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CONTINUATION OF COMPLEX VARIETIES
ACROSS RECTIFIABLE SETS

YEREN XU

ABSTRACT. We continue our research on extension of complex varieties across
closed subsets. While efforts are being made to deal with varieties of any dimensions,
the paper primarily concerns 1-dimensional case, and the exceptional set is thus as-
sumed to be connected with finite length. As applications of the main result, several
corollaries are obtained with interesting features.

0. Introduction. This paper is a continuation of our previous work [Xu], in which
the main goal was to find certain topological conditions on a 2k — 1 dimensional C!
submanifold E in a domain Q and on a k-dimensional complex variety ¥ in Q \ E so
that V' can be extended analytically across E. To replace the smoothness of E, the major
obstruction, following lines in [Xu], is that we no longer have a regularity theorem for
the pair (¥, E), (¢f- Section 3 in [Xu]). Consequently, Stokes’ formula for the pair (E, V),
i.e., the formula d[V] = [E] in the sense of currents, is no longer valid here, since E is
only the topological boundary of V. To overcome this difficulty, a different method has
to be used. For this purpose, we need a delicate analysis of the set E which yields certain
uniqueness and removable singularities results for holomorphic functions. To simplify
our argument, we will concentrate the case when E is a rectifiable curves. As the proof
goes on, we will realize that the method adopted here may not work well for high dimen-
sional rectifiable sets, although we believe that the conclusion is still valid there. Finally
it worthwhile to note that the method given here also works in our former paper [Xu] and
gives an alternative proof of the results appeared there. It can also be used to show that
a 1-dimensional complex variety in a strictly pseudoconvex domain with rectifiable arc
as its boundary can be parameterized as the image of some analytic mappings from the
unit disc in C! and Lipschitz continuous up to the unit circle. We will publish this result
elsewhere.

The author express his deep appreciation to Professor Edgar Lee Stout for his guid-
ance. The author also thanks Professor Evgeni Chirka for the stimulating conversations
during the preparation of the final version of the paper.

1. Analysis of some planar sets. Let D be a bounded simply connected domain in
C. If the boundary of D is a rectifiable curve, then it is known that a bounded function
f holomorphic on D with vanishing nontangential boundary values on a subset £ C bD
with positive length must be the zero function. The same conclusion is not true if D is only
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a domain, as an example from Beurling shows that there exist domains with boundaries
of finite length and nonzero bounded holomorphic functions whose nontangential limits
vanish on a set with positive length. (See example after Corollary 2.5.)

Throughout the paper we denote by A' the 1-dimensional Hausdorff measure for sets
in C”.

DEFINITION 1.1. A continuum in C is a connected compact set. A curve is a con-
tinuous image of a closed interval [a,b] C R. A curve is called an arc (simple closed
curve) if it is a homeomorphic image of a closed interval (the unit circle). A curve is
called rectifiable if it has finite length. A closed subset E is called almost simple if E has
the following decomposition:

[e¢]
E=EU (U r,-)
i=1
where Ej is a null set, i.e., A'(Eg) = 0, and each I'; is a simple curve such that I'; N T,
if not empty, has only one point, which is an endpoint for either I';, I'; or both.

EXAMPLE A. Define E; to be the interval [0, i], E2,—; to be the interval [, m]
and E», to be the graph {x +isin ! : (—2511—)7; < x < 5-}. Then the set E = |2 E; is

almost simple.

EXAMPLE B. Let Cbe the Cantor ternary set in the unit interval [0, 1]. The midpoints
of the components of [0, 1]\ Care 1/2,1/6,5/6,1/18,5/18, etc. LetI" be the tree in the
upper half plane whose vertices are F = {(1/2,1),(1/6,1/2),(5/6,1/2),(1/18,1/4),
(5/18,1/4), etc.}, and define E = (C x {0}) UT. Then the set £ is almost simple.

DEFINITION 1.2. Let D be a domain in C and let E C D be a closed connected set.
We say that the pair (D, E) has property (Q) at p € E if one of the following holds.

1. If p € D, then for any given neighborhood O of p, there exists a smaller neighbor-
hood U containing p so that (D \ £) N U is a union of two nonempty disjoint connected
and simply connected open sets U; and U, that are contained entirely in D, and satisfy

(@) U, N, is a curve.

(b) p is an interior point of the curve U; N U.

2. If p € bD, then for any given neighborhood O of p, there exists a smaller neigh-
borhood U containing p so that (D \ £) N U is either a connected and simply connected
open set U contained in D with U N bD a curve that contains p as an interior point, or a
union of two nonempty disjoint connected, simply connected open sets contained in D
satisfying requirements (a) and (b) in case 1.

If (D, E) has property (Q) at almost all (with respect to A') of its points, then we say
that (D, E) has property (Q).

Later on, we will see that, by Theorem 1.4 and Lemma 2.2, condition 1(a) is the same
as to say that there exist two points g g on U; N U, and an arc Y with ¢; and g, as two
end points and with p € int (7), such that U; N U, = 7. In the same manner, conditions
on UNbD in 2 can be reformulated to a more transparent but equivalent condition.
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REMARKS 1.3. A. Let D; and D, be two disjoint simply connected domains in C
with bD; and bD; two simple closed curves. If E = D, N D, is a simple curve, then the
pair (D U int(E) U Dy, E) has property (Q). Note that, in a simply connected domain,
not every almost simple curve with finite length has property (Q). An example can be
obtained by putting the set E constructed in Example 2, Section 1.3.3 in [Xu] into a large
disc in C.

B. We list here several useful properties of continua, curves and rectifiable curves.

(a) Ifis acurve, then I is compact, connected and locally connected. Therefore T’
is (uniformly) locally arcwise connected ([Cu], p. 333), i.e., for every € > 0, there exists
aé > 0, such that whenever the Euclidean distance between any two points on the curve
is less than 0, there exists an arc A C I with diameter less than e connecting these two
points. Conversely the Hahn-Mazurkiewicz theorem states that any non-empty compact,
connected, locally connected and metrizable space is a curve ([Cu], p. 334).

(b) If K C C is a continuum with finite 1-dimensional Hausdorff measure, then K is
locally connected. In this case, even more is true: K is arcwise connected ([Fa], p. 34).

C. Besicovitch proved, in his fundamental paper [Be] on the structure of certain planar
sets, that every rectifiable curve is an almost simple rectifiable curve. Independently,
Wazewski ([Wa]) proved that same is true for every continuum with finite length by
showing that every continuum with finite length is actually a rectifiable curve.

