curve
functionals in higher rank to geodesic currents.

For𝐺 = PSL(3,R), there is another cocompact action, not on a convex subset of the symmetric space
but on a convex subset of 𝐺/𝑃 = R𝑃2. In this case, there is a natural metric on this convex subset, the
Hilbert metric. One can easily show using this metric that smoothing is satisfied. In general, in higher
rank one can construct similar cocompact actions on convex domains of 𝐺/𝑃 (see Guichard–Wienhard
[28]), but there is not a known canonical choice of metric. Martone and Zhang show [38, Theorem 2.1]
that some types of representations known as positively ratioed can be realised as intersection numbers
with a distinguished geodesic current. This immediately implies this subclass of representations satisfy
the smoothing property. It would be interesting to subsume their extension result under our scope. More
specifically, we have the following.

Question 4.14. Can we prove quasi-smoothing for the translation length for a subclass of [𝑃]-Anosov
representations, as in Martone–Zhang [38, Definition 2.25], directly from the definition of translation
length?

4.8. Extremal length

We now turn to curve functionals that satisfy only convex union and not additive union, starting with
the original motivation for this work, extremal length.

Definition 4.15. Fix Σ a Riemann surface with a metric g. Let 𝐶 =
⋃
𝑡𝑖𝐶𝑖 be a weighted multi-curve

on Σ. For 𝜌 : Σ → R≥0 a measurable rescaling function, the area of 𝜌 is

Area(𝜌𝑔) :=
∫
𝑥∈Σ

𝜌(𝑥)2𝜇𝑔 (𝑥),
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where 𝜇𝑔 is the Lebesgue measure of g. The length of C is

ℓ𝜌𝑔 (𝐶) := inf
𝛾∈𝐶

∑
𝑖

𝑡𝑖

∫
𝑥∈𝛾𝑖

𝜌(𝑥) 𝑑𝑥,

where 𝑑𝑥 is measured with respect to g arc-length and the infimum runs overall all representatives
𝛾 =

⋃
𝑖 𝛾𝑖 of C, where 𝛾𝑖 is a representative of the component 𝐶𝑖 of C. When 𝜌 is continuous, ℓ𝜌 (𝐶) is

the length with respect to the metric g rescaled by 𝜌. The square root of the extremal length of C is

√
EL(𝐶) := sup

𝜌

ℓ𝜌𝑔 (𝐶)√
Area(𝜌𝑔)

.

Observe that the supremand is unchanged under multiplying 𝜌 by a positive constant. It is a standard
result that the supremum is realised by some generalised metric (not necessarily Riemannian) [52,
Theorem 12] and that, when C is a simple multi-curve, the optimum metric 𝜌𝑔 is the cone Euclidean
metric associated to a quadratic differential, as shown by Jenkins [33]. Very little is known about the
optimum metric when C is not simple, except in special cases [62, 14, 31, 46].

Lemma 4.16. As a function of C with fixed Σ,
√

EL satisfies homogeneity, stability and smoothing.

Proof. This follows since ℓ𝜌𝑔 satisfies these properties for each 𝜌; here is the argument for smoothing.
Let C be a multi-curve with an essential crossing and let 𝐶 ′ be the curve obtained by smoothing at

the crossing. Then, for any scaling function 𝜌,

ℓ𝜌𝑔 (𝐶 ′)√
Area(𝜌𝑔)

≤
ℓ𝜌𝑔 (𝐶)√
Area(𝜌𝑔)

.

Since
√

EL(𝐶 ′) and
√

EL(𝐶) are the suprema of such terms, the result follows. �

Convex union is different, since on one side of the inequality we have a sum of values of
√

EL.
(Extremal length does not satisfy additivity.)

Lemma 4.17.
√

EL satisfies convex union.

Proof. Fix a curve split as a union 𝐶 = 𝐶1 ∪ 𝐶2, and let 𝜌 : Σ → R be the function realising the
supremum in the definition of extremal length for C. Then

√
EL(𝐶1 ∪ 𝐶2) =

ℓ𝜌𝑔 (𝐶1)√
Area(𝜌𝑔)

+
ℓ𝜌𝑔 (𝐶2)√
Area(𝜌𝑔)

≤
√

EL(𝐶1) +
√

EL(𝐶2),

where the last inequality holds by the supremum in the definition of EL. �

Thus, by Theorem A,
√

EL (and EL) extend uniquely to continuous functions on geodesic currents.
With this extension, we propose the following conjecture.

Conjecture 4.18. For some universal constant C,

ELΣ (LΣ) = 𝐶 Area(Σ),

where LΣ is the Liouville current (compare Subsection 4.2).

Remark 4.19. For the extremal length without the square root, we instead have inequalities

EL(𝐶1) + EL(𝐶2) ≤ EL(𝐶1 ∪ 𝐶2) ≤ 2(EL(𝐶1) + EL(𝐶2)).
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The second inequality is a simple consequence of Lemma 4.17. To see the first inequality, take optimal
rescaling functions 𝜌𝑖 for EL(𝐶𝑖), normalised so that ℓ𝜌𝑖𝑔 (𝐶𝑖) = Area(𝜌𝑖𝑔) = EL(𝐶𝑖). Then using
𝜌1 + 𝜌2 as the test function for EL(𝐶1 ∪𝐶2) gives the desired inequality after elementary manipulations.

4.9. Extremal length with respect to elastic graphs

There is a parallel notion of extremal length with respect to elastic graphs, as introduced by the second
author [56], just as there is for ordinary lengths (Subsection 4.4).

An elastic graph (Γ, 𝛼) is a 1-dimensional CW complex Γ (i.e., allowing multiple edges and loops)
together with an assignment of positive real numbers 𝛼(𝑒) for each 𝑒 ∈ Edge(Γ), where the edges are
the 1-dimensional cells of Γ.

By a concrete multi-curve 𝛾 on Γ we mean a 1-manifold 𝑋 (𝛾) and a PL map 𝛾 : 𝑋 (𝛾) → Γ. Given a
scaling function 𝜌 : Edge(Γ) → R≥0, the length metric 𝜌𝛼 on Γ gives edge e the length 𝜌(𝑒)𝛼(𝑒). We
define the length of 𝛾 as

ℓ𝜌𝛼 (𝛾) :=
∑

𝑒∈Edge(Γ)
𝑛𝛾 (𝑒)𝜌(𝑒)𝛼(𝑒),

where 𝑛𝛾 (𝑒) is the weighted number of times that 𝛾 runs over e. We can likewise define the length of a
multi-curve D on Γ as the infimum over of concrete multi-curves in D.

The area of Γ with respect to 𝜌𝛼 is defined to be

Area𝜌 (Γ, 𝛼) :=
∑

𝑒∈Edge(Γ)
𝜌(𝑒)2𝛼(𝑒).

Intuitively, each edge is turned into a rectangle of width 𝜌(𝑒), aspect ratio 𝛼(𝑒) and thus area 𝜌(𝑒)2𝛼(𝑒).
As for extremal length for surfaces, we define the square root of extremal length of a multi-curve on

Γ by
√

EL(𝐷; Γ, 𝛼) := sup
𝜌:Edge(Γ)→R≥0

ℓ𝜌𝛼 (𝐷)√
Area𝜌 (Γ, 𝛼)

. (4.20)

It is easy to do this optimisation. We get a more interesting quantity by incorporating a filling embedding
𝜄 : Γ ↩→ 𝑆 of Γ in a surface S; that is, an embedding 𝜄 that is 𝜋1-surjective. Then, for a multi-curve C on
S and scaling 𝜌, the length is defined as in Subsection 4.4:

ℓ𝜌𝛼; 𝜄 (𝐶) := inf
𝐷 on Γ
𝜄∗ (𝐷)=𝐶

ℓ𝜌𝛼 (𝐷).

(The ‘filling’ condition guarantees that there are such multi-curves D with 𝜄∗(𝐷) = 𝐶.) We can then
define a version of extremal length, following equation (4.20), with respect to 𝜄:

√
EL(𝐶; Γ, 𝛼, 𝜄) := sup

𝜌:Edge(Γ)→R≥0

ℓ𝜌𝛼; 𝜄 (𝐷)√
Area𝜌 (Γ, 𝛼)

. (4.21)

Proposition 4.22. For 𝜄 : Γ → Σ a filling embedding,
√

EL(𝐶; Γ, 𝛼, 𝜄) satisfies the convex union,
stability, homogeneity and smoothing properties.

Proof. As in Lemma 4.16, smoothing, stability and homogeneity follow because ℓ𝜌𝛼 (𝐶) satisfies them
for any 𝜌. Convex union follows as in Lemma 4.17. �

We can also consider extremal length with respect to an immersion 𝜄 (rather than an embedding),
defined in the same way.
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Proposition 4.23. For 𝜄 : Γ → Σ a 𝜋1-surjective immersion,
√

EL(𝐶; Γ, 𝛼, 𝜄) satisfies the convex union,
homogeneity and quasi-smoothing properties.

Proof. Convex union and homogeneity still hold by the same argument. We need an extra argument for
quasi-smoothing. Instead of taking the supremum over all 𝜌, rewrite equation (4.21) as

√
EL(𝐶; Γ, 𝛼, 𝜄) = sup

𝜌:Edge(Γ)→R≥0
Area𝜌 (Γ,𝛼)=1

ℓ𝜌𝛼 (𝐶).

The immersed graph 𝜄(Γ) has finitely many self-intersections. For each self-intersection x, take the
supremum over the compact set of metrics {𝜌 | Area𝜌 (Γ, 𝛼) = 1} of the diameter diam 𝜄 (𝑥) defined
in equation (4.7). By the replacement argument in Proposition 4.5, all ℓ𝜌𝛼 for 𝜌 in this set satisfy
quasi-smoothing with a uniform quasi-smoothing constant. It follows that EL(𝐶; Γ, 𝛼, 𝜄) also satisfies
quasi-smoothing with the same constant. �

Remark 4.24. We can relate extremal length for elastic graphs and surfaces by making a choice of a
ribbon structure to Γ. Given any 𝜀 > 0, a ribbon elastic graph G can be thickened into a conformal
surface with boundary 𝑁𝜀 (𝐺) by replacing each edge e of G by a rectangle of size 𝛼(𝑒) × 𝜀 and gluing
the rectangles at the vertices by using the given ribbon structure. There are then inequalities relating
EL(𝐶; Γ, 𝛼) and 𝜀 EL(𝐶; 𝑁𝜀 (𝐺)), to within a multiplicative factor as shown by the second author [57,
Props. 4.8 and 4.9]. For graphs immersed or embedded in a surface, the situation is less clear. By suitably
choosing the elastic weights on an embedded graph, it appears that one can approximate extremal length
well; Palmer gives one approach [48]. We are not aware of precise theorems.

4.10. p-Extremal-length with respect to immersed graphs

Extremal length fits into a family of energies for graphs, as explored by the second author in [56,
Appendix A]. For Γ a metric graph with metric g, a constant p with 1 ≤ 𝑝 ≤ ∞ and C a curve on Γ,
define

𝐸𝑝 (𝐶; Γ, 𝑔) := sup
𝜎:Edge(Γ)→R≥0

ℓ(𝐶;𝜎𝑔)
‖𝜎‖ 𝑝

(4.25)

where the 𝐿𝑝 norm ‖𝜎‖ 𝑝 is taken with respect to the metric g. As in the previous section, we can also
consider a 𝜋1-surjective immersion 𝜄 : Γ → 𝑆 and consider C to be a curve on S rather than on Γ.

For 𝑝 = ∞, 𝐸∞(𝐶) is in fact just the length with respect to g (as in Subsection 4.5). Indeed, let 𝜎 be
any scaling factor, and let 𝛾 be the shortest representative of C on Γ with respect to g (not with respect
to 𝜎𝑔). Then

ℓ(𝐶;𝜎𝑔) ≤ ℓ(𝛾;𝜎𝑔) ≤ ‖𝜎‖∞ℓ(𝛾; 𝑔),

from which the result easily follows.

Proposition 4.26. For any 𝜋1-surjective immersion 𝜄 : Γ → 𝑆, the curve functional 𝐸𝑝 (·; Γ, 𝑔, 𝜄) satisfies
convex union, homogeneity and quasi-smoothing, and thus its stabilisation extends continuously to a
function on geodesic currents. If 𝜄 is a filling embedding, then 𝐸𝑝 in addition satisfies stability and
smoothing.

Proof. This follows as in Propositions 4.22 and 4.23. To prove quasi-smoothing in the immersed case,
we restrict to those functions 𝜎 on Edge(Γ) where ‖𝜎‖ 𝑝 = 1; as in the proof of Proposition 24, this set
is compact. �
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5. Counting problems

One direct application of Theorem A is to obtain new counting results for curves on surfaces of a given
topological type.

A filling current is a geodesic current 𝛼 ∈ GC(Σ) so that 𝑖(𝛼, 𝜇) > 0 for all 𝜇 ∈ GC(Σ)\{0}. One
example is a filling multi-curve, one whose complement in S consists of disks.

Rafi and Souto [51] proved the following.

Definition 5.1. A function f on currents is positive if 𝑓 (𝜇) > 0 for all 𝜇 ≠ 0.

For a fixed continuous, homogeneous and positive function 𝑓 : GC → R+, 𝛼 a current and L a positive
real number, let

𝑁 ( 𝑓 , 𝛼, 𝐿) := #{𝜙 ∈ MCG | 𝑓 (𝜙(𝛼)) ≤ 𝐿}.

Theorem 5.2 (Rafi-Souto [51, Main Theorem]). For a fixed continuous, homogeneous and positive
function 𝑓 : GC → R+ and for a fixed filling current 𝛼 ∈ GC(Σ), the limit

lim
𝐿→∞

𝑁 ( 𝑓 , 𝛼, 𝐿)
𝐿6𝑔−6

exists and is equal to

𝑚( 𝑓 )𝑚(𝛼)
𝔪𝑔

where 𝑚( 𝑓 ), 𝑚(𝛼) and 𝔪𝑔 are constants depending only on f, 𝛼 and the genus g, respectively:

𝑚( 𝑓 ) = 𝜇Thu({𝜆 ∈ ML | 𝑓 (𝜆) ≤ 1}) (5.3)

𝑚(𝛼) = 𝜇Thu ({𝜆 ∈ ML | 𝑖(𝛼, 𝜆) ≤ 1}) (5.4)

𝔪𝑔 =
∫
M𝑔

𝑚(𝑌 ) 𝑑𝜔WP(𝑌 ). (5.5)

Here 𝜇Thu is the Thurston measure on ML. One way to obtain it is as a scaling limit of Dirac measures
on measured laminations supported on integral simple multi-curves (see Erlandsson–Souto’s book
[26, Proposition 8.8]). Another way is as a certain normalisation of the volume form induced by the
symplectic structure on measured laminations [26, Theorem 4.16].

