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Algebras

In this chapter we recall basic definitions related to algebras, especially C∗- and
W ∗-algebras.

Operator algebras are often used in mathematical formulations of quantum
theory to describe observables of quantum systems. This is especially useful if
we consider infinitely extended systems. They are also convenient to express the
Einstein causality properties of relativistic quantum fields.

It is also common to express canonical commutation and anti-commutation
relations in terms of algebras. This is especially natural in the case of the CAR.
In fact, we will use algebras to treat the CAR in a representation-independent
way in Chap. 14. Algebras are less useful in the case of the CCR. We will discuss
various choices of CCR algebras in Sect. 8.3.

The theory of W ∗-algebras, including elements of the modular theory, will be
especially needed in Chap. 17, devoted to quasi-free states.

6.1 Algebras

6.1.1 Associative algebras

Let A be a vector space over K = C or R.

Definition 6.1 A is called an algebra over K if it is equipped with a multiplica-
tion satisfying

A(B + C) = AB + AC, (B + C)A = BA + CA,

(αβ)(AB) = (αA)(βB), α, β ∈ K, A,B,C ∈ A.

If in addition

A(BC) = (AB)C, A,B,C ∈ A,

then we say that it is an associative algebra.

Unless indicated otherwise, by an algebra we will mean an associative algebra.

Definition 6.2 A subspace I of an algebra A is called a (two-sided) ideal of A

if A ∈ A and B ∈ I implies AB,BA ∈ I.

If I is an ideal of A, then A/I is naturally an algebra.
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6.1 Algebras 143

Definition 6.3 An algebra A is called simple if A has no ideals except for
{0} and itself, and A �= K with the multiplication given by AB = 0 for all
A,B ∈ A.

For every subset T of an algebra A there exists the smallest ideal containing
T.

Definition 6.4 This ideal is called the ideal generated by T and is denoted by
I(T).

Definition 6.5 If A, B are algebras, then a linear map π : A→ B satisfy-
ing π(A1A2) = π(A1)π(A2) is called a homomorphism. It is called an anti-
homomorphism if π(A1A2) = π(A2)π(A1). (In the well-known way, we also
define isomorphisms, automorphisms etc.)

6.1.2 ∗-algebras
Definition 6.6 We say that an algebra A is a ∗-algebra if it is equipped with an
anti-linear involution A � A �→ A∗ ∈ A such that (AB)∗ = B∗A∗.

Let A be a ∗-algebra. If I is a ∗-invariant ideal of A, then A/I is naturally a
∗-algebra.

Definition 6.7 If A, B are ∗-algebras, then a homomorphism π : A→ B satisfy-
ing π(A∗) = π(A)∗ is called a ∗-homomorphism. (We also define ∗-isomorphisms,
∗-automorphisms etc.) Aut(A) will denote the group of ∗-automorphisms
of A.

6.1.3 Algebras generated by symbols and relations

Suppose that A is a set.
Recall that cc(A, K) denotes the vector space over K consisting of finite lin-

ear combinations of elements indexed by the set A. We adopt the convention
that the element of cc(A, K) corresponding to A ∈ A is denoted simply by
A. Recall also that

a l⊗Y denotes the algebraic tensor algebra over the vector
space Y.

Definition 6.8 (1) The unital universal algebra over K with generators A is
defined as

A(A, 1l) :=
a l⊗ cc(A, K),

where we write A1A2 · · ·An instead of A1 ⊗A2 ⊗ · · · ⊗An , A1 , . . . , An ∈ A
and the unit element is denoted by 1l.

(2) The universal unital ∗-algebra with generators A is the ∗-algebra
A(A #A∗, 1l) equipped with the involution ∗ such that (A1A2 · · ·An )∗ =
A∗

n · · ·A∗
2A

∗
1 , 1l = 1l∗.
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144 Algebras

Definition 6.9 (1) Let R ⊂ A(A, 1l). The unital algebra with generators A and
relations R = 0, R ∈ R, is defined as A(A, 1l)/I(R).

(2) Let R ⊂ A(A ∪A∗, 1l) be ∗-invariant. The unital ∗-algebra with generators
A and relations R = 0, R ∈ R, is defined as A(A ∪A∗, 1l)/I(R).

6.1.4 Super-algebras

Recall from Subsect. 1.1.15 that (Y, ε) is a super-space if Y is a vector space and
ε ∈ L(Y) satisfies ε2 = 1l. We then have a decomposition Y = Y0 ⊕ Y1 into its
even and odd subspace.