THEOREM 1.4. If E is a rectifiable curve in a domain D such that E contains only
finitely many simple closed curves, then the pair (D, E) has property (Q).

PROOF. By the Besicovitch decomposition for rectifiable curves, we may write £ =
To UUR, I';) with each I'; a simple curve in D. Define:

o0

F=Umnr), F=Tu(UFR).
i, i=1

Then A'(F) = A'(F;) = 0. It is enough to show that (D, F) has property (Q) at every

pointp € E\ F.

Suppose that p € T'; \ F and O is a neighborhood of p. Since I'; is a simple curve
inside the domain D and since E contains only finitely many simple closed curves, we
can find a smaller neighborhood O’ of p so that

(1) O'\ T} = 8§, US, with each S; nonempty connected and simply connected.

(2) There is no simple closed curve in E that is contained entirely inside O'.

(3) ENQO' is connected. This follows since E is uniformly locally arcwise connected.
Denote by vy = b0’ NS}, Y, = b0’ NS, and define

J={i>1:TiNI #¢,[;NT €T, N0’}
Ji:{jeJ:FjﬂS,«#qS}
L={eJi:I;NY#¢}CJi

fori = 1,2. Fixani,say i = 1. Fori; # i inJi, [, N[, = ¢ by (2). Consider two
cases.
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(A) If I is the empty set, then S} \ (U;c,, [)) is connected. As b(S1 \ Ujey, Fj)) =
bS) U (Ujey, T) is connected, S1 \ (Uje, [;) is simply connected.

(B) If the set /; is nonempty, we denote by {p;}, {¢:} the set of points {I’; N T }iey,
and {I'; N1 }ies, respectively. If 7 is a finite set, then there exist i, jo in /; such that the
domain bounded by

@i qior,, Y (@is G Y (@Dl ), Y BjPio)ry

is simply connected, here (pq), denotes the arc segment from p to g along the curve 7.
Thus we reduce to the case (4). If the set /; is an infinite set, then our point p can not be
a limit point of {g;} since the length of E is finite. Thus the indices iy and jj still exist
and we are done.

In all cases, we can find a subdomain U, that is contained entirely in S; such that bU;
meets set E only along set 'y, i.e., U; \ E is connected. Since b(U; \ E) is connected,
this leads to the conclusion that U, \ E is simply connected. Following the same lines,
we obtain U, in S;. By taking U = U; U U, UT'}, we finish our proof.

The condition that E contain finitely many simple closed curves can be replaced by
the condition that the Cech cohomology group H'(E, Z) has finite rank.

COROLLARY 1.5.  Let E be a rectifiable curve in a domain D so that D\E is connected.
Then (D, E) has property (Q).

Next we consider the case when the set E is in the boundary of the domain.

THEOREM 1.6. If D is a simply connected domain with bD a rectifiable curve and if
E C bD is a rectifiable curve, then (D, E) has property (Q).

PROOF. We need only to show that for almost all points p € E C bD,if O is a
neighborhood of p, then a smaller neighborhood B C O of p can be found such that
BN D = BN (D \ E) is connected and simply connected. As the set E is contained in
the boundary of D, it is enough to construct an arc A that is contained in O with two
end points g1, g on bD distinct from p. Then the domain B enclosed by A U (g1g2) has
the desired property, where g1q; is the curve contained in D from q; to g2, via p. The
existence of such an arc A can be verified by the same way as we did in the proof of
Theorem 1.4, since we assume bD to be rectifiable. Thus we finish our proof.

What happens to domains without assumption of simply connectivity? In general The-
orem 1.6 is no longer valid. For example, we let D be the domain in C' obtained by
deleting a sequence of small discs from the unit disc such that the unit circle is the set of
limit points of these discs. Then certainly (D, S') does not have property (Q). Keeping
this example in mind, we consider a domain D C C with bD of finite length. We first
decompose the boundary as

bD = U5,‘,

where {§;} are the path-connected components of bD. Each §; is either a single point or
a rectifiable curve. Assume that the set {9, : §; is a single point} is at most countable. We
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call a point p € bD a limit point of the family {é;} if every neighborhood of p intersects
infinitely many distinct é;’s. Let

(bDY = {g € bD : g is a limit point of the family {5;}}.

If E C bD is a rectifiable curve, then (D, E) has property (Q) at every point of E \ (bD)}.
Forif p € E \ (bD), then there exists a neighborhood U, such that UM bD is pathwise
connected. Therefore, combining with Theorem 1.6, we have

COROLLARY 1.7. Let E be a rectifiable curve contained in the closure of a bounded
domain D with bD of finite length. If A' (E N (bD)') = 0, then (D, E) has property (Q).

2. Holomorphic functions on domains with rectifiable boundaries. Throughout
this section, we let D be a bounded domain in C, and denote by H*°(D) the set of all
bounded holomorphic functions on D. If the boundary of D is a rectifiable simple closed
curve, then follows from a result by Smirnov [Gl] that for every f € H*°(D), the nontan-
gential limit of /, which is denoted by n. t. lim, . f(2), exists for almost all of { € bD. Fur-
thermore, if we define f({) = n.t. lim,_; f(z) if the right-hand side exists, and /({) = 0
otherwise, then the following Cauchy formula holds for allz € D

1 r [
fo= Tnid =z

dc.

By using this integral formula, we can easily obtain

THEOREM 2.1. Let S| and S; be two disjoint simply connected domains in C so that
E = bS) N bS, is a rectifiable arc, and let D = S1 U S, Uint (E). If f is holomorphic and
bounded on S, U S, and if for almost all{ € E

n.t. ze.lslll,?acf (?)=n.t Ze}gzr;lh’(f @),

- then the function f continues holomorphically into all of D.

This is a well-known result, but we will give a proof here, since our later results (cf.
Theorem 2.3, etc.) are motivated from this proof.

PROOF. Let ¢ be an arbitrary point on int (£). Choose an arbitrary neighborhood U
of ¢ contained in D, so that bU is a closed simple rectifiable curve. Let v; = S; N bU,
then v; U(ENU) is a simple rectifiable curve, which bounds a simply connected domain
D; in S;, and meets bS; only along the closed subset EN U. Let f; = f|p,, i = 1,2, then
fi € H®(D;). By the above result of Smimov, we have

L f@)
Jfie) = 2mi JbD; z! — z dz

for all z € D;. Now we define

_ 1 @,
F&) = 2mi Jniu, 2/ — z d
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Then F(z) is holomorphic on the domain D; U D, U (E N U). On the other hand, the
opposite orientations on the rectifiable set £ N U induced from two domains D; and D,
yield

K@) = /i2) +/2(2)

If z € Dy, then Cauchy integral theorem leads to f,(z) = 0. Therefore F(z) = fi(2), i.e.,
F|p, = f|D,. Similarly, F|p, = f]p,. By uniqueness of continuation, F|s, = f|s, and our
proof completes.