Dumas [21] communicates a proof of the following theorem (attributed to Mirzakhani).

Theorem 5.6 (Dumas–Mirzakhani [21, Theorem 5.10]). The function Λ : M𝑔 → R≥0 given by Σ ↦→
𝑚(ELΣ) is constant, where 𝑚(ELΣ) is defined by equation (5.3).

Let
√

ELΣ : GC → R≥0 be the continuous extension of square root of extremal length to currents
provided by Theorem A. In order to be able to apply Theorem 5.2, it remains to check that the square
root of extremal length is nonzero.

Lemma 5.7. For any Σ ∈ Teich(𝑆), the functional
√

ELΣ is positive on GC(Σ).
Proof. Let 𝐴 =

√
−2𝜋𝜒(𝑆). By Definition 4.15 applied to the hyperbolic metric, ℓΣ (𝐶)/𝐴 ≤

√
ELΣ (𝐶)

for all curves C and all Σ ∈ Teich(𝑆). For any 𝜇 ∈ GC(Σ), there exists a sequence (𝜆𝑖𝐶𝑖)𝑖∈N of weighted
curves so that 𝜆𝑖𝐶𝑖 → 𝜇 in the weak∗ sense. It thus follows that ℓΣ (𝜇)/𝐴 ≤

√
ELΣ (𝜇). Since ℓΣ is a

positive function on currents,
√

ELΣ is as well. �

We thus get solutions to counting problems for extremal length.
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Corollary 5.8. For any filling current 𝛼 and Σ ∈ Teich(𝑆), the limit

lim
𝐿→∞

𝑁 (
√

ELΣ, 𝛼, 𝐿)
𝐿6𝑔−6

exists, is independent of Σ and is equal to

Λ · 𝑚(𝛼)
𝔪𝑔

. (5.9)

Proof. Using Theorem A and the results in Subsection 4.8, we can extend
√
𝐸𝐿𝑋 as a contin-

uous, real-homogeneous functional on geodesic currents. Furthermore,
√
𝐸𝐿𝑋 is positive on cur-

rents, by Proposition 5.7. Thus, by Theorem 5.2, the result follows. Independence of Σ follows from
Theorem 5.6. �

A similar counting result is true for 𝛼 a simple multi-curve by Mirzakhani’s work, but one has to
count slightly differently. For f a curve functional, 𝛼 a simple curve and 𝐿 > 0, set

𝑛( 𝑓 , 𝛼, 𝐿) := #{𝜙(𝛼) ∈ MCG | 𝑓 (𝜙(𝛼)) ≤ 𝐿}.

In general, note that 𝑛( 𝑓 , 𝛼, 𝐿) ≠ 𝑁 ( 𝑓 , 𝛼, 𝐿); in fact, N will be infinite if 𝛼 is not filling. Even for 𝛼
filling, N will be bigger than n if 𝛼 has nontrivial stabiliser in the mapping class group.

We state the corresponding result for simple multi-curves.

Proposition 5.10. For any simple multi-curve𝛼, there is a constant 𝑐(𝛼) so that, for any 𝑓 : GC+(𝑆) → R
continuous, positive and real-homogeneous function, the limit

lim
𝐿→∞

𝑛( 𝑓 , 𝛼, 𝐿)
𝐿6𝑔−6 (5.11)

exists and is equal to

𝑚( 𝑓 )𝑐(𝛼)
𝔪𝑔

. (5.12)

Proof. First note that the set {𝜆 ∈ ML(Σ) | 𝑓 (𝜆) ≤ 1} is compact because f is positive on nonzero
measured laminations. Let 𝐴 := {𝜆 ∈ ML | 𝑓 (𝜆) = 1}); then 𝜇Thu (𝐴) = 0, as proved by Rafi and Souto
[51, p. 879]. Finally, we apply Mirzakhani’s counting result [43, Theorem 1.3] and the Portmanteau
theorem (see [6, Theorem 30.12]) to conclude the limit exists. �

Corollary 5.13. For any simple multi-curve 𝛼 and Σ ∈ Teich(𝑆), the limit

lim
𝐿→∞

𝑛(
√

ELΣ, 𝛼, 𝐿)
𝐿6𝑔−6

exists, is independent of Σ and is equal to

Λ · 𝑐(𝛼)
𝔪𝑔

. (5.14)

Remark 5.15. The constant 𝑐(𝛼) in Proposition 5.13 is not the same as the constant 𝑚(𝛼) in Theorem
5.2. For details on how 𝑐(𝛼) is defined, see Mirzakhani’s paper [43, Equation (1.2)]. This is related to
the fact that in Proposition 5.13 we count multi-curves instead of mapping classes because the stabiliser
of a simple multi-curve under the mapping class group is infinite.

The counting problem 𝑛(ℓΣ, 𝛼, 𝐿) with 𝛼 an arbitrary essential multi-curve (possibly neither simple
nor filling) and 𝑓 = ℓΣ a hyperbolic length is established in more recent work of Mirzakhani [44,
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Theorem 1.1]. Relying on her work, Erlandsson–Parlier–Souto [23, Theorem 1.6] give the corresponding
result where f is allowed to be intersection number with other filling currents (not just a hyperbolic
Liouville current). From Mirzakhani’s work and work of Erlandsson–Souto [24, Corollary 4.4], one
also can get the corresponding counting problems where 𝛼 is allowed to be a current (not just a multi-
curve). In fact, from Erlandsson–Souto’s work one can also allow f to be any continuous, positive and
real-homogeneous function on currents, although they do not explicitly state this in their paper. This is
done in Rafi–Souto’s work (Theorem 5.2 above) which also gives the expression (5.9) for the limit of
the counting problem. Rafi–Souto also relies on Mirzakhani’s work [44].

Finally, recently Erlandsson–Souto [26, Theorem 8.1] gave an independent proof of the counting
argument in [44] illuminating the connection between counting problems for simple and nonsimple
multi-curves. Corollary 5.8 also follows from Proposition 5.13 and forthcoming work of Erlandsson and
Souto [25, 26].

We remark that Erlandsson–Souto’s work shows that if one knows a counting result for simple
closed curves, then one can obtain a counting result for nonsimple closed curves (for curve functionals
extending continuously to currents). The connection between these two types of counting problems is
perhaps that, in some sense, the simple closed curves are the extremal points of the space of currents, in
the sense of convex sets [58]. For instance, the systole of positive curve functional satisfying smoothing
and convex union is always a simple curve. (Here by systole we mean a weight 1, nontrivial multi-curve
C with a minimal value of 𝑓 (𝐶).)

6. Proof outline

In this section, we prove the core theorem of the article, Theorem 6.1, giving a continuous extension
to geodesic currents of a functional f on weighted multi-curves satisfying convex union, stability,
homogeneity and weighted quasi-smoothing.

Theorem 6.1. Let f be a weighted curve functional defined on weighted oriented multi-curves satisfying
the weighted quasi-smoothing, convex union, stability and homogeneity properties. Then there is a
unique continuous homogeneous function 𝑓 : GC+(𝑆) → R≥0 that extends f.

Proof of Theorem 6.1. The proof proceeds by studying the geodesic flow on the unit tangent bundle to
S (with respect to an arbitrary hyperbolic metric), picking a suitable global cross section with boundary
𝜏 and looking at a ‘smeared first return map’ to 𝜏.

The proof breaks up into the following steps.

◦ Step 1: In Section 7, we define the cross sections we consider, though we delay proving existence. We
introduce bump functions and the associated smeared first return map (Definition 7.4); indeed, there
are several varieties of return maps (Table 2). The main advantage of smeared return maps is that they
are continuous (Proposition 7.7). We use these smeared returns to define our purported extension 𝑓𝜏
to geodesic currents as a limit (Definition 7.25), assuming a suitable global cross section 𝜏 exists.

Table 2. Various types of return maps. 𝑀 = 𝑈𝑇 Σ is the domain of the flow
𝜙𝑡 ..

Notation Type Meaning

p 𝜏 → 𝜏 Ordinary first return
P 𝜏 → R1𝜏 Smeared first return
q 𝜏 → 𝜏 × 𝜋1 (𝑀 ) Complete homotopy return
Q 𝜏 → R1 (𝜏 × 𝜋1 (𝑀 )) Smeared homotopy return
m 𝜏 → 𝜋1 (𝑀 ) Return curve (projection of q)
[𝑚] 𝜏 → C+ (𝑆) Conjugacy class of projection of m to S
M 𝜏 → R1 𝜋1 (𝑀 ) Smeared return curve (projection of Q)
[𝑀 ] 𝜏 → R1C+ (𝑆)
R GC+ (𝑆) → RC+ (𝑆) Integral of [𝑀 ]
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◦ Step 2: In Section 8, we find a suitable ‘good’ 𝜏, defined in Definition 8.4, by considering certain
wedge subsets (Definition 8.1) of𝑈𝑇Σ, based at a collection of geodesic sub-segments of a closed
geodesic 𝛿 (see Proposition 8.3).

◦ Step 3: In Section 9, Proposition 9.6, we show the limit defining 𝑓𝜏 exists, by using convex union,
quasi-smoothing, stability and homogeneity assumptions on f and applying a version of Fekete’s
Lemma (Lemma 9.5).

◦ Step 4: In Section 10, Proposition 10.8, we show that 𝑓𝜏 is a continuous function on the space of
oriented geodesic currents. We do this by showing that the iterates 𝑓 𝑘𝜏 used in the definition of 𝑓𝜏
are continuous for each k, using the continuity of the smeared homotopy return map from Step 1,
and f is a continuous function of the weights of a fixed multi-curve (Proposition 3.5). Propositions
9.4 and 10.1 give enough control to ensure uniform convergence of the iterates 𝑓 𝑘𝜏 to 𝑓𝜏 (see Lemma
10.2), and thus continuity of 𝑓𝜏 follows.

◦ Step 5: In Section 11, Proposition 11.5, we show that 𝑓𝜏 extends f for oriented curves, by analysing
the image of the smeared return map in that case and mixing and matching the components of the
multi-curve.

The definition of 𝑓𝜏 depends on many choices: the hyperbolic metric on S, a choice of global cross
section 𝜏 and, in fact, nested cross sections 𝜏0 ⊂ 𝜏 ⊂ 𝜏′ and a choice of bump function 𝜓 on 𝜏 (see
Definition 7.1). Different choices yield, a priori, different extensions 𝑓𝜏 . But we have proved that 𝑓𝜏 is
a continuous function on the space of geodesic currents and, moreover, it restricts to f on multi-curves.
Since weighted multi-curves are a dense subset of the space of geodesic currents (see Subsection 2.7),
the extension does not depend on these choices. This proves Theorem 6.1. �

Now, we prove Theorem A.

Proof of Theorem A. By Proposition 3.6, f extends uniquely to a weighted curve functional satisfying
convex union, homogeneity, stability and weighted quasi-smoothing with the same constant. Then, by
Theorem 6.1, the theorem follows. �

7. Defining the extension

We now turn to the proof of Theorem A. As mentioned above, we will fix a hyperbolic structure Σ on
S (with no relation to the curve functional f ) and use the geodesic flow 𝜙𝑡 on the unit tangent bundle to
define the extension to currents.

In this section we will deal with return maps for this flow. After some generalities about return maps
for cross sections with boundary, we introduce a smeared return map that is continuous. We also define
a homotopy return map (and a smeared version of it) that keeps track of homotopy classes of closures of
trajectories. Then we use the smeared homotopy return map to define the extension 𝑓𝜏 of f. The several
variants of the return map are summarised in Table 2.

7.1. Smeared first return map

Let Y be a smooth closed manifold with a smooth flow 𝜙𝑡 . For us, a cross section is a compact smooth
codimension 1 submanifold-with-boundary 𝜏 that is smoothly transverse to the foliation of Y given by
𝜙𝑡 . A global cross section is a cross section 𝜏 so that its interior 𝜏◦ intersects all forward and backward
orbits: for all 𝑥 ∈ 𝑌 , there exists 𝑠 < 0 and 𝑡 > 0 with 𝜙𝑠 (𝑥), 𝜙𝑡 (𝑥) ∈ 𝜏◦. Any flow on a compact manifold
has global cross section consisting of a union of finitely many disks, although not all flows on compact
manifolds admit a global cross section consisting of a single connected component. (For instance, the
Reeb foliation on T2 has no connected global cross section.) By the implicit function theorem, for any
cross section 𝜏 there is a larger cross section 𝜏′ with 𝜕𝜏 ⊂ 𝜏′◦, which we also write 𝜏 � 𝜏′.

Let 𝑡𝜏 : 𝑌 → R be the first return time defined by 𝑡𝜏 (𝑥) := min{𝑡 > 0 | 𝜙𝑡 (𝑥) ∈ 𝜏}, and let
𝑝𝜏 (𝑥) := 𝜙𝑡𝜏 (𝑥) (𝑥). Then 𝑝𝜏 (restricted to 𝜏) is the first return map associated to the cross section 𝜏.

https://doi.org/10.1017/fms.2021.68 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.68


28 Dídac Martínez-Granado and Dylan P. Thurston

We will omit the subscript on 𝑝𝜏 if it is clear from context. We also have the first return time to the
interior, denoted 𝑡◦𝜏 . (Recall we assume 𝑡◦𝜏 (𝑥) is finite.)