Definition 6.10 (A, α) is called a super-algebra if A is an algebra and α is an
involutive automorphism of A.

We then have a decomposition A = A0 ⊕ A1 into even and odd subspace.
Clearly, for pure elements A,B ∈ A of parity |A|, resp. |B|, the parity of AB

is |A|+ |B|.
Note that A0 is a sub-algebra of A.

Definition 6.11 We say that a super-algebra A is super-commutative iff AB =
(−1)|A ||B |AB.

Below we give two typical examples of associative super-algebras:

Example 6.12 (1) Let (Y, ε) be a super-space. Then L(Y) equipped with the
involution

α(A) = εAε (6.1)

is a super-algebra. It will be denoted gl(Y, ε).
(2)

a l
Γε(Y) equipped with ⊗ε is a super-commutative super-algebra (see Subsect.
3.3.9).

6.2 C∗- and W ∗-algebras

In this section we recall basic terminology from the theory of C∗- and
W ∗-algebras.

6.2.1 Banach algebras

Definition 6.13 An algebra A is called a normed algebra if it is equipped with
a norm ‖ · ‖ satisfying

‖AB‖ ≤ ‖A‖‖B‖, A,B ∈ A.

It is called a Banach algebra if it is complete in this norm.
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6.2 C∗- and W ∗-algebras 145

6.2.2 C∗-algebras

Definition 6.14 We say that A is a C∗-algebra if it is a complex Banach
∗-algebra satisfying

‖A∗‖ = ‖A‖, ‖A∗A|| = ‖A‖2 , A ∈ A. (6.2)

Definition 6.15 Let A be a complex normed ∗-algebra (not necessarily com-
plete). We say that its norm is a C∗-norm if it satisfies (6.2).

Clearly, the completion of an algebra equipped with a C∗-norm is a C∗-algebra.
If H is a Hilbert space, then B(H) equipped with the Hermitian conjugation

and the operator norm is a C∗-algebra.

Definition 6.16 A norm closed ∗-sub-algebra of B(H) is called a concrete
C∗-algebra.

Clearly, every concrete C∗-algebra is a C∗-algebra. Conversely, every
C∗-algebra is ∗-isomorphic to a concrete C∗-algebra.

Any ∗-homomorphism, resp. ∗-isomorphism between two C∗-algebras is a con-
traction, resp. isometry.

Definition 6.17 We define the set of positive elements of A as the set of self-
adjoint elements with spectrum in [0,∞[, or equivalently, of elements of the form
A∗A. The set of positive elements of A is denoted A+ .

Definition 6.18 Let A be a C∗-algebra. A C∗-dynamics on A is a one-parameter
group R � t �→ τ t ∈ Aut(A) such that for each A ∈ A the map t �→ τ t(A) is con-
tinuous. Such a pair (A, τ) is called a C∗-dynamical system.

6.2.3 Representations of C∗-algebras

Let H be a Hilbert space and A ⊂ B(H).

Definition 6.19 The commutant of A is defined as

A′ := {B ∈ B(H) : AB = BA, A ∈ A}.

Let A ⊂ B(H) be a ∗-algebra.

Definition 6.20 A is called irreducible if the only closed subspaces of H invari-
ant under A are {0} and H, or equivalently if A′ = C1l. A is called non-degenerate
if AH is dense in H.

Let A be a C∗-algebra.

Definition 6.21 (H, π) is a representation of A if H is a Hilbert space and π is
a ∗-homomorphism of A into B(H). π is called faithful if Ker π = {0}.
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146 Algebras

(Faithful in this context is the synonym of injective.) Since Kerπ is a closed
two-sided ideal of A, any non-trivial representation of a simple C∗-algebra is
faithful. Actually, a stronger statement is true: a C∗-algebra is simple iff all its
representations are faithful.

Let (H, π) be a representation of a C∗-algebra A.

Definition 6.22 A closed subspace H1 ⊂ H is invariant if π(A)H1 ⊂ H1 for all
A ∈ A. (H1 , π1) is a sub-representation of (H, π) if H1 is an invariant subspace
of H and π1 = π

∣∣
H1

.

Definition 6.23 We say that (H, π) is the direct sum of (H1 , π1) and (H2 , π2)
if H = H1 ⊕H2 and (Hi , πi) are sub-representations of (H, π).