Note that in above theorem, the assumption that the curve E to be simple is redundant.
In fact, we can prove following

LEMMA2.2. LetD; and D; be two bounded disjoint connected and simply connected
domains in C with rectifiable boundaries. If E = Dy N\ D, is a rectifiable curve, then E is
either a simple curve or a simple closed curve.

Almost surely topologists know stronger versions of this lemma, but we could not
quote any reference. For completeness of the paper, we include a proof below.

PROOF. First we prove that E contains no proper subset that is a simple closed curve.
Suppose not, then there is a simple closed curve A C E, E # X\. Let C\ A = UpU U,
with 0o € U,,. Then either D; C Uy, or D; C Uy, fori = 1,2. Since E C bD, NbD, is
arectifiable curve, Theorem 1.6 implies that both (D1, E) and (D, E) have property (Q).
Thus following the proof of Theorem 1.4, we can find a rectifiable arc ¥ C A and a
connected, simply connected open set By C D; such that bB; NE = 7. If D; C U,
then B; C Uy. Again, since (D,,7) has property (Q), a rectifiable subarc § C ¥ and a
connected, simply connected open set B, C D, can be found such that 6B, N E = §. As
bB, NbB; =6, B N B, = ¢, and near every point £ € int (6) 6 divides C into two parts,
B; has to lie entirely inside U,. Thus D; C Uy, and E =D, ND; C UyN Uy = Nisa
simple closed curve. Same proof applies if D} C Uy,.

Secondly, If E is not a simple closed curve (and hence contains no proper subset that
is a simple closed curve), we need to show that E is a simple curve. Suppose not, then
there exists a point p € E so that E is not simple at p. Denote by £ = ¢([0, 1]) with ¢
a continuous map and p = ¢(%) with o < 1. Then p € bD; has more than one prime
ends. Let x: U — D; be the Riemann mapping from the unit disc U in C. Then p will
correspond to at least two distinct points, say ¢; and g», on the unit circle. If we connect
q1 and ¢, by a rectifiable arc A that lies entirely inside U (except its endpoints g; and ¢,)
and define a domain U), enclosed by A and by the short arc g1¢; on the unit circle, then
Yx = x()) is a simple closed curve and Dy, = f(U,) is a connected open subsetin D;. Let
C\ 7\ = SHuS), with oo € S.. Then for every fixed A, we can not have both ENS) # ¢
and EN S}, # ¢, for otherwise either D; C S) or D; C S), and both cases will leads
to either E C S or E C S),. Therefore we assume that for every such an arc ), either
E C S) or E C S).. Moreover, for any two such arcs A\ and A\, with A\; Nz = {q1,¢2},
since ) preserves orientation and maps interior points in U to interiors points in bounded
domain Dy, E C S)'(S)) will imply E C $)2(S%2), and Uy, C Uy, will imply S)' C Sp?,
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§32 C S\l Thus, as the curves {\} sweep out the whole unit disc U, {x(\)} will fill the
whole domain Dy. If E C S} for one such A\, EN (U, Sy) = {p},i.e., ENDy = {p},
an absurd. Similar contradiction will be produced if we assume E C S(A)I for one ;.
Therefore such a point p does not exist at all and we finish our proof.

To generalize the result in Theorem 2.1, we consider a simply connected domain D
with bD a rectifiable curve. We need to introduce orientations on the set bD and define
nontangential limits for bounded holomorphic functions defined on D.

Let D be a simply connected domain in C with bD a rectifiable curve. Denote by x
a Riemann mapping from the unit disc U in C to D. If E C bD is an arc and if every
point on E has two prime ends, then x ~'(E) consists of two arcs, say /; and L, on the
unit circle S'. If we give S! the induced orientation from the unit disc, then both x(I;)
and x(/7) have induced orientations from /; and /, respectively. Thus we can define the
positive and negative sides of £. Similarly, if f € H*°(D), thenfoyx € H*(U). Therefore
the nontangential limit of o x exists almost everywhere on S'. Since D is a rectifiable
curve, Theorem 1.6 implies that (D, bD) has property (Q). Moreover ' € H'(U), and
thus it has nontangential boundary values at almost every point of bU. If F denotes the
set of points on S' where radial limit does not exist, then A' (X(F)) = 0. Thus we can
find a set Ey C bD with zero length such that at every point { € bD \ Ey, (D, bD) has
property (Q) and bD has a tangent line. For { € bD \ (Eo U X(Uo)), if ¢ has only one
prime end, then there is a unique £ € S' corresponding to (. Otherwise, two points &;
and &, on S! exist as preimages of ¢ under . In the former case, if ) is an arbitrary curve
in U ending at £ and approaching bD transversely, then \* = X o x is a curve in D that
meets bD nontangentially at point ¢, and we define

im0 = e

For the latter case, if A\; and )\, are two curves in U ending at q; and g, respectively
and approaching bU transversely, then A} = A o x and A} = A, o x are two distinct
curves that meet bD at ¢ transversely. Moreover A} and A lie on different sides of D at
¢, say A} C D" and A5 C D~ with D* (D) the positive (negative) side of D at {. Thus
we can define nontangential limits from both sides in a similar way. The existence and
uniqueness follow from corresponding results about /' (). Moreover, the nontangential
limit is also independent of the choice of the mapping x. This can be easily verified.

THEOREM 2.3. Let D be a bounded simply connected domain in C with rectifiable
boundary. Denote by bD = T" U E the decomposition of the boundary into its exterior-
boundaryT = b(C \ D) and remaining part E C int(D). If E is a set of finite length and
if E = EgU(UR, I'y) with eachT'; an arc, then every f € H®(D) has non-tangential limit
almost everywhere on T U (U2, T). Moreover, if we let

forCET, fi0) = { 8 t. limyep, . f(z) ifn.t. lim exists at ¢

otherwise
forCeT, f*O) = {8 t. lim,eps, . f(2) ZzetrJ:;g exists at ¢
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where D are two simply connected open sets such that( € DND; NT;, A{(D; ND; N
;) > 0, and D* (D") lies entirely inside the positive (negative) side of E, then we have
the following general Cauchy integral formula

5O o f*(o —/©
*) f()—2er 2m,1/, d¢

Jor z € D. In particular, if f; () = f;({) holds almost everywhere on T'; for all i > 1,
then the function f(z) is holomorphic on the domain int (D).