If 𝜏 has no boundary, then p is a homeomorphism. On the other hand, if the cross section has a
noninvariant boundary (i.e., 𝑝(𝜕𝜏) ≠ 𝜕𝜏), then 𝑡𝜏 and p will have discontinuities. This necessarily
happens for the geodesic flow on the unit tangent bundle of a hyperbolic surface. See Cossarini–
Dehornoy [15, Sec. 1] for a justification and examples of global cross sections with boundary for this
flow; we construct our own cross section in Section 8. However, by the continuity of 𝜙𝑡 with respect to
initial parameters, we have the following ‘local continuity’ claim.
Lemma 7.1. Let 𝜏1, 𝜏2 be cross sections (not necessarily global) of 𝜙. Let 𝑥1 ∈ 𝜏◦1 , and suppose we are
given 𝑡 > 0 so 𝑥2 = 𝜙𝑡 (𝑥1) ∈ 𝜏◦2 . Then there exists a neighbourhood 𝑈1 of 𝑥1 in 𝜏1, a neighbourhood
𝑈2 of 𝑥2 in 𝜏2 and a continuous function 𝑡12 : 𝑈1 → R>0 so that for 𝑥 ∈ 𝑈1, 𝜙𝑡1

2
(𝑥) ∈ 𝑈2. Furthermore,

𝜙𝑡1
2

: 𝑈1 → 𝑈2 is a diffeomorphism. If t is the first return to 𝜏2, then we can choose 𝑈1 and 𝑈2 so that
𝑡12 (𝑥) = 𝑡𝜏2 (𝑥) is also the first return time.

This is presumably standard (Basener gives this as ‘a useful technical lemma, the proof of which is
trivial’ [3, Lem. 1]), but we give a proof for completeness.

Proof. Pick an initial neighbourhood𝑈 ′
1 of 𝑥1 in 𝜏, and let 𝜀 be small enough so that𝑉1 := 𝜙 (−𝜀,𝜀) (𝑈 ′

1) is
a 3-dimensional flow-box neighbourhood of 𝑥1 in Y. Then the restriction of 𝜙𝑡 to𝑉1 is a homeomorphism
to a neighbourhood𝑉2 of 𝑥2 in Y. Set𝑈 ′

2 := 𝑉2∩𝜏2. Now consider the composition𝜓 := 𝜋1◦𝜙−𝑡◦𝜄2 : 𝑈 ′
2 →

𝑈 ′
1, where 𝜄𝑖 : 𝑈 ′

𝑖 ↩→ 𝑉𝑖 is the inclusion and 𝜋1 : 𝑉1 → 𝑈1 is the flow projection:

𝑈 ′
1 𝑉1 𝑉2 𝑈 ′

2

𝜏1 𝜏2.

𝜄1

𝜋1 𝜙𝑡

� 𝜄2

𝜓

Then 𝜓 is a map from𝑈 ′
2 to𝑈 ′

1, taking 𝑥2 to 𝑥1. By transversality of 𝜏1 and 𝜏2, the differential of 𝜓 at 𝑥2
is invertible. Thus, by the inverse function theorem, there is a neighbourhood 𝑈2 of 𝑥2 and 𝑈1 of 𝑥1 so
that the restriction of 𝜓 is a diffeomorphism from𝑈2 to𝑈1. For 𝑥 ∈ 𝑈1, set 𝑡12 (𝑥) := 𝑡+𝜋𝑡 (𝜙−𝑡 (𝜓−1 (𝑥))),
where 𝜋𝑡 : 𝑉1 → (−𝜀, 𝜀) is the projection onto the time coordinate of the flow box. We have 𝜙𝑡1

2
(𝑥) =

𝜓−1 (𝑥) ∈ 𝑈1, as desired for the first claim.
For the second claim, by hypothesis, the compact sets 𝜙 [0,𝑡 ] (𝑥1) and 𝜏2 do not intersect, so 𝜙 [0,𝑡 ] (𝑥1)

has an open neighbourhood that does not intersect 𝜏2. It follows that we can shrink 𝑈1 and 𝑈2 so that
𝜓−1 restricted to𝑈1 is the first return map to 𝜏2. �

Lemma 7.2. Let 𝑥 ∈ 𝜏. If 𝑝(𝑥) ∈ 𝜏◦, then 𝑝𝜏 and 𝑡𝜏 are continuous in a neighbourhood of x in 𝜏.
Proof. Let 𝜏′ � 𝜏 be a slightly enlarged global cross section (to cover cases when 𝑥 ∈ 𝜕𝜏). By Lemma
7.1, there exists a neighbourhood U of x in 𝜏′ such that 𝑝𝜏 (𝑈) ⊂ 𝜏◦. By taking 𝑉 := 𝑈 ∩ 𝜏, we get the
desired neighbourhood in 𝜏. �

Lemma 7.3. Let 𝜏 be a global cross section. Then, on 𝜏, 𝑡𝜏 is lower semi-continuous and 𝑡◦𝜏 is upper
semi-continuous. There are thus positive global upper and lower bounds on 𝑡𝜏 .
Proof. Fix 𝑥 ∈ 𝜏. If 𝑝𝜏 (𝑥) ∈ 𝜏◦, then 𝑡𝜏 is continuous at x by Lemma 7.2. Otherwise, find a cross
section 𝜏′ with 𝜏 � 𝜏′. Then 𝑡𝜏′ is continuous at x, and since 𝑡𝜏 (𝑦) ≥ 𝑡𝜏′ (𝑦) we have proved that 𝑡𝜏 is
lower semi-continuous.

On the other hand, for any 𝑥1 ∈ 𝜏, we can set 𝑥2 = 𝑝◦𝜏 (𝑥1) and find a neighbourhood 𝑈1 of 𝑥1 in 𝜏
with a function 𝑡12 as in Lemma 7.1. But then 𝑡◦𝜏 (𝑥) ≤ 𝑡12 (𝑥) for 𝑥 ∈ 𝑈1. (Note that 𝑥2 is the first return
point to 𝜏◦, not to 𝜏, so we cannot conclude that 𝑡◦𝜏 is continuous.) �
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Figure 7.1. Smeared first return map, illustrating the proof of continuity in the case 𝑛 = 3 (before
shrinking 𝜏). The bump function 𝜓 is indicated by the density of red.

In the 𝐶1 setting, Basener showed that a global cross section can be perturbed slightly so that the
first return map is piecewise continuous with a cellular structure [4]. However, we want a continuous
version of the first return map, so we proceed in a different direction.

Definition 7.4. Fix a nested pair of global cross sections 𝜏0 � 𝜏. A bump function 𝜓 for this pair is a
continuous function 𝜓 : 𝜏 → [0, 1] so that 𝜓 is 1 on 𝜏0 and 0 on an open neighbourhood of 𝜕𝜏. Set
�̄�(𝑥) = 1 − 𝜓(𝑥). Let 𝑝 : 𝜏 → 𝜏 be the first return map with respect to 𝜏. Then the smeared first return
map of 𝜓 is a function 𝑃𝜓 : 𝜏 → R1𝜏 defined by

𝑃𝜓 (𝑥) :=

{
𝑝(𝑥) 𝑝(𝑥) ∈ 𝜏0

𝜓(𝑝(𝑥)) · 𝑝(𝑥) + �̄�(𝑝(𝑥)) · 𝑃𝜓 (𝑝(𝑥)) 𝑝(𝑥) ∈ 𝜏 − 𝜏0.

Here, R1𝜏 ⊂ M1 (𝜏) is the subspace of measures with finite support and total mass 1; see
Convention 2.24.

The convention here is that a smeared map takes values in finite linear combinations of the target
space (or maybe in measures). We use capital letters for smeared maps.

Intuitively, we iterate x forward, stopping at each iterate with probability given by 𝜓. More visually,
imagine the original cross section as a disk. As we look along the flow lines, we see an overlap-
ping set of disks, with hard edges between them. To find the smeared first return map, we ‘feather’
the edges by giving the disks partially transparent boundaries made out of cellophane. If we contin-
uously increase the transparency towards the boundary, the resulting image will have soft edges. See
Figure 7.1.

We will usually omit 𝜓 from the notation and denote the smeared first return map by P.
Since 𝜏0 is a global cross section, in the definition of P we eventually take the first choice, and so

𝑃(𝑥) is a finite sum of elements of 𝜏1 as claimed. A little more is true.

Lemma 7.5. If 𝜏0 � 𝜏1 is a nested pair of global cross sections, there is an 𝑁 > 0 so that for
any 𝑥 ∈ 𝜏1, there is an integer 𝑘 < 𝑁 so that 𝑝𝑘1 (𝑥) ∈ 𝜏0, where 𝑝1 denotes the first return map
for 𝜏1.

Proof. By Lemma 7.3, there is an upper bound on the return time from 𝜏1 to 𝜏0 and thus an upper bound
on the number of intersections of the return path to 𝜏0 with the compact set 𝜏1. �
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As a consequence of Lemma 7.5, we can rewrite P directly. Let N be the bound from Lemma 7.5.
Then

𝑃(𝑥) = 𝜓(𝑝(𝑥)) · 𝑝(𝑥) + �̄�(𝑝(𝑥))𝜓(𝑝2 (𝑥)) · 𝑝2 (𝑥) + · · ·

=
𝑁∑
𝑘=1

�̄�(𝑝(𝑥)) · · · �̄�(𝑝𝑘−1 (𝑥))𝜓(𝑝𝑘 (𝑥)) · 𝑝𝑘 (𝑥).
(7.6)

If we extend the upper limit of the sum beyond N, the additional terms will be 0.
Proposition 7.7. For any nested global cross sections 𝜏0 � 𝜏 and bump function 𝜓, the smeared first
return map P is continuous.
Proof. We wish to show that P is continuous at 𝑥 ∈ 𝜏. There is some first 𝑛 > 0 such that 𝑝𝑛 (𝑥) ∈ 𝜏◦0 . If
there is any i between 1 and n so that 𝑝𝑖 (𝑥) ∈ 𝜕𝜏, we first find a smaller cross section 𝜏′ with 𝜏0 � 𝜏′ � 𝜏
without this problem, as follows. Recall that we assumed that 𝜓 vanishes in a neighbourhood of 𝜕𝜏.
Since there are finitely many points 𝑝𝑖 (𝑥) in the open set 𝜏 \supp(𝜓), we can pick 𝜏′ containing supp(𝜓)
so that its boundary avoids those finitely many 𝑝𝑖 (𝑥). Since 𝜓 vanishes on 𝜏 \ 𝜏′, the smeared first return
map defined with respect to 𝜏′ agrees with that defined with respect to 𝜏. By replacing 𝜏 by 𝜏′, we may
thus assume that 𝑝𝑖 (𝑥) ∉ 𝜕𝜏. Similarly, shrink 𝜏0 so that 𝑝𝑖 (𝑥) ∉ 𝜕𝜏0 for 0 < 𝑖 < 𝑛.

We proceed by induction on n. If 𝑛 = 1 – that is, if 𝑝(𝑥) ∈ 𝜏◦0 – then p is continuous at x by Lemma
7.2, and P is continuous since the map taking a point x to the delta function 𝛿𝑥 is continuous. Otherwise,
note that 𝑝1 (the return map for 𝜏) is continuous at x (again by Lemma 7.2, since 𝑝1 (𝑥) ∈ 𝜏◦). By
induction, P is continuous at 𝑝1 (𝑥), and therefore

𝑃(𝑥) = 𝜓(𝑝1 (𝑥)) · 𝑝1 (𝑥) + �̄�(𝑝1 (𝑥)) · 𝑃(𝑝1 (𝑥))

is continuous at x. �

To define iterates of P, we first extend P and other functions to act on measures.
Definition 7.8. When 𝑋,𝑌 are measure spaces and 𝑓 : 𝑋 → 𝑌 is a measurable function, by convention
we extend f to a function M1(𝑋) → M1(𝑌 ) acting on measures, denoted 𝑓∗ (or simply f ), by setting

𝑓∗(𝜇) (𝑆) := 𝜇( 𝑓 −1(𝑆))

for 𝜇 ∈ M1(𝑋) and 𝑆 ⊂ 𝑌 a measurable set. If f is continuous, then this extension is continuous with
respect to the weak∗ topology on M1 (𝑋) and M1(𝑌 ). (This uses Proposition 2.23 and the fact that if
𝑔 : 𝑌 → R is bounded, then 𝑔 ◦ 𝑓 : 𝑋 → R is also bounded.) If f is invertible and 𝜓 : 𝑋 → R≥0 is a
scaling factor, then

𝑓 (𝜓 · 𝜇) = (𝜓 ◦ 𝑓 −1) · 𝑓 (𝜇). (7.9)

In practice, we will often be interested in the subspace of finitely supported measures, in which case the
extension 𝑓 : R1𝑋 → R1𝑌 is given by

𝑓
(∑

𝑎𝑖𝑥𝑖

)
:=

∑
𝑎𝑖 𝑓 (𝑥𝑖).

For 𝐹 : 𝑋 → M1(𝑌 ) a smeared function, we extend F to a function M1 (𝑋) → M1(𝑌 ) from measures
to measures, denoted �̃� (or simply F), by setting, for any measurable function 𝜑 : 𝑌 → R≥0,

𝐹𝜑 (𝑥) :=
∫
𝑦∈𝑌

𝜑(𝑦)
(
𝐹 (𝑥)

)
(𝑦)∫

𝑦∈𝑌
𝜑(𝑦)�̃� (𝜇) (𝑦) :=

∫
𝑥∈𝑋

𝐹𝜑 (𝑥)𝜇(𝑥),

where 𝐹𝜑 : 𝑋 → R≥0 is an auxiliary function. See also equations (7.11) and (7.12).

https://doi.org/10.1017/fms.2021.68 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.68


Forum of Mathematics, Sigma 31

Proposition 7.10. If 𝐹 : 𝑋 → M1(𝑌 ) is continuous, then the extension �̃� : M1(𝑋) → M1(𝑌 ) is
continuous.