Note that if H1 is invariant, then so is H2 := H⊥
1 . (H, π) is then the direct

sum of (H1 , π1), (H2 , π2), with π1 := π
∣∣
H1

, π2 := π
∣∣
H2

.

Definition 6.24 We say that a representation (H, π) of a C∗-algebra is irre-
ducible if π(A) is irreducible. Equivalently π(A)′ = C1l, or π has no non-trivial
sub-representations.

Definition 6.25 The representation (H, π) is called non-degenerate if π(A) is
non-degenerate.

Definition 6.26 The representation (H, π) is called factorial if π(A) ∩ π(A)′ =
C1l.

Let E ⊂ H.

Definition 6.27 (1) E is called cyclic for π if {π(A)Φ : A ∈ A, Φ ∈ E} is dense
in H.

(2) E is called separating for π if

π(A)Φ = 0, Φ ∈ E ⇒ A = 0.

Clearly, if (H, π) is irreducible, all non-zero vectors in H are cyclic.

6.2.4 Intertwiners and unitary equivalence

Let (H1 , π1), (H2 , π2) be two representations of a C∗-algebra A.

Definition 6.28 An operator B ∈ B(H1 ,H2) intertwines π1 and π2 if

Bπ1(A) = π2(A)B, A ∈ A.

If π1 and π2 have an intertwiner in U(H1 ,H2), they are called unitarily
equivalent.

The following theorem can be called Schur’s lemma for C∗-algebras:
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6.2 C∗- and W ∗-algebras 147

Theorem 6.29 If (H1 , π1), (H2 , π2) are irreducible, then the set of intertwiners
equals either {0} or {λU : λ ∈ C} for some U ∈ U(H1 ,H2).

Proof If B intertwines π1 and π2 , B∗ intertwines π2 and π1 , hence B∗B ∈ π1(A)′

and BB∗ ∈ π2(A)′. By irreducibility, B∗B = λ11l, BB∗ = λ21l for some λ1 , λ2 ∈
R. Now

λ2
11l = BB∗BB∗ = Bλ2B

∗ = λ2λ11l. (6.3)

If λ1 = 0, then B = 0, and hence λ2 = 0. Hence (6.3) implies that λ1 = λ2 , which
means that B = λU for some U ∈ U(H1 ,H2). If B1 and B2 are two intertwiners,
then a similar argument shows that B1B

∗
2 is proportional to identity. This means

that B1 is proportional to B2 . �

6.2.5 States

Let A be a C∗-algebra.

Definition 6.30 A linear functional on A is called positive if it maps positive
elements to positive numbers.

A positive linear functional is automatically continuous.

Definition 6.31 A positive linear functional is called a state if its norm is 1.
In the case of a unital C∗-algebra it is equivalent to requiring that ω(1l) = 1.

Definition 6.32 A state ω is called faithful if ω(A) = 0 and A ∈ A+ implies
A = 0.

Definition 6.33 A state ω is called tracial if

ω(AB) = ω(BA), A,B ∈ A.

6.2.6 GNS representations

Let (H, π) be a ∗-representation of A, Ω a normalized vector in H. Then

ω(A) = (Ω|π(A)Ω) (6.4)

defines a state on A.

Definition 6.34 If (6.4) is true, we say that Ω is a vector representative of ω.

Definition 6.35 (H, π,Ω) is called a cyclic ∗-representation if (H, π) is a
∗-representation and Ω is a cyclic vector.

Theorem 6.36 (Gelfand–Najmark–Segal theorem) Let ω be a state on A. Then
there exists a cyclic ∗-representation (Hω , πω ,Ωω ) such that Ωω is a vector rep-
resentative of ω. Such a representation is unique up to a unitary equivalence.
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148 Algebras

Definition 6.37 The cyclic ∗-representation described in Thm. 6.36 is called
the GNS representation (for Gelfand–Najmark–Segal) associated with ω.

6.2.7 W ∗-algebras

Definition 6.38 We say that M is a W ∗-algebra if it is a C∗-algebra such
that there exists a Banach space whose dual is isomorphic to M as a Banach
space. This Banach space is unique up to an isometry. It is called the pre-dual
of M and is denoted M# . The topology on M given by the functionals from M#

(the ∗-weak topology in the terminology of Banach spaces) is called the σ-weak
topology. Functionals in M# are called normal functionals.