It is worthwhile to note that the existence of above domains D* and D~ follows from
Theorem 1.4, i.e., the pair (D, E) has property (Q), since E C D contains no simple closed
curve. For if ¥ C E is a simple closed curve, then ¥ separates C into two parts, say Q,
and Qy with co € Q. Since D is connected, either Q,, "D = por Qo N D = ¢. If
QxND = ¢, thenD C Qpandy C I IfFQND = ¢, then Q C C\ D and hence
Y = bQy C b(C \ D) =T. Both cases lead to a contradiction.

PROOF OF THEOREM 2.3. Let x be a one-to-one holomorphic mapping from the
unit disc in C onto D by the Riemann mapping theorem. Since we assume that D is
bounded and A! (D) < o0, a result from Pommerenke [Po] states that x can be extended
continuously to U. Therefore, with boundary correspondence, x maps S' onto bD. As
bD is rectifiable, x’ € H'(U), and hence non-zero nontangential limits of x’ exist almost
everywhere on S'. Moreover, since I is the exterior boundary of the domain D, every
point on I' \ E has only one prime end, while every point on I'; has two prime ends by
property (Q). Thus x ~!(¢) is well-defined for ¢ € T" and x ~'(¢) contains two points when
¢ € S'. We denote these two points by £* and £ . There exist small neighborhoods N(¢*),
N(¢7) of ¢* and £~ respectively such that so x maps N(¢¥) N U into D*. Thus

FO =nt wanQi S ox(w).

Since f o x € H*(U), we have forw € U,
fox®

%S‘f w

J@) =foxw)= dg.

On the other hand, for each fixed i, we have

/ﬁ(() —fi (C) /fox(g‘*) —fox(&) A= / S ox()
i ') x(§) — x(w)

Since x maps S! onto bD, the right hand side of (*) is the same as

X'()dE.

/ Sox®

st E—w

X© 1
At o Jo (O(x(i)—x(W) z—w)dg'

For each fixed z € D, the integrand in the second term is holomorphic in £ € U and
therefore the integration over S! must vanish. The proof is complete.

27
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COROLLARY 2.4. Let D be a domain in C. If E is a rectifiable curve in D such that
(D, E) has property (Q), then for every f € H®(D \ E) with the property that for almost
all points on E, the two nontangential limits from both positive and negative sides of E
agree, there exists an F € H(D) such that F| p\e =/-

Given a domain D in C. A closed subset E C bD is called a uniqueness set if every
f € H™(D) whose nontangential limits vanish almost everywhere on E (with respect
to its length) is identically equal to zero. For example, if D is simply connected with
rectifiable boundary, then every subset in 5D with positive length is a uniqueness set.
For a general bounded domain D # C, if we retain the notions from Corollary 1.7, then,
by locally applying the Cauchy integral formula, we can easily obtain

COROLLARY 2.5. Let D be a bounded domain in C, and let E be a rectifiable curve
inD.

(1) If E C bD and if (D, E) has property (Q), then E is a uniqueness set for H*(D).

(2) IfE C D and if D\ E is connected, then E is a uniqueness et for H°(D \ E).

The following concrete example, due to Beurling, gives an illustration that how subtle
the subject becomes when we deal with domains with rectifiable boundaries instead of
simply connected domains with simple curves as their boundaries.

EXAMPLE (BEURLING). Define function ¢ for |z| < 1 by

S n
o) = i]:_[z(l -z exp(—logn))
Then ¢(z) € O(Jz] < 1). Let {ay } be the zeros of ¢ in the unitdisc with |o; | < || < ---
and let
X 1
f@=73

=1 @ (a)z — o)

Ak:{z€C1:|z—ak[<%}

D={l<1}\ {gAk}

n 1
)= & e — o
Then we have following facts:
(1) A'(bD) < oo,
Q) MNA =¢,k#Tand A, C {|z| <1}k=1,....
(3) f is a rational function with poles inside | J;_; A. Therefore f, € O(D).
(4) f is bounded over D, since |¢'(oy)| > ¢V* and |z — | > 5.
(5) f» — f uniformly on D. In fact {f,} converges uniformly on C \ U2, A;. Hence
e o).
(6) f =0 outside {|z| < 1} andf # 0in D.
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For the proof of these claims, we refer the book by Stout ([St], p. 346). Notice that in
this example the rectifiable boundary contains infinitely many simple closed curves and
(bD)* = the unit circle in C, so that Corollary 2.4 does not apply here.

3. Extendibility of analytic curves across rectifiable curves. In the papers [Ru]
and [We], Rudin and Wermer gave examples showing that disjoint analytic discs can
abut along arcs of large Hausdorff dimension, and yet neither coincide nor be analytic
continuations of each other. This raises the question as whether the two could be analyt-
ically continued if the arc has finite length. The main result in this section shows, as a
special case, that this is true.

DEFINITION 3.1. Let E be a closed subset in a domain Q C C" and let V' be a 1-
dimensional complex variety in Q \ E. We say that the pair (¥, E) has property (Q) at
point p € E if the following is satisfied: For every open set B C ( that contains p, there
exists a smaller open set, say U, p € U C B such that

1)
unv=_UV,

i=1

where /(p) > 2 is a finite positive integer, {V,}fg are nonempty irreducible 1-dimen-
sional complex varieties in U \ E such that for i # j, ¥; N ¥; N U is a zero dimensional
variety (possibly empty) and {(¥;N¥})\ (¥;N¥;)}NU is a rectifiable curve that contains

p- The pair (¥, E) has property (Q) if it has it at almost all (with respect to A!) points of
E.

THEOREM 3.2. Let E be a rectifiable curve in a domain QQ C C" and let V be a 1-
dimensional complex variety in Q \ E so that (V \ V)N Q = E. If the pair (V,E) has
property (Q), then E is removable in the sense that VOQ is also a 1-dimensional complex
variety in Q.

Note that the rectifiable set E is only assumed to be connected. It may have non-zero
H'(E, 7). Therefore this theorem is not contained in our previous work [Xul]. Also we
require in Definition 3.1 that only finitely many irreducible subvarieties meet at p because
of following example.