Proof. Let (𝑥𝑖)∞𝑖=0 be a sequence approaching 𝑥 ∈ 𝑋 . By assumption, 𝐹 (𝑥𝑖) approaches 𝐹 (𝑥) in the
weak∗ topology. By Proposition 2.23, this is equivalent to saying that for all continuous bounded
functions 𝜑 : 𝑌 → R≥0 the function 𝐹𝜑 above is continuous. Furthermore, 𝐹𝜑 is bounded since F takes
values in probability measures. We now show that �̃� is continuous. Let 𝜇𝑖 → 𝜇 ∈ M(𝑋). We want to
show that �̃� (𝜇𝑖) → �̃� (𝜇) ∈ M1 (𝑌 ); that is, for any continuous bounded function 𝜑 : 𝑌 → R≥0,∫

𝑥∈𝑋
𝐹𝜑 (𝑥)𝜇𝑖 (𝑥) →

∫
𝑥∈𝑋

𝐹𝜑 (𝑥)𝜇(𝑥).

This is true by definition of the weak∗ topology in M1(𝑋) and Proposition 2.23, since 𝐹𝜑 is continuous
and bounded. �

In our applications, F takes values in finitely supported measures, with a bound on the size of the
support. Concretely, if 𝐹 : 𝑋 → R𝑌 can be written as a finite sum

𝐹 (𝑥) =
𝑁∑
𝑖=1

𝜓𝑖 (𝑥) 𝑓𝑖 (𝑥)

for real-valued functions 𝜓𝑖 and invertible Y-valued functions 𝑓𝑖 , then, by equation (7.9), the extension
is defined by

𝐹 (𝜇) =
𝑁∑
𝑖=1

𝑓𝑖 (𝜓𝑖 · 𝜇) =
𝑁∑
𝑖=1

(𝜓𝑖 ◦ 𝑓 −1
𝑖 ) · 𝑓𝑖 (𝜇) (7.11)

where the middle expression is a sum of pushforwards of scaled measures, and in the last expression we
have pulled the scaling factors out. If 𝜇 is also finitely supported, we have

𝐹
(∑

𝑖

𝑎𝑖𝑥𝑖

)
=

∑
𝑖, 𝑗

𝑎𝑖𝜓 𝑗 (𝑥𝑖) 𝑓 𝑗 (𝑥𝑖). (7.12)

Definition 7.13. With the above extension of notation, the iterates of the smeared return map P are
defined by

𝑃0 (𝑥) := 𝑥
𝑃𝑛 (𝑥) := 𝑃(𝑃𝑛−1 (𝑥)).

(7.14)

Definition 7.15. A measure 𝜈 on Y that is invariant under the flow 𝜙𝑡 induces a flux 𝜇 = 𝜈𝜏 on a global
cross section 𝜏 that is invariant under the first return map p (see Viana and Oliveira [59, Section 3.4.2]).
Concretely, pick 𝜀 > 0 small enough so that the map 𝑏 : [0, 𝜀] × 𝜏 → 𝑌 defined by 𝑏(𝑡, 𝑥) = 𝜙𝑡 (𝑥) is
an embedded flow box. Then for 𝑆 ⊂ 𝜏, define 𝜇(𝑆) := 𝜈

(
𝜙 [0, 𝜀 ] (𝑆)

)
/𝜀. (Since our cross sections are

compact manifolds-with-boundary, we can always find such an 𝜀.)

We have the following invariance property.

Proposition 7.16. If 𝜈 is a measure on𝑈𝑇Σ that is invariant under 𝜙𝑡 , then 𝜈𝜏 is invariant under p and
𝜓𝜈𝜏 is invariant under P.

For motivation for the factor of 𝜓 in the proposition statement, think about extending the definitions
to allow 𝜓 to be the (noncontinuous) characteristic function of 𝜏0 � 𝜏; then P is the ordinary first return
map to 𝜏0, and 𝜓𝜈𝜏 = 𝜈𝜏0 is the flux of 𝜏0. See also Example 9.3.
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Proof. The first part is standard. For the second part, let 𝜇 = 𝜈𝜏 . Then we have

𝑃
(
𝜓 · 𝜇

)
= 𝑝

(
𝜓 · (𝜓 ◦ 𝑝) · 𝜇

)
+ 𝑝2 (𝜓 · (�̄� ◦ 𝑝) · (𝜓 ◦ 𝑝2) · 𝜇

)
+ . . .

=
𝑁∑
𝑘=1

𝑝𝑘
(
𝜓 · (�̄� ◦ 𝑝) · · · (�̄� ◦ 𝑝𝑘−1) · (𝜓 ◦ 𝑝𝑘 ) · 𝜇

)
=

𝑁∑
𝑘=1

(𝜓 ◦ 𝑝−𝑘 ) · (�̄� ◦ 𝑝−𝑘+1) · · · (�̄� ◦ 𝑝−1) · 𝜓 · 𝑝𝑘 (𝜇)

=
𝑁∑
𝑘=1

(𝜓 ◦ 𝑝−𝑘 ) · (�̄� ◦ 𝑝−𝑘+1) · · · (�̄� ◦ 𝑝−1) · 𝜓 · 𝜇

using the definition of P (in the form of equation (7.6)), rewriting as a sum, equation (7.11) and invariance
of 𝜇 under p. Since 𝜓 + �̄� = 1, this sum telescopes, and the result is 𝜓𝜇. �

We will sometimes blur the distinction between a geodesic current and its flux and write, for instance,
𝜈(𝜏) for the total mass of 𝜈𝜏 on 𝜏, or 𝜈(𝜓𝜏) for

∫
𝑥∈𝜏 𝜓(𝑥)𝜈𝜏 (𝑥).

7.2. Homotopy type of return

We will additionally need to track how a point returns to the cross section. For this, we suppose that
we have a global cross section 𝜏 contained in a simply connected cross section 𝜏′. (For a 𝐶1 flow on a
manifold of dimension at least 3, there is always a simply connected cross section [4].) For such a cross
section, from the first return for 𝑥 ∈ 𝜏, we can extract another piece of information: the homotopy class
of the return trajectory.

Definition 7.17. Let 𝜙𝑡 be a flow on a manifold Y and 𝜏 be a global cross section, contained in a
larger compact simply connected cross section 𝜏′. Fix a basepoint ∗ ∈ 𝜏′. For 𝑥 ∈ 𝜏, define the return
trajectory 𝑚(𝑥) ∈ 𝜋1 (𝑌, ∗) by taking the homotopy class of a path that runs in 𝜏′ from ∗ to x, along
the flow trajectory from x to 𝑝𝜏 (𝑥), and then in 𝜏′ from 𝑝𝜏 (𝑥) back to ∗. Since 𝜏′ is simply connected,
𝑚(𝑥) is independent of the choice of path.

Lemma 7.18. Let Y be a compact manifold with flow 𝜙𝑡 and 𝜏 be a global cross section. As x varies in
𝜏, the return trajectory 𝑚(𝑥) takes on only finitely many values.

Proof. Since there are upper bounds on the return time (Lemma 7.3), on the speed of 𝜙𝑡 with respect to a
Riemannian metric on Y and on the diameter of 𝜏′, the length of the path representing 𝑚(𝑥) is bounded.
On a compact manifold, there are only finitely many elements of 𝜋1 (𝑌, ∗) that have representatives of
bounded length. �

To get the return map for iterates, we also incorporate the point of first return.

Definition 7.19. The homotopy return map is the map 𝑞 : 𝜏 → 𝜏 × 𝜋1 (𝑌, ∗) defined by

𝑞(𝑥) := (𝑝(𝑥), 𝑚(𝑥)).

We can iterate q by inductively defining 𝑞𝑛+1 to be the composition

𝜏
𝑞𝑛

−→ 𝜏 × 𝜋1 (𝑌 )
𝑞×id
−−−→ 𝜏 × 𝜋1 (𝑌 ) × 𝜋1 (𝑌 )

(𝑥,𝑔,ℎ) ↦→(𝑥,ℎ𝑔)
−−−−−−−−−−−−−→ 𝜏 × 𝜋1 (𝑌 ).

Define 𝑚𝑛 (𝑥) ∈ 𝜋1 (𝑌, ∗) to be the second component of 𝑞𝑛 (𝑥).

Remark 7.20. An alternative approach to defining homotopy types of return trajectories is to pick a
cross section in the universal cover, as done by Erlandsson–Parlier–Souto in [23, Section 3.2].
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Definition 7.21. For 𝜏 a global cross section with basepoint ∗, 𝜏0 � 𝜏 a smaller global cross section, 𝜓
a bump function for this pair and 𝜏′ ⊃ 𝜏 a simply connected cross section, the smeared homotopy return
map 𝑄 : 𝜏 → R1(𝜏 × 𝜋1 (𝑌, ∗)) is defined by

𝑄(𝑥) :=

{
𝑞(𝑥) 𝑝(𝑥) ∈ 𝜏0

𝜓(𝑝(𝑥)) · 𝑞(𝑥) + �̄�(𝑝(𝑥)) · 𝐿𝑚(𝑥)𝑄(𝑝(𝑥)) 𝑝(𝑥) ∈ 𝜏 − 𝜏0

where 𝐿𝑔 is left translation by 𝑔 ∈ 𝜋1 (𝑌, ∗):

𝐿𝑔

(∑
𝑖

𝑎𝑖 (𝑥𝑖 , ℎ𝑖)
)

:=
∑
𝑖

𝑎𝑖 (𝑥𝑖 , 𝑔ℎ𝑖).

There is once again a natural notion of iteration, defined by inductively setting𝑄𝑛+1 to be the composition

𝜏
𝑄𝑛

−→ R1 (𝜏 × 𝜋1 (𝑌 ))
R1 (𝑄×id)
−−−−−−−→ R1 (R1 (𝜏 × 𝜋1) × 𝜋1 (𝑌 ))

join
−−→ R1 (𝜏 × 𝜋1 (𝑌 )),

where join is the somewhat more involved operation

join

(∑
𝑖

𝑎𝑖

((∑
𝑗

𝑏𝑖 𝑗 (𝑥𝑖 𝑗 , 𝑔𝑖 𝑗 )
)
, ℎ𝑖

))
:=

∑
𝑖, 𝑗

𝑎𝑖𝑏𝑖 𝑗 (𝑥𝑖 𝑗 , ℎ𝑖𝑔𝑖 𝑗 ).

(The terminology comes from the theory of monads [45, 60]. See equation (7.12).)

Definition 7.22. We define the smeared nth return trajectory 𝑀𝑛 : 𝜏 → R1𝜋1 (𝑌 ) to be the composition

𝜏
𝑄𝑛

−→ R1 (𝜏 × 𝜋1 (𝑌 )) −→ R1𝜋1 (𝑌 )

where at the second step we lift the projection on the second component to act on weighted objects as
in Definition 7.8.

Let Λ(𝑛, 𝜏) be the set of curves that appear with nonzero coefficient in 𝑀𝑛 (𝑥) for some 𝑥 ∈ 𝜏.

Lemma 7.23. Λ(𝑛, 𝜏) is finite.

Proof. Immediate from Lemmas 7.5 and 7.18. �

Lemma 7.24. The maps 𝑄𝑘 and 𝑀𝑘 are continuous.

Proof. The proof of Proposition 7.7 also proves that Q is continuous. It then follows that 𝑄𝑘 and 𝑀𝑘

are continuous. �

7.3. Return maps for the geodesic flow

We now turn to the specifics of our situation. Let Σ be the surface S endowed with an arbitrary hyperbolic
Riemannian metric g. Points in 𝑈𝑇Σ will be denoted �𝑥, meaning a pair of a point 𝑥 ∈ Σ and a unit
tangent vector at x. Let 𝜙𝑡 : 𝑈𝑇Σ → 𝑈𝑇Σ be the geodesic flow associated to g.

We pick nested global cross sections 𝜏0 � 𝜏 ⊂ 𝜏′, with 𝜏′ simply connected, and a bump function 𝜓
for the pair (𝜏0, 𝜏). We thus get a smeared nth return trajectory 𝑀𝑛 : 𝜏 → R1𝜋1 (𝑈𝑇Σ, ∗). We want to
work with curves in Σ rather than its unit tangent bundle, so compose with the projection 𝜋Σ : 𝑈𝑇Σ → Σ
to get a linear combination of elements of 𝜋1 (𝑆, 𝜋Σ (∗)). Then take conjugacy classes (to pass to unbased
curves) to get an element of R1C+(𝑆). We call the resulting map [𝑀𝑛], which has type

[𝑀𝑛] : 𝜏 → R1C+(𝑆).
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From Lemmas 7.23 and 7.24, [𝑀𝑛] is a continuous function with values in the finite-dimensional
subspace R[Λ(𝑛,𝜏) ] ⊂ RC+(𝑆), where [Λ(𝑛, 𝜏)] is the projection of Λ(𝑛, 𝜏).

7.4. Definition of the extension

Now, we will use the above return map [𝑀𝑛] to define the extension of f to geodesic currents in
Theorem A. With 𝜏0 � 𝜏 ⊂ 𝜏′ as above, we define

𝑅𝑛 : GC+(𝑆) → RC+(𝑆)

𝑅𝑛 (𝜇) :=
∫
𝜏
[𝑀𝑛 (�𝑥)]𝜓(�𝑥)𝑑𝜇𝜏 (�𝑥).

Observe that, for fixed n, 𝑅𝑛 (𝜇) is a weighted multi-curve with a fixed set of possible connected
components but with weights depending on 𝜇. As we will explain in Section 10, because [𝑀𝑛 (�𝑥)] is
continuous on 𝜏, 𝑅𝑛 is continuous with respect to the weak∗ topology on GC+(𝑆).

We can now finally define our extension of f.

Definition 7.25. Let 𝜏 be a good cross section and f a weighted curve functional satisfying stability,
homogeneity, weighted quasi-smoothing and convex union. We define

𝑓 𝑛𝜏 (𝜇) := 𝑓 (𝑅𝑛 (𝜇)) (7.26)

𝑓𝜏 (𝜇) := lim
𝑛→∞

𝑓 𝑛𝜏 (𝜇)
𝑛

. (7.27)

We will prove that the limit exists (at least for our cross section) in Proposition 9.6.

Warning 7.28. We work with weighted linear combinations of objects (or, more generally, measures) at
many places in the article. Some functions (like 𝑅𝑛) are by definition additive under linear combinations,
and in Definition 7.8 we also silently extend other functions (like p) to apply additively to linear
combinations of points or measures. But the main curve functional f we are interested is not necessarily
additive. (We only assume that f satisfies convex union in the main theorems.)