It follows from the general theory of Banach spaces that M# coincides with
the space of all σ-weakly continuous functionals on M.

Definition 6.39 The set

{B ∈M : AB = BA, A ∈M}

is called the center of M. A W ∗-algebra with a trivial center is called a factor.

Two-sided σ-weakly closed ideals I of a W ∗-algebra M have a simple form:
they are equal to I = ME, for a projection E in the center of M. Clearly, all
two-sided σ-weakly closed ideals of a factor are trivial.

If ω is a σ-weakly continuous state, then the map πω given by the GNS
representation is σ-weakly continuous.

Definition 6.40 Let M be a W ∗-algebra. A W ∗-dynamics on M is a one-
parameter group R � t �→ τ t ∈ Aut(M) such that for each A ∈M the map t �→
τ t(A) is σ-weakly continuous. Such a pair (M, τ) is called a W ∗-dynamical sys-
tem.

6.2.8 Von Neumann algebras

Let H be a Hilbert space. Then B(H) is a W ∗-algebra, since it is the dual of
B1(H) (the space of trace-class operators on H). Thus B1(H) is the pre-dual
of B(H) and the topology on B(H) given by functionals in B1(H) is its σ-weak
topology.

Definition 6.41 Every C∗-sub-algebra of B(H) closed w.r.t. the σ-weak topology
is called a concrete W ∗-algebra. If in addition it contains 1lH, then it is called a
von Neumann algebra.

Clearly, all concrete W ∗-algebras are W ∗-algebras. Conversely, a W ∗-algebra
is isomorphic to a von Neumann algebra.
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Definition 6.42 Let Mi ⊂ B(Hi), i = 1, 2. Let ρ : M1 →M2 be an isomor-
phism. We say that ρ is spatially implementable if there exists U ∈ U(H1 ,H2)
such that ρ(A) = UAU∗, A ∈M1 .

If A ⊂ B(H) is ∗-invariant, then A′ is a von Neumann algebra.
An equivalent characterization of a von Neumann algebra is given by von Neu-

mann’s double commutant theorem, stating that a ∗-algebra M is a von Neumann
algebra iff

M = M′′.

The von Neumann density theorem says that if A ⊂ B(H) is a non-degenerate
∗-algebra, then A is dense in A′′ in the weak, strong, strong∗, σ-weak, σ-strong
and σ-strong∗ topologies.

The Kaplansky density theorem says that if A ⊂ B(H) is a ∗-algebra, then the
unit ball of A is σ-weakly dense in the unit ball of A′′.

Let M ⊂ B(H) be a von Neumann algebra, and A a closed densely defined
operator on H. Let A = U |A|, where U is a partial isometry, be its polar
decomposition.

Definition 6.43 A is called affiliated to M if the operators U and 1lΔ
(|A|)

belong to M for all Borel sets Δ ⊂ R.

Clearly, a von Neumann algebra M ⊂ B(H) is a factor iff M ∩M′ = C1lH, or
equivalently, (M ∪M′)′′ = B(H). Below we give a more elaborate criterion for
being a factor.

Proposition 6.44 Let M ⊂ B(H) be a von Neumann algebra. Suppose that

(1) Ω ∈ H is a cyclic vector for (M ∪M′)′′;
(2) There exists a set L ⊂ (M ∪M′)′′ such that {Ψ ∈ H : AΨ = 0, A ∈ L} =

CΩ.

Then M is a factor.

Proof Suppose that M is not a factor and Ω is cyclic for (M ∪M′)′′. Then there
exists an orthogonal projection P ∈ M ∩M′ different from 0 and 1l. If PΩ = 0,
then (1l− P )(M ∪M′)′′Ω = (M ∪M′)′′(1l− P )Ω = (M ∪M′)′′Ω. Hence Ω is not
cyclic for (M ∪M′)′′. Therefore, PΩ �= 0. Likewise, we show that (1l− P )Ω �= 0.

Now let L be as in (2). Then since P ∈ M ∩M′ one has

A (c1P + c2(1l− P )) Ω = 0, A ∈ L, c1 , c2 ∈ C.

But for c1 �= c2 , the vector (c1P + c2(1l− P ))Ω is not proportional to Ω. �

6.2.9 UHF algebras

In this subsection we describe an example of a C∗-algebra which plays an impor-
tant role in mathematical physics, and in particular in the theory of CAR.
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150 Algebras

For any n = 1, 2, . . . , we introduce the identifications

B(⊗nC2) � A �→ A⊗ 1lC2 ∈ B(⊗n+1C2).