EXAMPLE 3.3. Let E be the real line in C! and let W, be the union of countable many
disjoint open discs in the upper half plane so that the closure of W) contains the set E. If
welet W = {x+iy:y < 0,x—iy € W} and let V = W, U W,, then of course VUE
is not a variety in C'. It can be easily seen that near every point on the real line, ¥ has
infinitely many irreducible branches.

PROOF OF THE THEOREM. The proof given here is lengthy. Therefore we divide it
into several steps.

STEP 1. Some Preliminary Preparation.
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We first prove the result in the case n = 2. Define two subsets of the closed set E as
follows:

Eo = {p € E,(V,E) has property (Q) at p}
E' = {p € E, V is analytic at the point p. }

It is enough to show that ¥ is a complex variety near each point of Ey, i.e., Ey C EF,
since A'(E \ Eo) = 0, E \ E! is closed, and our conclusion follows from a result of
Shiffman [Sh], which states that a 1-dimensional complex variety can be extended across
a closed subset with zero length.

Let p be a point in Eg, say p = 0. Since YN Q = VUE and since A/(E) < oo,
we have that A*(¥) = 0. For almost all complex lines L through p = 0, the set VN L
has zero length. Fix such an L. It follows that for almost all discs D; C L with center 0,
bDLN(VNL) = ¢.If weletE = L+ and C?> = £ x L, then VN ({0} X bD;) = ¢. Since
V is closed, we can find a small disc Ds in X with center 0 such that

Vﬂ(D); X bDL) = ¢

The projection 7y: ¥ N (Dy X D) — Dy is thus a proper mapping. Choose coordinate
system in C such that £ = {(z,0)} and L = {(0,2,)} and let m; = 73:C*> — C(, ) be
defined by 7(z1,22) = z1, B = B} X B, with By = Ds, B, = D;. Then we have the
following properties:

(1) m: VN B — m (¥ N B) is a proper mapping.

(2) mi|vns is locally a biholomorphic mappings away from a discrete subset £’ of

VNB.
(3) For the set
B* = (B; \m(ENB)) x By,

we have
m:(V\EYNB* — m((V\ E)NB*)

is a finite covering map. For if K is a compact subset of m;(¥ N B*), then 77 1(K)
is a compact subset of ¥ N B. Since 77! (K) N 77! m(E N B) = ¢, the set 77 (K)
is indeed compact in M B*. The mapping is thus a proper mapping from V' N B*
onto its image, and therefore is a finite covering map away from the set E’.

We call the coordinate system from the pair £ X L a normal coordinate system and
the B’s the associated normal neighborhoods. Since the set of lines L satisfying above
properties is dense in G(2, 1); indeed, it is of full measure in G(2, 1), we will, in the
following proof, change our normal coordinate system (and hence the associated normal
neighborhoods) from time to time to simplify our argument. First for each fixed normal
coordinate system, we adopt the following notations:

E!' = m(ENB),

Al
m(VNB)\ E' = Ul U
]’.:
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where {UJI} are the connected components of the set on the left, and

K' = m(E),
=VNB N (UH)\ 7y (Kl
T = Ul Nul,

u} = sheet number of analytic covering map m |}
J

Note that the number A\; may equal to oo, since the set on the left in above second
equality may have infinitely many components. Since ¥ N (B; X bB,) = ¢,

b(VNB) = (ENB)U (VN (BB X By)),
and
m(b(V' N B)) C E' UbB,.

Thus ij1 C bBUE". Moreover, we claim that the set E! UbB, is connected. First we can
shrink the neighborhood B, (the projection 7 remains proper) so that EN(bB| X By) # &.
If 7 is a connected component of the set £ M B, then the set Y meets the set bB; X B,
since we assume that the curve E is connected. Therefore the connected set m(7) has
to meet bB; and the set E! U bB, is thus connected. Therefore the connected set Uj1 has
connected boundary and hence is simply connected. We have the following facts, the
proof of which can be found in Chirka [Ch], p. 239:

(1) Foreacha € E L 7«7 (@) N ¥V N B is of dimension zero.

(2) Foreacha €T ]k, the number of points (counting multiplicity) of 77! (@) N V' N B
will not exceed min(pj uk).

(3) Theset YNUN7, ' (U}) is the zero set of some monic polynomial F (z1,z2) with
degree u} in z; and with coefficients analytic functions of z;. Moreover, forz; € Uj! \K!,
the polynomial Fj1 (z1,22) has only simple roots in z,.

STEP 2. Some Lemmas.

Next we are going to prove several lemmas that allow us to use the results in Section 2.

LEMMA 3.4.  For eachj and k, if A'(T;) > 0, then jij = p;.

PROOF. Let Aj(z;) be the discriminant of the polynomial F} (z1,z,). Then A (z1) # 0
forz, € Ujl \K'. Moreover, as YNB is bounded in C?, A} (z1) is bounded and holomorphic
on U} \K'. Since A'(K") = 0 and since K" is closed, A;(z1) is a bounded holomorphic
function on whole Uj1 . Therefore, A} (z1) has nontangential limit almost everywhere along

bU} . Moreover, the uniqueness theorem for H> functions on a simply connected domain
with rectifiable boundary shows that the subset

={z € bU} : n.t. limit of A} exists at z; and equals zero}
has zero length. In particular,
A'(m(E\ E)) =0,

A'E NI =0,
AlEZ N =0
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and
A (T \ (5 USiUm(E\ E)) >0

Foranya € F}k \ (Z]‘ UZium(E\ Eo)), there are two sequences {a,,} C Ujl \ K' and
{bm} C Ui \ K' so that

m A}(a,,,) # 0 and A} (by) # 0.

() Aj(@m) — Aj(a) # 0and Ay(bn) — Aj(a) # 0.
Moreover, since all the roots of F}l (21,22) and F}(z1,2,) lie inside ¥ N B and all are holo-
morphic functions, by passing to the subsequences of {a,} and {b,}, we can assume
that F}(am,22) and Fy(bn,z2) converge to F}(a,zz) and F}(a,z,) respectively. The dis-
criminant of F}(a,22) (Fj(a, zz)) equals A} (a) (A;(a) resp.) and F} (a,22) (Fi(a,22)) is a
monic polynomlal of degree u] m resp) Since the zero set of F; a,22) (Fi(a,z)) is

T @N¥nN Vl (r7'(@) N 7 N V! resp.), and since all roots are sunple we can denote
the Zero sets as

i @NrOr = {4@)....v, @}
' @NTNV] = {h@),....ok @)}

with o, (a) # u/[',(a) and u#(a) # wf(a) if @ # B. Each wy(a) («(a)) is the limit of
Wa(@m) (wf(bm) resp.). For each fixed m, if a # B, then wy(an) # Wy(am) and o (by) #
w’é(bm). There are two cases we have to consider separately.