8. Constructing global cross sections

Next we define the specific global cross section we use. We make choices that are convenient for
guaranteeing that certain crossings are essential.

Definition 8.1. For Σ a hyperbolic surface, c an oriented geodesic segment on Σ and 0 < 𝜃 < 𝜋/2 an
angle, the wedge set 𝑊 (𝑐, 𝜃) ⊂ 𝑈𝑇Σ is the set of vectors that cross c nearly perpendicularly:

𝑊 (𝑐, 𝜃) :=
{
�𝑥 = (𝑥, 𝑣)

�� 𝑥 ∈ 𝑐, | ang(𝑇𝑥𝑐, 𝑣) − 𝜋/2| ≤ 𝜃
}
.

(Angles ang(𝑣, 𝑤) are measured by the counterclockwise rotation from v to w.) We can likewise define
the wedge set 𝑊 ({𝑐𝑖}, 𝜃) for a collection of geodesic segments {𝑐𝑖}𝑘𝑖=1.

We wish to find a wedge set 𝑊 ({𝑐𝑖}, 𝜃) that is an embedded global cross section for the geodesic
flow 𝜙𝑡 .

Fix 𝜃 = 𝜋/6. For any geodesic arc c, the wedge set𝑊 (𝑐, 𝜃) intersects any geodesic that passes through
a nonempty open set. Thus, by compactness of 𝑈𝑇Σ, there exist a finite collection of immersed arcs
(𝑐𝑖)𝑛𝑖=1 so that

⋃𝑛
𝑖=1𝑊 ({𝑐𝑖}, 𝜃)𝑛𝑖=1 is a disconnected, not necessarily embedded, global cross section of

the geodesic flow. We will produce an embedded global cross section from it. Immersed points come
from intersection points between the geodesic segments 𝑐𝑖 , but not all of them produce immersed points
of the global cross section.
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θ ϕ

cj

ci

Figure 8.1. Wedge sets not intersecting, in the case 2𝜃 < 𝜑.

θ

ϕ
cj

ci

Figure 8.2. Cut and flow operation when the angle of intersection is small, 𝜃 < 𝜋/2 − 𝜑.

Indeed, suppose ang(𝑐𝑖 , 𝑐 𝑗 ) = 𝜑. There are two good cases:

(1) If 2𝜃 < |𝜑|, the wedge sets do not intersect, as shown in Figure 8.1.
(2) If 𝜃 < 𝜋

2 − |𝜑|, then the corresponding wedge sets do intersect, but we can perturb the 𝑐 𝑗 slightly
to avoid the intersection. Given a small interval [𝑎, 𝑏] of the geodesic segment 𝑐 𝑗 , containing one
intersection point between 𝑐𝑖 and 𝑐 𝑗 , we consider the wedge𝑊 ([𝑎, 𝑏], 𝜃). By pushing the endpoints
𝑎, 𝑏 forward along the extremal angles and removing [𝑎, 𝑏] from 𝑐 𝑗 , as shown in Figure 8.2, we
obtain new interval with endpoints 𝑎′, 𝑏′ and a new wedge set 𝑊 ([𝑎′, 𝑏′], 𝜃 ′), for some 𝜃 ′ > 𝜃, so
that𝑊 ([𝑎′, 𝑏′], 𝜃 ′) is disjoint from 𝑐𝑖 and𝑊 ([𝑎′, 𝑏′], 𝜃) intersects every geodesic that𝑊 ([𝑎, 𝑏], 𝜃)
does (so we still have a global cross section).

Remark 8.2. Note that the inequality must be strict in case (2). Indeed, if 𝜃 = 𝜋/2 − |𝜙|, the wedge sets
do intersect, but this is not a good case: we cannot guarantee to make the wedge sets locally disjoint by
flowing a segment of 𝑐 𝑗 forward slightly.

Our choice 𝜃 = 𝜋/6 guarantees that one of these two cases happens.
Next, we will construct an immersed connected global cross section 𝜏′ containing this disconnected

wedge set.

Proposition 8.3. For any wedge set 𝑊 ({𝑐𝑖}, 𝜃) and any 𝜀 > 0, there exists a closed geodesic 𝛿 so that
for each i, there is a subsegment 𝛿𝑖 ⊂ 𝛿 so that 𝑐𝑖 ⊂ 𝐵𝜀 (𝛿𝑖) and every geodesic that intersects𝑊 (𝑐𝑖 , 𝜃)
also intersects 𝑊 (𝛿𝑖 , 𝜃 + 𝜀).
Proof. Use [5, Theorem 2.4] to construct the closed geodesic 𝛿 with 𝑐𝑖 ⊂ 𝐵𝜀 (𝛿). If 𝜀 is small enough,
by following the geodesic flow from 𝑊 (𝑐𝑖 , 𝜃) we hit 𝛿 in a geodesic segment 𝛿𝑖 , so that every geodesic
intersecting 𝑊 (𝑐𝑖 , 𝜃) also intersects 𝑊 (𝛿𝑖 , 𝜃 + 𝜀′) for some 𝜀′. Since 𝜀′ goes to 0 as 𝜀 goes to 0, the
result follows. �

Observe that if 𝜀 is small enough and the 𝑐𝑖 in Proposition 8.3 are disjoint, then the 𝛿𝑖 will be
disjoint as well. Thus, combining the above propositions (and redefining 𝜃 to be 𝜃 + 𝜀), we have found
a closed geodesic 𝛿 and disjoint geodesic segments 𝛿′𝑖 ⊂ 𝛿 so that we have the following global cross
sections:

◦ A wedge set 𝜏0 := 𝑊 ({𝛿𝑖}, 𝜃) giving a disconnected embedded global cross section.
◦ A global cross section 𝑊 (𝛿, 𝜃) containing the previous one which is connected but not embedded

(as 𝛿 will self-intersect).
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We would like to use the second global cross section𝑊 (𝛿, 𝜃) to close up the homotopy return trajectories
of the smeared return map. However,𝑊 (𝛿, 𝜃) is not simply connected, so the homotopy return map will
depend on which path along the cross section we choose. This can be easily fixed by setting, for some
small open interval 𝐼 ⊂ 𝛿\

⋃
𝑖{𝛿𝑖},

𝜏′ := 𝑊 (𝛿 − 𝐼, 𝜃)

so that 𝜏0 ⊂ 𝜏′. Strictly speaking, 𝜏′ is not simply connected as a subset of𝑈𝑇Σ; rather, it is the image of
an immersed disk. Since 𝜏0 ⊂ 𝜏′ lies in a portion where the immersion is injective, there is no ambiguity
about how to connect up the return paths to 𝜏0 within 𝜏′.

Definition 8.4. A good cross section is the data of cross sections 𝜏0, 𝜏, 𝜏
′ and bump function 𝜓, where

𝜏 is a slight enlargement of the embedded cross section 𝜏0 so that 𝜏0 � 𝜏 ⊂ 𝜏′, for 𝜏′ a cross section as
above. For simplicity, we will refer to a good cross section just as 𝜏.

A good cross section gives the complete setup of Subsection 7.4.

9. Join lemma

We now turn to the heart of the proof, proving join lemmas to show that we can smooth essential
crossings to relate the return maps of order k, order ℓ and order 𝑘 + ℓ. We chose the global cross sections
𝜏0 � 𝜏 ⊂ 𝜏′ in Section 8 to be wedge sets in order to connect to hyperbolic geometry and prove the
necessary crossings are essential. Recall that we refer to the data of the nested cross sections from wedge
sets (including the bump function 𝜓, when relevant) as a good cross section (Definition 8.4), which we
refer to as 𝜏.

Lemma 9.1 (Classical join lemma). Let 𝜏 be a good cross section. There is a curve 𝐾𝜏 and integer 𝑤𝜏

so that for large enough 𝑘, ℓ ≥ 0, we have, for all �𝑥 ∈ 𝜏,

(a) [𝑚𝑘 (�𝑥)] ∪ [𝑚ℓ (𝑝𝑘 (�𝑥))] ∪ 𝐾𝜏 ↘𝑤𝜏
[𝑚𝑘+ℓ (�𝑥)]

(b) [𝑚𝑘+ℓ (�𝑥)] ∪ 𝐾𝜏 ↘𝑤𝜏
[𝑚𝑘 (�𝑥)] ∪ [𝑚ℓ (𝑝𝑘 (�𝑥))].

As a corollary, we will prove a corresponding join lemma for the smeared return map.

Lemma 9.2 (Smeared join lemma). Let 𝜏 be a good cross section. There is a curve 𝐾𝜏 and weight 𝑤𝜏

so that for large enough 𝑘, ℓ ≥ 0, we have, for all �𝑥 ∈ 𝜏,

(a) [𝑀𝑘 (�𝑥)] ∪ [𝑀ℓ (𝑃𝑘 (�𝑥))] ∪ 𝐾𝜏 ↘𝑤𝜏
[𝑀𝑘+ℓ (𝑥)]

(b) [𝑀𝑘+ℓ (�𝑥)] ∪ 𝐾𝜏 ↘𝑤𝜏
[𝑀𝑘 (�𝑥)] ∪ [𝑀ℓ (𝑃𝑘 (�𝑥))].

Example 9.3. As an example of smeared first return map and to illustrate how the join lemma is applied,
consider the case when the geodesic current 𝜇 is 𝛿𝛾 for 𝛾 a closed curve whose lift to the unit tangent
bundle intersects the global cross section 𝜏 at two points �𝑥0 and �𝑥1. We assume further that �𝑥0 ∉ 𝜏0,
𝜓( �𝑥0) = 𝑡 ∈ (0, 1), and �𝑥1 ∈ 𝜏0. Then, as illustrated in Figure 9.1, [𝑀1 ( �𝑥0)] is a curve 𝐶0,1 with weight
1, since 𝑝𝜏 ( �𝑥0) = �𝑥1 ∈ 𝜏0. On the other hand, [𝑀1 ( �𝑥1)] consists of a weighted multi-curve with two
components 𝐶1,2 and 𝐶1,3 starting from 𝑥1 and landing at �𝑥2 = �𝑥0 and �𝑥3 = �𝑥1, with weights t and 1 − 𝑡,
respectively. Then (with 𝜇 = 𝛿𝛾) we have

𝜓𝜇𝜏 = 𝑡𝛿 �𝑥0 + 𝛿 �𝑥1

𝑅1(𝜇) = 𝑡𝐶0,1 + 𝑡𝐶1,2 + (1 − 𝑡)𝐶1,3.

Now, the join lemma asserts that we can to join the curves 𝐶0,1 and 𝐶1,2, together with an extra curve
K, to get 𝐶0,2. Assuming all of the relevant intersections are essential, we can do it with K being two
copies of 𝛿, one oriented in each direction, in the steps shown in Figure 9.2.

In the full proof, to guarantee the analogous intersections are essential we will add more copies of 𝛿.
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δ

δ

C1,2

tC0,1

x1x0

(1 − t)C1,3

Figure 9.1. Example of a first iteration of the smeared first return map; that is, [𝑀1] on a geodesic
current corresponding to a closed curve intersecting the cross section 𝜏 twice at points �𝑥0, �𝑥1 and the
cross section 𝜏0 once at point �𝑥1. The weight of the bump function 𝜓 at �𝑥0 is t. We obtain three weighted
curves. 𝐶0,1 consisting of the geodesic trajectory that goes from �𝑥0 to 𝑥1 and closes off by following
the cross section in some coherent way. 𝐶0,1 has weight 1 by definition of smeared return map, since
�𝑥1 ∈ 𝜏0. 𝐶1,2 has weight t, whereas 𝐶1,3 has weight 1 − 𝑡.

C1,2 C0,1

↘ ↘

↘ �

Figure 9.2. Applying the join lemma in Example 9.3. At each step, we smooth at the circled crossing.

Proof of Lemma 9.1. First we look at the geometry of a return trajectory 𝑚𝑘 (�𝑥) when k is large, as a
concrete curve either on Σ or lifted to the universal cover. Since there is a lower bound on the first
return time (Lemma 7.3), the nth return time grows at least linearly in k. We may therefore assume that
the portion of 𝑚𝑘 (�𝑥) that follows 𝜙𝑡 (�𝑥) is very long. The lift of 𝑚𝑘 (�𝑥) to the universal cover is thus a
broken path: for some large L, it alternates between

(a) long segments of length at least L following 𝜙𝑡 (�𝑥) and
(b) short segments of some length following 𝛿,

with turns between them that are within 𝜀 of a right angle, alternating left and right. (See Definition
12.1 for a precise definition.)

We study the geometry of broken paths in Section 12. In particular, we prove several lemmas there
guaranteeing that broken paths intersect essentially in certain circumstances. If L is large enough, we
have the following results:

◦ A broken path and a lift of 𝛿 intersect essentially (Lemma 12.2).
◦ Broken paths with short segments that are different enough in length intersect essentially (Lemma

12.3).
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We first prove part (a) in the lemma statement. We will use the following steps. By convention, 𝛿
is oriented to the right and 𝛿−1 is the same curve oriented to the left. Let 𝛼, 𝛽 and 𝛾 be 𝑚𝑘 (�𝑥) and
𝑚ℓ (𝑝𝑘 (�𝑥)), respectively.

(1) We start by smoothing [𝛼] with a large number N of copies of [𝛿]. Each one of these intersections
is essential by Lemma 12.2. This yields a new curve [𝛼1] with lift a broken path with an lengthened
short segment.

(2) We then smooth [𝛼1] against [𝛽]. The corresponding lifts are broken paths with short segments of
different enough lengths, so Lemma 12.3 guarantees that the crossing is essential, yielding a new
curve [𝛾1].

(3) Finally, we smooth [𝛾1] against 𝑁 [𝛿−1]. This returns to the correct homotopy class, again using
Lemma 12.2 to guarantee that the crossings are essential. The result is [𝛾], as desired.

We need to use a large enough number N of copies of 𝛿 that guarantees that the crossing in the second
step above is essential. Let 𝜀 be the angle of the wedge set, let ℓ be the length of 𝛿 and let 𝜅(𝜀) be the
constant from Lemma 12.3. Then we claim that it suffices to take 𝑁 = 2𝑀 with 𝑀 = 1 + �𝜅(𝜀)/ℓ�, so
that overall constants in the statement are

𝐾𝜏 = 𝑁
(
[𝛿] + [𝛿−1]

)
𝑤𝜏 = 2𝑁 + 1 = 3 + 4�𝜅(𝜀)/ℓ� .

In order to be explicit about how to apply Lemmas 12.2 and 12.3, we will work with concrete lifts of
our curves to broken paths in the universal cover; to pick out a lift, we work with elements of 𝜋1 and so
pick a basepoint. For concreteness, choose the basepoint ∗ to be at the far left end of the segment on 𝛿
defining 𝜏′. (Recall that we removed a short interval to make 𝜏′ simply connected.) We are particularly
interested in the short segments on the lift of 𝛿; for that purpose, parametrise the lift of 𝛿 by length in
R, with 0 at the lift of the basepoint ∗ and 𝛿 oriented in the positive direction so that 𝛿 itself lifts to a
curve ending at ℓ.

Now we state precisely the sequence of smoothings that we will perform, illustrating them with
slightly schematic figures of both the curves on the surface and of the corresponding broken paths
realising the lifts in the universal cover. At each step we circle the crossings that we smooth at the next
step.

(i) Let 𝛿, 𝛼 and 𝛽 be elements of 𝜋1 (𝑆) representing the transversal curve, 𝑚𝑘 (�𝑥) and 𝑚ℓ (𝑝𝑘 (�𝑥)),
respectively:

α β

δ

δ−1

The endpoints of the central short segments of lifts of 𝛼 and 𝛽 are both in (0, ℓ), in the
parametrisation above.
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(ii) Smooth [𝛼] with 𝑁 [𝛿] a total of N times to get [𝛼1] with 𝛼1 = 𝛿𝑀𝛼𝛿𝑀 . The crossings are essential
by Lemma 12.2.

αδ4 β

The endpoints of the central short segment of the lift of 𝛼1 are in (−𝑀ℓ,−(𝑀 − 1)ℓ) and in
(𝑀ℓ, (𝑀 + 1)ℓ).

(iii) Smooth [𝛼𝛿𝑁 ] ∪ [𝛽] at a middle crossing to make [𝛾1] = [𝛼𝛿𝑀 𝛽𝛿𝑀 ]. Since (𝑀 − 1)ℓ ≥ 𝜅(𝜀), the
crossing is essential by Lemma 12.3.

αδ2ββδ2

Here, in the picture in the universal cover, two different lifts of 𝛾1 are shown (one dashed), to make
it clearer what happened in the smoothing; these are the lifts of 𝛿𝑀𝛼𝛿𝑀 𝛽 (solid) and 𝛽𝛿𝑀𝛼𝛿𝑀

(dashed).
(iv) Smooth [𝛾1] with 𝑁 [𝛿−1] a total of N times at appropriate crossings to make [𝛼𝛽] = 𝑚𝑘+ℓ (�𝑥). The

crossings are essential by Lemma 12.2.

αβ
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(v) The result is [𝛼𝛽] as desired.

This completes the proof of part (a) of the statement. Part (b) is very similar. Precisely, we do the
following steps.
(i′) Let 𝛿 = 𝜏, 𝛼 = 𝑚𝑘 (�𝑥) and 𝛽 = 𝑚ℓ (𝑝𝑘 (�𝑥)) be as before, so that we start with [𝛼𝛽] = [𝑚𝑘+ℓ (�𝑥)].

(ii′) Use Lemma 12.2 to smooth with 𝑁 [𝛿] a total of N times to get [𝛾1] with 𝛾1 = 𝛿𝑀𝛼𝛽𝛿𝑀 . If we set
𝛾2 = 𝛽𝛿𝑁𝛼, then [𝛾1] = [𝛾2], but these two curves have different canonical lifts to the universal
cover: the endpoints of the primary short segment 𝛾1 are in (−𝑀ℓ,−(𝑀 −1)ℓ) and (𝑀ℓ, (𝑀 +1)ℓ)
on the lift of 𝛿, while the endpoints of the (zero-length) primary ‘short segment’ of 𝛾2 are at the
same point in (0, ℓ).

(iii′) Smooth [𝛾1] with itself to make [𝛼1] ∪ [𝛽1], with 𝛼1 = 𝛿𝑀𝛼 and 𝛽1 = 𝛽𝛿𝑀 . The crossing
corresponds to the lifts given by 𝛾1 and 𝛾2 and is essential by Lemma 12.3.

(iv′) Smooth [𝛼1] and [𝛽1] each M times with 𝑀 [𝛿−1] to make [𝛼] and [𝛽], respectively, using Lemma
12.2.

(v′) The result is [𝛼] ∪ [𝛽] as desired. �

Proof of Lemma 9.2. By definition of 𝑀𝑘 and 𝑃𝑘 , we have nonnegative constants K, 𝑎𝑖 , L and 𝑏𝑖, 𝑗 so
that

𝑀𝑘 (�𝑥) =
𝐾∑
𝑖=𝑘

𝑎𝑖𝑚
𝑖 (�𝑥) 𝑃𝑘 (�𝑥) =

𝐾∑
𝑖=𝑘

𝑎𝑖 �𝑦𝑖

𝑀ℓ ( �𝑦𝑖) =
𝐿∑
𝑗=ℓ

𝑏𝑖, 𝑗𝑚
𝑗 ( �𝑦𝑖) 𝑀𝑘+ℓ (�𝑥) =

𝐾∑
𝑖=𝑘

𝐿∑
𝑗=𝑙

𝑎𝑖𝑏𝑖, 𝑗𝑚
𝑖 (�𝑥)𝑚 𝑗 ( �𝑦𝑖).

Furthermore,
∑

𝑖 𝑎𝑖 = 1 and, for fixed i,
∑

𝑗 𝑏𝑖, 𝑗 = 1. The result follows by distributing and applying
Lemma 9.1 repeatedly. �

As an immediate consequence, we have the following.
Proposition 9.4. For a fixed good cross section 𝜏 as constructed above and for every curve functional f
satisfying quasi-smoothing and convex union, there is a constant 𝜅(𝜏) so that, for sufficiently large 𝑘, ℓ
and every geodesic current 𝜇, we have

𝑓 𝑘+ℓ𝜏 (𝜇) ≤ 𝑓 𝑘𝜏 (𝜇) + 𝑓 ℓ𝜏 (𝜇) + 𝜅(𝜏)𝜇(𝜓𝜏).

Proof. We will prove this with 𝜅(𝜏) = 𝑓 (𝐾𝜏) + 𝑅𝑤𝜏 , where 𝐾𝜏 and 𝑤𝜏 are from Lemma 9.2 and R is
the quasi-smoothing constant from equation (1.2).
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We have

𝑓 𝑘+ℓ𝜏 (𝜇) = 𝑓

(∫
𝜏
𝑀𝑘+ℓ (�𝑥)𝜓(�𝑥)𝜇(�𝑥)

)
≤ 𝑓

(∫
𝜏

(
𝑀𝑘 (�𝑥) + 𝑀ℓ (𝑃𝑘 (�𝑥)) + 𝐾𝜏

)
𝜓(𝑥)𝜇(𝑥)

)
+

∫
𝜏
𝑅𝑤𝜏𝜓(�𝑥)𝜇(�𝑥)

≤ 𝑓

(∫
𝜏
𝑀𝑘 (𝑥)𝜓(�𝑥)𝜇(�𝑥)

)
+ 𝑓

(∫
𝜏
𝑀ℓ (𝑃𝑘 (�𝑥))𝜓(�𝑥)𝜇(�𝑥)

)
+ 𝜅(𝜏)

∫
𝜏
𝜓(�𝑥)𝜇(�𝑥)

= 𝑓 𝑘 (𝜇) + 𝑓

(∫
𝜏
𝑀ℓ (�𝑥)𝑃𝑘

∗ (𝜓(�𝑥)𝜇(�𝑥))
)
+ 𝜅(𝜏)𝜇(𝜓𝜏)

= 𝑓 𝑘 (𝜇) + 𝑓 ℓ (𝜇) + 𝜅(𝜏)𝜇(𝜓𝜏),

where we use, successively:
◦ the definition of 𝑓 𝑘+ℓ ;
◦ Lemma 9.2 and the quasi-smoothing property of f ;
◦ the convex union property of f and the definition of 𝜅(𝜏);
◦ change of variables and the definitions of 𝑓 𝑘 and 𝜇(𝜓𝜏); and
◦ Proposition 7.16 and the definition of 𝑓 ℓ . �

We recall a slight variation of Fekete’s lemma, which follows from standard versions, such as de
Bruijn and Erdös [17, Theorem 22].
Lemma 9.5 (Fekete’s lemma). Let (𝑎𝑛)∞𝑛=1 be a sequence of real numbers and suppose there exists N
such that for all 𝑚, 𝑛 ≥ 𝑁 , 𝑎𝑛+𝑚 ≤ 𝑎𝑛 + 𝑎𝑚. Then

lim
𝑛→∞

𝑎𝑛
𝑛

exists and is equal to inf
𝑛≥𝑁

𝑎𝑛
𝑛
.

Finally, we can show that the limit defining the extension of f exists.
Proposition 9.6. For any curve functional f satisfying quasi-smoothing and convex union, the limit
defining 𝑓𝜏 in equation (7.27) exists.
Proof. Use Proposition 9.4 and apply Lemma 9.5 to the sequence 𝑓 𝑘𝜏 (𝜇) + 𝜅(𝜏)𝜇(𝜓𝜏). �

10. Continuity of the extension

In order to prove continuity of the extension, we will prove continuity of 𝑓 𝑘𝜏 and then get upper and
lower bounds on the limit 𝑓𝜏 (𝜇) in terms of 𝑓 𝑘𝜏 (𝜇). Proposition 9.4 lets us use Fekete’s lemma to get
upper bounds. To get lower bounds, we have the following.
Proposition 10.1. For a fixed good cross section 𝜏 and any weighted curve functional f satisfying
homogeneity, weighted quasi-smoothing and convex union, there is a constant 𝐾 (𝜇) = 𝜅(𝜏)𝜇(𝜓𝜏) so
that for all sufficiently large k and every geodesic current 𝜇 we have

2 𝑓 𝑘𝜏 (𝜇) ≤ 𝑓 2𝑘
𝜏 (𝜇) + 𝐾 (𝜇).

Proof. By Lemma 9.2(b) in the case 𝑘 = ℓ,

𝑀2𝑘 (�𝑥) ∪ 𝐾𝜏 ↘𝑤𝜏
𝑀𝑘 (�𝑥) ∪ 𝑀𝑘 (𝑃𝑘 (�𝑥)).

Integrating this statement with respect to the measure 𝜓𝜇 (which is invariant under 𝑃𝑘 ), we find that

𝑀2𝑘 (𝜓𝜇) ∪ 𝐾𝜏 · 𝜇(𝜓𝜏) ↘𝑤𝜏𝜇 (𝜓𝜏) 2𝑀𝑘 (𝜓𝜇).

Applying f to both sides and using homogeneity of f gives the desired result. �
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Since f is not in general additive, by comparison to Proposition 9.4, Proposition 10.1 is more
restrictive, requiring 𝑘 = ℓ. This still suffices to show that the 𝑓 𝑘𝜏 approximate 𝑓𝜏 well.

Lemma 10.2. Let 𝜏 be fixed good cross section and f be a weighted curve functional satisfying homo-
geneity, weighted quasi-smoothing and convex union. For any sufficiently large k,

| 𝑓𝜏 (𝜇) −
𝑓 𝑘𝜏 (𝜇)
𝑘

| ≤ 𝐾 (𝜇)
𝑘

where 𝐾 (𝜇) = 𝜅(𝜏)𝜇(𝜓𝜏) is the constant from Propositions 9.4 and 10.1.

Proof. From Propositions 9.4 and 10.1, for large enough k we have��� 𝑓 2𝑘
𝜏 (𝜇)
2𝑘

−
𝑓 𝑘𝜏 (𝜇)
𝑘

��� ≤ 𝐾 (𝜇)
2𝑘

.

We also have

𝑓 𝑘𝜏 (𝜇)
𝑘

+
( 𝑓 2𝑘

𝜏 (𝜇)
2𝑘

−
𝑓 𝑘𝜏 (𝜇)
𝑘

)
+

( 𝑓 4𝑘
𝜏 (𝜇)
4𝑘

−
𝑓 2𝑘
𝜏 (𝜇)
2𝑘

)
+

( 𝑓 8𝑘
𝜏 (𝜇)
8𝑘

−
𝑓 4𝑘
𝜏 (𝜇)
4𝑘

)
+ · · ·

= lim
𝑛→∞

𝑓 2𝑛𝑘
𝜏 (𝜇)
2𝑛𝑘

= lim
𝑛→∞

𝑓 𝑛𝑘𝜏 (𝜇)
𝑛𝑘

= 𝑓𝜏 (𝜇),

where the first equality follows by telescoping and the second one because we have already proved that
the limit exists. We can then give bounds:

| 𝑓𝜏 (𝜇) −
𝑓 𝑘𝜏 (𝜇)
𝑘

| ≤ |
𝑓 2𝑘
𝜏 (𝜇)
2𝑘

−
𝑓 𝑘𝜏 (𝜇)
𝑘

| + |
𝑓 4𝑘
𝜏 (𝜇)
4𝑘

−
𝑓 2𝑘
𝜏 (𝜇)
2𝑘

| + |
𝑓 8𝑘
𝜏 (𝜇)
8𝑘

−
𝑓 4𝑘
𝜏 (𝜇)
4𝑘

| + · · ·

≤ 𝐾 (𝜇)
2𝑘

+ 𝐾 (𝜇)
4𝑘

+ 𝐾 (𝜇)
8𝑘

+ · · ·

=
𝐾 (𝜇)
𝑘

.

�

We next prove that the 𝑓 𝑘𝜏 are continuous.

Proposition 10.3. Let 𝜏 be fixed good cross section and f be a weighted curve functional satisfying
homogeneity, weighted quasi-smoothing and convex union. Then the functions 𝑓 𝑘𝜏 : GC+(𝑆) → R are
continuous for every k.