(1) If W,(a) does not belong to the set BN E, say uy(a) € W, then for large m,
Whlam) € W \ E'. Since the mapping ; is biholomorphic near the point uf,(a) and the
sequence {b,, } converges to the point a, 77 ! (b,) has a point which is also close to Jy(a),
say wj(bm) € 77 (by). Thus we obtain

wi@) = lim wi(bn) = lim oy (am) = Wy (@).

We have established a mapping from 77! (a) N W, N _17 to 77 @NWiN 7,: Moreover,
this mapping is one-to-one, since we assume that A} (@) # 0 and Al(a) # 0. This leads
to the relation . .

Im @ n V< i @n N v,

here we use | * | to denote the cardinality of the set. Similarly we can prove the reversed
inequality, and this implies that

T @NVN V1| = | @N VNV

(2) If W,(a) € Eo N B, we can find a small neighborhood U C B so that uf,(a) € U
and VN U = W} UW,, and W], W, have the property in Definition 3.1. There are two
cases. Either there are infinitely many m’s, say {m;, } and {m;, }, so that {a, } and {bm, }
are both contained in the same m(W}) \ K' (or m(W}) \ K1), am, — @, by, — a,or we
have that for large index m, a,, € m(W}) \ K" and b, € 7r1(W’) \ K'. That 7, is a local
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biholomorphism on both W] \ E' and W, \ E’ implies that there exist two indices o and
Bwithl < a < p}, 1 < B < pi, such that, in the former case, Walam,) € W)\ E',
wi(bm,) € W} \ E', and hence

(@) = lim o, (am, ) = limwf(bm, ) = ufy(a),
in the latter case, Wy(an) € W] \ E', w’[‘,(b,,,) € W5\ E', and hence
W(a) = lim o/ (am) = lim wi(bn) = w(a).
Similar to (1) above, both lead to
I (@NENV]| = |m (@ NENV]].

Combining above two cases, we reach to the conclusion that ,u} = p;, and the lemma is
proved.

The connected components {U}'} that appeared in the above lemma depend on the
choice of coordinate system and on the projection 7;. Since the number of branches of
VN B increases if we decrease the neighborhood B, by the definition of property (Q), the
number of branches in BN ¥V is a finite number mg > 2 for each fixed normal neighbor-
hood B. From now on we fix a normal coordinate system and a normal neighborhood B
of the point p = 0. Let W, and W, be two branches of ¥MB so that (W, W)\ (W, \W>)
is a rectifiable curve containing p = 0. We denote this curve by I, and by 7 the projection
7. Since (W) and n(W>) are two connected subsets of B;, the above argument shows
that they have connected boundaries. Hence they are simply connected. Moreover, as the
mapping WIW-;HB is proper, the set

br(W1) N br(Wy) D m(b(W, N B*)) Un(b(W2 N B*)) D m(b(W; U W),

and the latter set contains 7{I'), which has positive length. Therefore by the proof of
Lemma 3.4, the sheet number for the mapping 7! on (W) \ m(W, NW>) is the same as
that on the set w(W,) \ 7(W, N W5). We denote this positive integer by z2. On the one hand,
since the set I is in the boundaries of #; and W,, the number of points in 7~!(¢) N B
will not exceed the number p for almost all { € w(I"). On the other hand, by applying
the uniqueness theorem for holomorphic functions to the discriminant of proper analytic
mapping |y,, we know that for almost all ¢ € 7(T'), 7~!({) contains exactly p points in
W, U W, N B. Moreover, by our assumption about property (Q), we can assume that for
each of these p points in the fiber, property (Q) holds. Next we will prove a lemma that
enables us to use results in Section 2.

LEMMA 3.5. The simply connected domains m(W,) and ©(W>) are disjoint, and their
boundaries inside B, meet only along the rectifiable curve m(T').

PROOF.  Suppose m(W, )Y n(W>) is a nonempty open subset of B;. Choose a nonempty
open connected component w of it. We first show that if { € bw, then either ¢ € br(W))N
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m(W3) or ¢ € bm(W>) Nw(W)). This is so, because

bw C b(x(Wy) N (Wy)) = (W) (o) \ (n(W1) N w(W2))
C () N (W) \ (w(W1) N m(W2))
= (br (W) N w(W2)) U (br(W2) N w(W)).

Therefore we may assume that
A (bw N br(Wy) N w(W2)) > 0.

Let y;(¢) be the number of points in 7~ (()NW;NB. If ¢ € br(W;)Nn(W,) and if P is an
arbitrary point in the set 7~ ({)NW; U W,NB, then P cannot be in W}, since the mapping
7|w, is an open mapping. Therefore P lies either in 5, N bW, N B or in bW, \ W, or
in W,. Suppose P € bW, \ W,. Then property (Q) implies that for a small neighborhood
U of P, there exist two branches V| and V>, of (W U W,) N U the closure of which meet
along a curve containing P. Since P ¢ W,, both ¥, and V> are branches of W; NU. Since
(V1) C 7(Wh), m(Va) C m(Wy), and ¢ € (V] N V3) C m(T), the discriminant of 7|,
vanishes at the point P. Therefore for almost all points { € br(W) N w(W>),

7 1) C (bW NbW, N B)U Ws.

Now as ¢ € m(W>), there exists at least one such P that belongs to >, which is certainly
not in W;. Therefore together with the points in 7~(() N bW, N bW, N B, we have that
11(Q) < p2(¢). But, as we showed before, for almost all { € bn(W)), 11() = p and
for ¢ € n(W,) p2(() = p. We obtain a contradiction that p < p. Thus the two simply
connected domains 7(W, ) and m(W,) are disjoint.

Moreover, above proof also gives that for ¢ € br(W1)Nbr(W>), 7' ()NB C bW, N
bW, N B =T. Therefore, by the properness of the mapping 7 on the set W, U W>,

br(W)) N br(W2) N B, C m(I) = (bW, N\ bW, N B)
n(bWi N BYNw(bW, N B) C (br(Wy) N br(W,)) N B,.

ie.,
br(W) Nbr(W2) N By = w(D).

This finishes the proof of the lemma.

Now we have two simply connected domains F; = n(W;) and F, = w(W;) with
rectifiable boundaries so that Fy N F, = ¢ and Fi NF; is a rectifiable curve Y = ().
Moreover, by the proof of Lemma 3.5, for almostall{ € ¥, 771(() C WiNW,\WNW, =
I'. By using Lemma 2.2, the curve 7 is either an arc or a simple closed curve. In both
cases, the pairs (F;,Y) have property (Q) by Theorem 1.6 for i = 1,2. That is to say
that for almost all g € 7, there exist a rectifiable arc v, in F; with v; Ny = {q1,42}, a
rectifiable subarc Yo of v with endpoints q; ¢, and ¢ € int(7), such that the domain
D; C F;boundedby the curve Y;UY is simply connected, D;N\D, = ¢,and D;N\D; = 7.
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LEMMA 3.6. bD; contains no simple closed rectifiable curve other than ¥; U",.

PROOF. Let us assume i = 1. All we need to show is that 5D \ (Yo U;) contains
no simple closed curve. Suppose not, so that it contains a simple closed rectifiable curve
8. Thené C ¥ C w(E) and é bounds a Jordan domain Dy in C with Dy N F = ¢. If ( € 0,
then 7~!(C) contains no point that belongs to W}, since ¢ is a boundary point of w(#;)
and 7 is an open mapping on ;. Therefore a point in 7! () is either in bW; N bW, or
in bW, \ W,. The later case can hold only for points lying in a set of zero length, as we
showed in Lemma 3.5. Therefore for almost all points ¢ € §, 7~ (¢) C bW NbW,, which
implies that 6 C w(bW) N w(bW,) = w(['). Since (W) N w(W,) = ¢, m(W>2) C Dy and
¢ = m(') that is impossible by our choice of the set §. This completes the proof.

LEMMA 3.7. Let D be either Dy or D,. Then int (D) is a Jordan domain, i.e., a simply
connected domain with rectifiable simple closed curve as its boundary.

PROOF. For convenience, we denote by D the simply connected domain D;. Let
€\ D = U2, Q; with each Q; connected and with Q, the unbounded component. Then

1. bQ; is connected, since the domain D is simply connected. Therefore each domain
Q; 1s simply connected.

2. bQ; C bD. For if p € bQY;, then p ¢ D, and therefore

p € (bDU(C\ D)) NbQ; C bD.

3. by is a rectifiable simple closed curve. This follows from our Lemma 2.2 since
we know that both D and Q) are simply connected with rectifiable boundaries and that
by = DN Qy.

Let

o]
bD \ bQo - U Vi
i=1

where each v; is a rectifiable curve with one end lying on bQg, and v; Nv; = ¢ fori # 5.
By Lemma 3.6, each v; is contained in the Jordan domain Dy bounded by bQy, and each
v; contains no closed simple rectifiable curve. To proceed the proof, we show first that
UR, vi C int(D).

Fix an i, say i = 1. Since v, is a rectifiable curve, Theorem 1.4 and 1.6 imply that for
almost all points p € v, following property holds:

There exist p;, p; in v (depending on p), a rectifiable arc pip; C v, with py, p»
as endpoints and with p as an interior point, and two simply connected domains U; U,
contained in D such that Uy N U, = ¢, Uy N U, = pip3.

Thus U; UU, C D, and p € int (U, U U), which is a nonempty open set contained
entirely in int (D). Therefore p € int (D). Thus if we let

vi ={p € v; : (D, v;) has property (Q) at point p},

then v} C int(D). Let v = U2, (v; \ v}). Then A'(v) = 0. Hence for each p € v, there
exists a disc Bs(p) with center p, with radius 6, such that bBs(p) v = ¢ and Bs(p) C Dy.
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Since Bs(p) N (U2, v}) C int(D), Bs(p) \ v C int(D). Now as A!(v) = 0, every point in
v can be approached by sequence of points that are in Bs(p). Therefore

v C Bs(p) C int(D) = D,

ie., Bs(p) C D.So p € int(D), which shows that » C int(D), and hence J°; v; C
int (D).
By this claim, we can easily finish the proof of Lemma 3.7 by observing following
inclusions,
[e.9)
Dy = DU(U vi) C mt([)) C Dy.
i=1
STEP 3. Final Proof.
We define for ¢ € D; \ n(K;) holomorphic functions {a}({)};‘zl by

QN W = {4 (Q),...,d,©},

where K| is the set of singular locus for the proper mapping 7 on ¥ N B. Then each a]’
is a bounded holomorphic function in its domain. Since the set K, has zero length, o
can be extended as a bounded holomorphic function to D;. Therefore, we can first extend
these bounded holomorphic functions to the corresponding Jordan domain int (D;) by
invoking Theorem 2.3. Denote the extended function by a} Moreover, the nontangential
limits of o} exist almost everywhere on the set Yo,and, by rearranging the order among
these functions, we obtain
n.t. zell)ilr’lzi_’c aj(z) =n.t. . lerzl_( o (2).

Thus we can extend the function a} analytically across rectifiable arc Y to D;, by Theo-
rem 2.1, and obtain an analytic function G; in int (D; U D,) that contains int (o). There-
fore (W) U W,) N B is analytic near the points on 7~!(Yy). Since for almost all points on
7 property (Q) holds, that implies that (W; U W,) N B is a variety. Our theorem has been
proved for n = 2.

Now we turn to the proof of the theorem for general n > 2. The main principle is the
same as we already did for n» = 2, while minor changes need to be made. Take a point
p € Ey. Then, as A*(¥) = 0, we can find a coordinate system {z1,...,z,} with p and for
each fixed i a small neighborhood B; of p such that the projection map «;: C* — C;i is
proper on VNB;.Fixani,sayi = landletz’ = (z;,...,2,). We retain the notations from
above proof and use so-called canonical defining functions, used in the book by Chirka
([Ch], p. 47) to replace the polynomials Fjl by a system of polynomials {(Dﬁ(zl ,z )}I f=u!
that are polynomials in z; with degree pjl and have holomorphic coefficients in Z/, i.e.,
oneach 7' (UHNVNB\E,

Vyz1,2)= 3 duE)EY, | = 1.