We will break the proof into lemmas.

Lemma 10.4. For 𝜏 a (closed) global cross section with interior 𝜏◦, the map 𝜇 ↦→ 𝜇𝜏◦ from GC+(𝑆) to
M(𝜏◦) is continuous.

Proof. We first adjust the definition of the flux 𝜇𝜏◦ . Let 𝜀 be small enough so that the corresponding
flow box is embedded. Pick a nonzero continuous function 𝜔 : [0, 𝜀] → R≥0 so that 𝜔(0) = 𝜔(𝜀) = 0
and

∫ 𝜀

0 𝜔(𝑡) 𝑑𝑡 = 1. Then, for any measurable function r on 𝜏◦, the flux 𝜇𝜏◦ satisfies∫
�𝑥∈𝜏◦

𝑟 (�𝑥) 𝜇𝜏◦ (�𝑥) =
∫ 𝜀

𝑡=0

∫
�𝑥∈𝜏◦

𝜔(𝑡)𝑟 (�𝑥) 𝜇
(
𝜙𝑡 (�𝑥)

)
. (10.5)

Now suppose that we have a sequence of measures 𝜇𝑖 approaching 𝜇 in the weak∗ topology, and let
r be a continuous function on 𝜏◦ with compact support. By Theorem 2.19, it suffices to show that∫
�𝑥∈𝜏◦ 𝑟 (�𝑥) 𝜇𝑖,𝜏◦ (�𝑥) converges to

∫
�𝑥∈𝜏◦ 𝑟 (�𝑥) 𝜇𝜏◦ (�𝑥).

https://doi.org/10.1017/fms.2021.68 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.68


Forum of Mathematics, Sigma 43

a
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Figure 10.1. An example showing that the flux map 𝜇 ↦→ 𝜇𝜏 is not continuous. The sequence of curves
[𝑎𝑛𝑏]/𝑛 approaches [𝑎], but they have very different intersections with 𝜏.

Consider the function s on𝑈𝑇Σ defined by

𝑠(�𝑥) =
{
𝑟 (�𝑥)𝜔(𝑡) if 𝑦 = 𝜙𝑡 (�𝑥) for �𝑥 ∈ 𝜏, 𝑡 ∈ [0, 𝜀]
0 otherwise.

Then s is continuous, since r and 𝜔 vanish on the boundaries of their domains of definition, so∫
�𝑦∈𝑈𝑇 Σ

𝑠(�𝑥)𝜇𝑖 (�𝑦) converges to
∫
�𝑦∈𝑈𝑇 Σ

𝑠(�𝑦)𝜇(�𝑦). The result follows from equation (10.5). �

Remark 10.6. The map 𝜇 ↦→ 𝜇𝜏 from GC+(𝑆) to positive measures M(𝜏) on the closed cross section
is not continuous with respect to the weak∗ topology at points where 𝜇𝜏 (𝜕𝜏) ≠ 0. Indeed, let 𝜇 be
the geodesic current corresponding to a closed curve [𝑎], let [𝑏] be another closed curve intersecting
[𝑎] and let 𝜇𝑛 be the geodesic current corresponding to 1

𝑛 [𝑎
𝑛𝑏] so that lim𝑛→∞ 𝜇𝑛 = 𝜇, as shown in

Figure 10.1. Take a (noncomplete) transversal 𝜏 that intersects supp(𝜇) only once on 𝜕𝜏. Then (for
appropriate choices, as shown) the total mass of 𝜇𝑛 – that is, (𝜇𝑛)𝜏 (𝜏) – is approximately 1/2, while
𝜇𝜏 (𝜏) = 1.

Similarly, for the open transversals 𝜏◦, we have 𝜇𝜏◦ (𝜏◦) = 0 while (𝜇𝑛)𝜏◦ (𝜏◦) is approximately 1/2
for large n. This does not contradict Lemma 10.4; it just says that total mass is not a continuous function
in the weak∗ topology on a noncompact space.

Lemma 10.7. The extension of [𝑀𝑘 ] to measures, as a map from M(𝜏) to RC(𝑆), is continuous.

Proof. Recall from Lemma 7.23 that [𝑀𝑘 (𝜇)] takes values in the finite-dimensional subspace
R[Λ(𝑘, 𝜏, 𝜏0)] ⊂ RC(𝑆). By continuity of [𝑀𝑘 (�𝑥)] (Lemma 7.24), we can write

[𝑀𝑘 (�𝑥)] =
∑

𝐶∈[Λ(𝑘,𝜏,𝜏0) ]
𝑎𝐶 (�𝑥) · 𝐶

where 𝑎𝐶 is a continuous function on 𝜏. (Recall that a function to a finite-dimensional vector space is
continuous iff each of the coordinate functions is continuous; see Remark 2.25.) But then

[𝑀𝑘 (𝜇)] =
∑

𝐶∈[Λ(𝑘,𝜏,𝜏0) ]

(∫
�𝑥∈𝜏

𝑎𝐶 (�𝑥) 𝜇(�𝑥)
)
· 𝐶.

The integrals are continuous functions of 𝜇 by definition of the weak∗ topology on M(𝜏). �

Proof of Proposition 10.3. 𝑓 𝑘𝜏 is the composition of maps

GC+(𝑆) 𝜇 ↦→𝜇𝜏◦−−−−−−→ M(𝜏◦)
·𝜓
−−→ M(𝜏)

[𝑀 𝑘 ]
−−−−→ RΛ(𝑘,𝜏,𝜏0) 𝑓

−→ R.
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The component maps are continuous by, respectively, Lemma 10.4, the fact that 𝜓 vanishes on a
neighbourhood of 𝜕𝜏, Lemma 10.7 and Proposition 3.4. �

Proposition 10.8. Let 𝜏 be fixed good cross section and f be a curve functional satisfying homogeneity,
weighted quasi-smoothing and convex union. Then 𝑓𝜏 : GC+(𝑆) → R≥0 is a continuous function.
Proof. By Proposition 10.3, it suffices to show that 𝑓𝜏 is a uniform limit of 𝑓 𝑘𝜏 . The constant 𝐾 (𝜇) in
Lemma 10.2 does depend on 𝜇; however, if we bound 𝜇 within a ball so that

∫
𝜏
𝜓𝜇𝜏 is bounded, the

constant in the approximation becomes uniform and tends to 0 as 𝑘 → ∞. �

11. The extension extends

In this section we prove that when restricted to weighted curves, the purported extension 𝑓𝜏 coincides
with the original curve functional f. More precisely, let 𝛾 ∈ 𝐶 be the geodesic representative of an
oriented closed curve with corresponding geodesic current 𝜇𝐶 , and let 𝜏 be a good cross section of the
geodesic flow (Definition 8.4). We wish to show that 𝑓𝜏 (𝜇𝐶 ) = 𝑓 (𝐶).

Let �̃� be the canonical lift of 𝛾 to the unit tangent bundle, and let n be the number of times that �̃�
intersects 𝜏, with intersections at �𝑥0, �𝑥1, . . . , �𝑥𝑛−1 in order (so 𝑝(�𝑥𝑖) = �𝑥𝑖+1). Then (𝜇𝐶 )𝜏 =

∑𝑛−1
𝑖=0 �𝑥𝑖 . Let

𝑎𝑖 = 𝜓(�𝑥𝑖), so that

𝐶 ∩ 𝜓𝜏 := 𝜓 · (𝜇𝐶 )𝜏 =
𝑛−1∑
𝑖=0

𝑎𝑖 �𝑥𝑖 .

By Proposition 7.16, this sum (which we call 𝐶 ∩ 𝜓𝜏, in an abuse of notation) is invariant under the
smeared return map P:

𝑃𝑘

(𝑛−1∑
𝑖=0

𝑎𝑖 �𝑥𝑖
)
=

𝑛−1∑
𝑖=0

𝑎𝑖 �𝑥𝑖 . (11.1)

We need a slightly stronger fact. Recall that each term in [𝑀𝑘 (𝐶 ∩ 𝜓𝜏)] is a curve that follows the
geodesic trajectory �𝑥𝑖 → �𝑥𝑖+1 → . . . for some time and then travels along 𝜏 to close up. We say that a
segment of the return map �𝑥𝑖 → �𝑥𝑖+1 is covered with degree r in [𝑀𝑘 ] if the weighted number of times
that segment appears in [𝑀𝑘 (𝐶 ∩ 𝜓𝜏)] is r.
Lemma 11.2. For any closed curve C and a good cross section 𝜏 with bump function 𝜓 as above, in
[𝑀𝑘 (𝐶 ∩ 𝜓𝜏)], every segment �𝑥𝑖 → �𝑥𝑖+1 is covered with degree k.

(See Example 9.3 for one concrete case.)

Proof. Fix 𝑎𝑖 = 𝜓(�𝑥𝑖) as above and consider the case 𝑘 = 1. By the assumption that 𝜏0 is a complete
cross section, we have 𝑎𝑖 = 1 for some i. By rotating the indices, assume 𝑎0 = 1. We prove the statement
for each segment �𝑥𝑖 → �𝑥𝑖+1 by induction on i. For 𝑖 = 0, it is clear, since 𝑎0 = 1 and no earlier trajectories
continue through �𝑥0. For 𝑖 > 0, we have 𝑎𝑖 trajectories starting at �𝑥𝑖 and going to �𝑥𝑖+1. By the induction
hypothesis, we also have weight 1 of trajectories arriving at �𝑥𝑖 from �𝑥𝑖−1 and so a weight of 1 − 𝑎𝑖 for
those continuing on to �𝑥𝑖+1. These two types of trajectories have a total weight of 1, as desired.

The statement for 𝑘 > 1 follows from equation (11.1) and induction. �

Now, for 𝑖 < 𝑗 , let 𝐶𝑖 𝑗 be the curve that starts at �𝑥𝑖 , passes through 𝑗 − 𝑖 − 1 intermediate points to �𝑥 𝑗
and closes up along 𝜏, with indices interpreted modulo n. Then, for some coefficients 𝑤𝑖 𝑗 , we can write[

𝑀𝑘
(∑

𝑎𝑖 �𝑥𝑖
)]

=
∑

𝑤𝑖 𝑗𝐶𝑖 𝑗 .

The nonzero coefficients 𝑤𝑖 𝑗 that appear will have 𝑘 ≤ 𝑗 − 𝑖 ≤ 𝑘𝑛, so as k gets large the 𝐶𝑖 𝑗 that appear
in the weighted sum also get long.
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The invariance from equation (11.1) tells us that for all 𝑖0,∑
𝑖≡𝑖0

𝑤𝑖 𝑗 =
∑
𝑗≡𝑖0

𝑤𝑖 𝑗 = 𝑎𝑖0 (11.3)

while the fact that all n steps 𝑥𝑖 → 𝑥𝑖+1 are covered with degree k implies that∑
𝑖, 𝑗

𝑤𝑖 𝑗 = 𝑘𝑛. (11.4)

Proposition 11.5. If 𝜇𝐶 is the geodesic current associated to a weighted closed multi-curve C and 𝜏 is
a good cross section of the geodesic flow, then 𝑓𝜏 (𝜇𝐶 ) = 𝑓 (𝐶).

Proof. We first suppose C is a single curve with weight 1.
As above, let

∑𝑛−1
𝑖=0 𝑎𝑖 �𝑥𝑖 = 𝐶 ∩ 𝜓𝜏. For the kth iterate set

𝐶𝑘
0 =

[
𝑀𝑘

(∑
𝑎𝑖 �𝑥𝑖

)]
=

∑
𝑖< 𝑗

𝑤𝑖 𝑗𝐶𝑖 𝑗 .

Note that 𝐶𝑖,𝑖+𝑟𝑛 = 𝐶𝑟 ; other 𝐶𝑖 𝑗 have a more complicated relation to C. For k sufficiently large, we will
use Lemma 9.2 to simplify the sum so that only curves of the form 𝐶𝑖,𝑖+𝑟𝑛 appear.

For each 𝑖 = 0, . . . , 𝑛−1 (in any order), consider all of the curves that either start or end at �𝑥𝑖 , starting
with 𝑖 = 𝑖0. By equation (11.3), ∑

𝑖≡𝑖0
𝑗�𝑖0

𝑤𝑖 𝑗 =
∑
𝑖�𝑖0
𝑗≡𝑖0

𝑤𝑖 𝑗 ≤ 𝑎𝑖0 .

We can therefore pair the corresponding components of 𝐶𝑘
0 against each other using Lemma 9.2

pairwise in any order, getting a reduction

𝐶𝑘
0 ∪ 𝑎𝑖0𝐾 ↘𝑎𝑖0 𝑤

𝐶𝑘
1

where K and w are the curve and weight from Lemma 9.2, and 𝐶𝑘
1 is another weighted combination of

the 𝐶𝑖 𝑗 in which each component that starts at 𝑖0 also ends at 𝑖0.
This join operation does not change the degree by which segments of the curves are covered, so

equation (11.4) still holds, and equation (11.3) still holds at the other indices. So we can repeat this at
each index. In the end we get a reduction

𝐶𝑘
0 ∪ 𝑎𝐾 ↘𝑎𝑤

∑
𝑗

𝑏 𝑗𝐶
𝑗 =: 𝐶𝑘

𝑛

where 𝑎 =
∑

𝑖 𝑎𝑖 and 𝐶𝑘
𝑛 is another weighted curve. By considering the degrees, we see that

∑
𝑗 𝑏 𝑗 = 𝑘 .

Similar considerations (similar to part (b) of Lemma 9.2) show that

𝐶𝑘
𝑛 ∪ 𝑎𝐾 ↘𝑎𝑤 𝐶𝑘

0 .

By Corollary 13.5, f satisfies strong stability. The homogeneity and strong stability properties then
yield

𝑘 𝑓 (𝐶) = 𝑓 (𝑘𝐶) = 𝑓
(∑

𝑗

𝑏 𝑗 𝑗𝐶
)
= 𝑓

(
𝐶𝑘
𝑛

)
.
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L

�

θ

L

�

θ

Figure 12.1. A broken path in the disk model. Here |𝜋/2 − 𝜃 | < 𝜀.