1
W<y
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Thus away from a discrete set £/, which is the set of branch points for the projection
m1|vns, the common zeros

d(@) = {dh@),.... o, @}

of above system are the points of the fiber 7;!(z;) N ¥ N B. Each vector-valued holo-
morphic function ¢/(z;) is bounded and hence extends over U, which we still denote by
o(z1). Therefore,

*) ' @)NVNBD ) {®¥)z,2) =0}
=n;

forz; € Uj’ﬂm(EﬂB). Form = n— 1, define a (m;“ill_l) X m matrix

0D(z1, Z/))
oz’ ’

Then (z1,2’) € E’ ifand only if rank M < m. We claim that for almost all (with respect to
AYzy € m(ENB)NULif1 <iy <ip < pf, then o, (z1) # &} @), ke, 7 @) NV NB
consists of p j‘ distinct points and equality in (x) above holds. The reason for our claim is
that the discriminant of every m x m minor in M (z;, z') is a bounded holomorphic function
on 1rf‘(U} ), and there is at least one m X m minor, say the first m rows, that has non-zero
determinant &/(z1,z) on 7y '(U}) \ E', i.e., for every z; € Uj \ mi(E"), N(z1, o/,:(zl)) #0
foreachl <i < ,uj!. Our claim follows from the uniqueness theorem in the case n = 2.
Thus, a similar argument in Lemma 3.4 and in its follow-up shows that there exist two
indices v and 8 with o (z1) = afj(z1) for almost all z; € T, provided that A'(T;,) > 0.
By applying removable singularity theorem in Section 2 to each component, we reach
the conclusion that ¥} U ¥} U int([}) is an analytic variety if A'(T;) > 0. Finally, for
the set I“j!k with zero length, we use the same argument in the last part of the proof when
n = 2 to show that V' M Q is also analytic. Therefore our proof is complete.

Another way to reduce the problem from n > 2 to n = 2 is to use almost single-
sheeted projections from Chirka’s book [Ch], p. 38.

M(z,7) = (

4. Some corollaries.

COROLLARY 4.1. Let E be a rectifiable curve in a domain D. If V| and V; are two
1-dimensional irreducible varieties in D \ E such that bV, and bV, are two rectifiable
curves, and such that E C V1N\V>, then either V| = Vs, or VIUEUV, is a 1-dimensional
variety in D.

The proof of this corollary is a simple corollary of Theorem 3.2, after we prove that
property (Q) holds in this case. For this purpose, we need a lemma that tells us in case
that the boundary of a 1-dimensional variety is a rectifiable curve, there can only be, for
almost all points on the boundary, finitely many local branches; indeed the number of
branches near almost all points on the boundary cannot exceed 2. The result was proved
in various places. The most recent one was included in M. Lawrence’s thesis [La].
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LEMMA. Let V be a 1-dimensional variety in a domain D such that the boundary
bV is connected and of finite length. Then for almost all points p € bV and for any
neighborhood U of p in C", there exists a neighborhood B C U of p such that the number
of branches in V N B that adjacent to p is at most 2.

The proof of this lemma is a standard argument by invoking analytic projections to
certain normal coordinate planes. By using a result about amply adjacent neighborhoods
for the image of the point p under projections, the result follows from the uniqueness
theorem for holomorphic functions. For details, see the proof of the lemma in Section 2.2
in [La].

PROOF OF COROLLARY 4.1. Suppose that ¥} # V,. Then irreducibility of both ¥}
and ¥, implies that ¥, N V; is of at most zero dimension. The lemma above gives that
both ¥ and ¥, have at most 2 local branches adjacent to almost all points on E. Thus
E C Vi NV, implies that property (Q) holds at almost all points of E, and our result
follows from Theorem 3.2.

A special case of Corollary 4.1 when F is a closed analytic arc was done by Globevnik
and Stout in [GS] by applying a version of the “reflection principle” for varieties. Another
version of our main result can be stated as following corollary, here we use D as the unit
disc in C.

COROLLARY 4.2. Let f, g be two proper holomorphic maps from D to a domain Q
in CN that extent continuously to D. If there exist two arcs Iy and I, contained in bD such
that T'y = f(Iy), T2 = g(lg) are two subsets in bQ with I'y N\ T3 a rectifiable curve, then
either f(D) = g(D), or f(D)Vint (' NI2)Ug(D) forms a 1-dimensional complex variety.

In particular, if Q is a strictly pseudoconvex domain in CV and if / and g are as above
such that f(bD) N g(bD) contains a rectifiable curve, then /(D) = g(D).

It is an open problem whether the second part of above corollary still holds if /(D) N
g(bD) is a totally disconnected closed set with positive 1-dimensional Hausdorff measure,
and N > 2. When N = 2 and I}, I'; are simple rectifiable curves, the problem was solved
by Globevnik and Stout in [GS] under the assumption that @ = B,. Recently a similar
version of this corollary was given by Alexander in [Al3].

PROOF OF COROLLARY 4.2. By properness of f and g, V| = f(D) and V, = g(D)
are two 1-dimensional irreducible complex varieties. Suppose that /(D) # g(D). Take an
arbitrary point p € int(I'; NI';), then for any neighborhood U of p, there exists a smaller
one B of p such that f(B)NB # g(®)NB and BN(T'; NI;) C int (I, NI). For otherwise,
UNnf(D) = UNg(D) implies that /(D) = g(D) by the uniqueness theorem for irreducible
varieties. Let ¥ = ¥ U V;. Since f and g are continuous on D, f(D) = f(D) U f(bD)
and g(D) = g(D) U g(bD). Thus ¥ N B is a 1-dimensional variety in B \ (I'; N T?). Let
W, = Vi N Band W, = V, N B. Then W) N W, is a 0-dimensional variety (possibly
empty) and ((W; N W2) \ (W, N W2)) N B C f(bD) N g(hD) N B = T} NT, N B. Our
Corollary 4.1 implies that ¥; Uint (I'y NI'2) U V3 is a 1-dimensional variety.
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When Q is a strictly pseudoconvex domain in CV and " C f(bD) N g(bD) C bQ is a
rectifiable curve, then either f(D) = g(D), or ¥ = f(D)Uint (I') Ug(D) is a 1-dimensional
complex variety. But the latter case can not be happen, for otherwise the variety V will
meet the boundary bQ of strictly pseudoconvex domain Q in a set consisting of inte-
rior points of ¥, which contradicts the maximum principle for the strictly subharmonic
functions. This leads to the conclusion that /(D) = g(D).

It can be easily seen that following is a variation of Corollary 4.1 and 4.2.

COROLLARY 4.3. Let Vi and V, be two 1-dimensional irreducible varieties con-
tained in a strictly pseudoconvex domain D. If Vi N\ V5 is a rectifiable curve that lies in
the boundary of D, then V| = V.
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