Therefore, since 𝑎𝐾 and 𝑎𝑤 are independent of k,

𝑓𝜏 (𝜇) = lim
𝑘→∞

𝑓 (𝐶𝑘
0 )

𝑘
= lim

𝑘→∞

𝑓 (𝐶𝑘
𝑛 )

𝑘
= lim

𝑘→∞

𝑓 (𝑘𝐶)
𝑘

= 𝑓 (𝐶).

We have thus proved that 𝑓𝜏 extends f on unweighted curves.
For the case of a general weighted curve 𝐶 =

∑
𝑤ℓ𝐶ℓ , the proof proceeds as above, except that we

start with the weighted intersection of C with the smeared cross section. More precisely, let �𝑥ℓ,𝑖 be the
intersections of 𝐶ℓ with 𝜏; then we work with

∑
ℓ,𝑖 𝑤ℓ𝜓(𝑥ℓ,𝑖) · �𝑥ℓ,𝑖 , in the same way as above. �

12. Hyperbolic geometry estimates

We complete the proof of Theorem A by proving facts about the geometry of broken paths, as used in
Section 9.

Definition 12.1. Fix a real length L and angle 𝜀 < 𝜋/2. A broken path 𝑏(𝐿, 𝜀) is a concatenation of
geodesic segments inH2 that alternate between ‘long’ segments of length at least ℓ and ‘short’ segments
of unconstrained length, so that the angle between the long and short segments is within 𝜀 of 𝜋/2,
alternately turning left and right. See Figure 12.1 for an example. We will denote by 𝑎𝑖 the hyperbolic
line containing the ith short segment.

We prove some basic facts about when broken paths cross.

Lemma 12.2. For any 0 < 𝜀 < 𝜋/2, there is a constant 𝐿0(𝜀) so that, for any 𝐿 > 𝐿0 (𝜀), any broken
path 𝑏(𝐿, 𝜀) converges to unique points at infinity that are on opposite sides of the hyperbolic line
containing any short segment. As 𝜀 approaches 0, the constant 𝐿0 (𝜀) approaches 0 as well.

That is, in Figure 12.1, the broken path crosses the dashed paths.
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a0 = a′
0

π
2 − ε

a′
1

b′
1

γ ′
π
2 + ε

a1

b1

γ

Figure 12.2. Crossing broken paths in the bands model for Lemma 12.3 and its proof, showing the case
when the windows nearly touch.

Proof. In fact, this is true as long as 𝐿0 (𝜀) > 2 gd−1(𝜀), where gd is the Gudermann function, defined,
for instance, by gd(𝑥) = tan−1(sinh(𝑥)).

Let b be the broken path, and let 𝑎𝑖 be the hyperbolic line containing the ith short segment. Since the
turns in b alternate to the left and to the right, b locally crosses each 𝑎𝑖 .

The bound on 𝐿0 (𝜀) was chosen so that 𝑎𝑖 and 𝑎𝑖+1 do not cross or meet at infinity. (Another way to
say this is that 𝜋/2 − 𝜀 is bigger than the angle of parallelism of 𝐿0 (𝜀)/2.) Thus, the path b crosses the
sequence of noncrossing segments 𝑎𝑖 and thus cannot cross a single 𝑎𝑖 more than once, as desired.

The fact that 𝐿0 (𝜀) is strictly greater than 2 gd−1(𝜀) means that as 𝑖 → ±∞ the endpoints of the
segments 𝑎𝑖 get closer by a definite factor on 𝜕H2. Thus, in either direction, b converges to a definite
point on the circle at infinity. �

From now on, we assume that all broken paths have 𝐿 > 𝐿0 (𝜀).

Lemma 12.3. Fix 0 < 𝜀 < 𝜋/2 and 𝐿 > 𝐿0 (𝜀). Then there is a constant 𝜅(𝜀) with the following
property. If 𝛾 = 𝑏(𝐿, 𝜀) and 𝛾′ = 𝑏′(𝐿, 𝜀) are two broken paths with a pair of short segments 𝑠0 ⊂ 𝑠′0
on the same line 𝑎0 and 𝑠′0 extends at least 𝜅(𝜀) farther along 𝑎0 in each direction than 𝑠0, then 𝛾 and
𝛾′ cross essentially on 𝑎0.

Note that in the last claim there is no control on 𝜅(𝜀).

Proof. It is most convenient to work in the band model of the hyperbolic plane as in Figure 12.2. Focus
first on the path 𝛾, and let 𝑠0, 𝑙1 and 𝑠1 be the next short and long segments of 𝛾, and let 𝑎1 be the line
containing 𝑠1. The line 𝑎1 defines an interval on 𝜕H2 that, by Lemma 12.2, must contain the endpoint
of 𝛾. Now fix the endpoints of 𝑠0 and vary the other parameters defining the interval of 𝑎1, namely,

◦ the angles between 𝑠0 and 𝑙1 and between 𝑙1 and 𝑠1, both in [𝜋/2 − 𝜀, 𝜋/2 + 𝜀], and
◦ the length of 𝑙1, in [𝐿0 (𝜀),∞].

(If we allow ℓ1 to have infinite length, the interval degenerates to a single point on 𝜕H2.) As the
parameters vary, the interval varies continuously on 𝜕H2, remaining disjoint from the endpoints of
𝑎0. By compactness of the domain, the union of these intervals is a larger interval 𝑊 ⊂ 𝜕H2 that
necessarily contains the endpoint of 𝛾 for fixed endpoint of 𝑠0. Figure 12.3 shows the presumably
extremal possibilities for W in one example, but we do not need to identify the precise values.

A similar argument applies to the endpoint of 𝛾′ on the same side of 𝑎0: it must lie in another
window𝑊 ′ on 𝜕H2. By symmetry, in the band model𝑊 ′ is a translation of W by a (Euclidean) amount
proportional to 𝜅(𝜀). Thus, for 𝜅(𝜀) sufficiently large, W and 𝑊 ′ will be disjoint; one extremal case is
shown in Figure 12.2.
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L0

π
2 − ε

L0

π
2 + ε

Figure 12.3. The window of possible endpoints of a broken path. The marked points are bounds on
ends of broken paths 𝑏(𝐿, 𝜀) with 𝐿 ≥ 𝐿0.

Similar arguments apply to the other endpoints of 𝛾 and 𝛾′, implying that for large enough 𝜅(𝜀) the
paths cross essentially. �

13. Stable functions

Some curve functionals satisfy quasi-smoothing and convex union but are not stable or homogeneous
on the nose. For example, the length of a curve with respect to an arbitrary generating set is of this form
(Example 4.10). We fix this by passing to a stable length as in Theorem B. Recall that the stable curve
functional ‖ 𝑓 ‖ is defined by

‖ 𝑓 ‖(𝐶) := lim
𝑛→∞

𝑓 (𝐶𝑛)
𝑛

.

As in the proof of Theorem 6.1, we will consider weighted curve functionals. In this section we will
prove the following theorem.

Theorem 13.1. Let f be a weighted curve functional satisfying weighted quasi-smoothing and convex
union. Then the stabilised curve functional

‖ 𝑓 ‖(𝐶) := lim
𝑛→∞

𝑓 (𝐶𝑛)
𝑛

satisfies weighted quasi-smoothing, convex union, strong stability and homogeneity and thus extends to
a continuous function on GC+(𝑆).

We first prove some lemmas.
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Lemma 13.2. For any connected curve C and any sufficiently large 𝑛, 𝑚 ≥ 0, there exists some curve
K and weight w so that 𝐶𝑛 ∪ 𝐶𝑚 ∪ 𝐾 ↘𝑤 𝐶𝑛+𝑚.

Proof. Let p be the number of intersections of our cross section 𝜏 with the canonical lift of C to𝑈𝑇Σ and
apply Lemma 9.1(b), taking 𝑘 = 𝑛𝑝 and 𝑙 = 𝑚𝑝. (We reuse the same cross section 𝜏 for convenience;
nothing here depends on the definition of the extension.) Then for sufficiently large 𝑛, 𝑚,

𝐶𝑛+𝑚 ∪ 𝐾𝜏 ↘𝑤𝜏
𝐶𝑚 ∪ 𝐶𝑛,

proving the lemma with 𝐾 = 𝐾𝜏 and 𝑤 = 𝑤𝜏 . �

Lemma 13.3. For any connected curve C, we have 𝐶𝑛 ↘𝑛−1 𝑛𝐶.

Proof. Self-crossings of an n-fold cover of a curve are essential by definition. �

Lemma 13.4. There is a curve K and a constant w so that, for any curve C on S and any 𝑛 ≥ 2, we have

𝑛𝐶 ∪ (𝑛 − 1)𝐾 ↘(𝑛−1)𝑤 𝐶𝑛.

Proof. Pick 0 < 𝜀 < 𝜋/2 so that 𝐿0(𝜀) from Lemma 12.2 is less than the systole of Σ, the length of
the shortest closed geodesic on Σ. As in Section 8, find a curve K and a complete global cross section
𝜏 ⊂ 𝑊 (𝐾, 𝜀). Then, by the arguments of Lemma 9.1(a), there is some integer w so that

2𝐶 ∪ 𝐾 ↘𝑤 𝐶2.

(We are not directly applying Lemma 9.1, since we do not let the iteration in the return map go to
infinity, but all of the long segments of the broken paths are long enough to make the arguments there
work.) Iterating in this way, we deduce the desired result. �

Proof of Theorem 13.1. We must show that ‖ 𝑓 ‖ is well-defined and satisfies convex union, weighted
quasi-smoothing, strong stability and homogeneity. Let 𝑅 ≥ 0 be the quasi-smoothing constant of f,
and let K and w be the curves and constants from Lemmas 13.2 and 13.4 (which we can take to be the
same), and let 𝑓 (𝐾)+ be max( 𝑓 (𝐾), 0).

◦ Well-defined: Lemma 13.2 shows that the sequence ( 𝑓 (𝐶𝑛) + 𝑤𝑅 + 𝑓 (𝐾)+)𝑛∈N is subadditive for
large enough n, and thus by Lemma 9.5 the limit defining ‖ 𝑓 ‖ exists.

◦ Convex union: This follows immediately from the fact that (𝐶1 ∪𝐶2)𝑘 = 𝐶𝑘
1 ∪𝐶𝑘

2 , the definition of
‖ 𝑓 ‖ and convex union property of f.

◦ Strong stability: For any multi-curve D and any curve C, by Lemmas 13.4 and 13.3 (applied to 𝐶𝑘 )
and the quasi-smoothing and convex union properties of f, we have

𝑓 (𝐷𝑘 ∪ 𝐶𝑛𝑘 ) − (𝑛 − 1)𝑤𝑅 ≤ 𝑓 (𝐷𝑘 ∪ 𝑛𝐶𝑘 ) + (𝑛 − 1) 𝑓 (𝐾)+

𝑓 (𝐷𝑘 ∪ 𝑛𝐶𝑘 ) − (𝑛 − 1)𝑅 ≤ 𝑓 (𝐷𝑘 ∪ 𝐶𝑛𝑘 ).

Combining the inequalities, dividing by k and letting k go to infinity, we obtain

‖ 𝑓 ‖(𝐷 ∪ 𝐶𝑛) = ‖ 𝑓 ‖(𝐷 ∪ 𝑛𝐶).

We can iterate this to prove the result when C is a multi-curve.
◦ Homogeneity: It is clear from the definition of ‖ 𝑓 ‖ that ‖ 𝑓 ‖(𝐶𝑛) = 𝑛‖ 𝑓 ‖(𝐶). Homogeneity then

follows from stability.
◦ Weighted Quasi-smoothing: Let 𝐶 = 𝐶1 ∪ 𝐶2 be a multi-curve, where the smoothing involves the

component(s) in 𝐶1, so that 𝐶1 and its smoothing 𝐶 ′
1 each have at most two components. Thus,
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𝐶𝑘
1 ↘2(𝑘−1) 𝑘𝐶1 and 𝑘𝐶1 ↘𝑘 𝑘𝐶

′
1. Then

‖ 𝑓 ‖(𝐶) = lim
𝑘→∞

𝑓 (𝐶𝑘
1 ∪ 𝐶𝑘

2 )
𝑘

≥ lim
𝑘→∞

𝑓 (𝑘𝐶1 ∪ 𝐶𝑘
2 ) − 2𝑘𝑅
𝑘

(Lemma 13.3)

≥ lim
𝑘→∞

𝑓 (𝑘𝐶 ′
1 ∪ 𝐶

𝑘
2 ) − 3𝑘𝑅
𝑘

(quasi-smoothing for 𝑓 )

≥ lim
𝑘→∞

𝑓 ((𝐶 ′
1)

𝑘 ∪ 𝐶𝑘
2 ) − 3𝑘𝑅 − 2𝑘𝑤𝑅 − 2𝑘 𝑓 (𝐾)+

𝑘
(Lemma 13.4)

= ‖ 𝑓 ‖(𝐶 ′) − (3 + 2𝑤)𝑅 − 2 𝑓 (𝐾)+,

so ‖ 𝑓 ‖ satisfies quasi-smoothing, with constant (3 + 2𝑤)𝑅 + 2 𝑓 (𝐾)+. By Proposition 3.6, ‖ 𝑓 ‖ also
satisfies weighted quasi-smoothing. �

Finally, we show that with other hypotheses, (weak) stability implies strong stability, so that we do
not need to assume strong stability in the statement of Theorem 6.1.

Corollary 13.5. Let f be a weighted curve functional satisfying weighted quasi-smoothing, convexity,
stability and homogeneity. Then f also satisfies strong stability.

Proof. By the definition of ‖ 𝑓 ‖ and stability and homogeneity of f, we have, for all oriented
multi-curves C,

‖ 𝑓 ‖(𝐶) = 𝑓 (𝐶).

By Theorem B, ‖ 𝑓 ‖ satisfies strong stability. �

The proof of this part of Theorem 13.1 does not use Theorem 6.1, so we can use Corollary 13.5 in
the proof of Theorem 6.1.

We finish by proving Theorem B.

Proof of Theorem B. By Proposition 3.6, f extends uniquely to a weighted curve functional satisfying
convex union, homogeneity, stability and weighted quasi-smoothing with the same constant. Theorem
13.1 applied to this extension gives the result. �
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