Definition 6.45 Define

UHF0(2∞) :=
∞⋃

k=1

B(⊗nC2), UHF(2∞) := UHF0(2∞)cpl.

UHF (2∞) is called the uniformly hyper-finite C∗-algebra of type 2∞.

6.2.10 Hyper-finite type II1 factor

We continue to consider the C∗-algebra UHF(2∞) introduced in the last subsec-
tion. On B(⊗nC2) we have a tracial state

trA := 2−nTr A.

This state extends to a state on the whole UHF(2∞). Let (πtr ,Htr ,Ωtr) be the
GNS representation given by the state tr on UHF(2∞).

Definition 6.46 The W ∗-algebra

HF := πtr (UHF(2∞))′′ . (6.5)

is called the hyper-finite type II1 factor.

Clearly,

tr(A) := (Ωtr |AΩtr)

defines a tracial state on HF.

6.2.11 Conditional expectations

Let N be a unital C∗-sub-algebra of a C∗-algebra M. We assume that the unit
of M is contained in N.

Definition 6.47 We say that E : M → N is N-linear if A ∈ M, B ∈ N implies
E(AB) = E(A)B, E(BA) = BE(A).

We say that E is a conditional expectation if

(1) A ≥ 0 implies E(A) ≥ 0,
(2) E is N-linear,
(3) E(1l) = 1l.

Proposition 6.48 Let ω be a normal tracial faithful state on a W ∗-algebra M.
Then there exists a unique conditional expectation from M with range equal to
N such that ω(A) = ω(E(A)).
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6.3 Tensor products of algebras

Let A,B be algebras. Then A
a l⊗B is naturally an algebra. If in addition A,B are

∗-algebras, then so is A
a l⊗B.

One can define natural tensor products also in the category of C∗- and W ∗-
algebras. The definitions of these constructions are given in this section.

6.3.1 Tensor product of C∗-algebras

Let A,B be C∗-algebras. We choose an arbitrary injective ∗-representation (H, π)
of A and (K, ρ) of B. Then A

a l⊗B has an obvious ∗-representation in B(H⊗K).
It equips A

a l⊗B with a C∗ norm. It can be shown that this norm does not depend
on the representations (H, π) and (K, ρ).

Definition 6.49 The C∗-algebra

A⊗B := (A
a l⊗B)cpl,

is called the minimal C∗-tensor product of A and B.

6.3.2 Tensor product of W ∗-algebras

Let M,N be W ∗-algebras. We choose an arbitrary injective σ-continuous
∗-representation (H, π) of M and (K, ρ) of N. Then M

a l⊗N has an obvious
∗-representation in B(H⊗K). Let X denote the Banach space of linear func-
tionals on M

a l⊗N given by density matrices in B1(H⊗K). One can show that
X does not depend on the choice of representations (H, π) and (K, ρ).

Definition 6.50 We set

M⊗N := X # ,

and call it the W ∗-tensor product of M and N.

Clearly, M
a l⊗N is σ-weakly dense in M⊗N. We extend the multiplication

from M
a l⊗N to M⊗N by the σ-weak continuity. One can check that M⊗N is

a W ∗-algebra.

Remark 6.51 According to our convention, the meaning of ⊗ between two alge-
bras depends on the context. It depends on whether we treat the algebras as C∗-
or W ∗-algebras.

6.4 Modular theory

In this section we give a concise resumé of the modular theory. The modular
theory is one of the most interesting parts of the theory of operator algebras. It

https://doi.org/10.1017/9781009290876.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.007


152 Algebras

sheds light on the structure of general W ∗-algebras. It plays an important role in
applications of operator algebras to quantum statistical physics. Key concepts of
the modular theory include the modular automorphism and conjugation due to
Tomita–Takesaki, KMS states and standard forms introduced by Araki, Connes
and Haagerup.

6.4.1 Standard representations

Let H be a Hilbert space.

Definition 6.52 A self-dual cone H+ is a subset of H with the property

H+ =
{
Φ ∈ H : (Φ|Ψ) ≥ 0, Ψ ∈ H+}.

Let M be a W ∗-algebra.

Definition 6.53 A quadruple (H, π, J,H+) is a standard representation of a
W ∗-algebra M if π : M→ B(H) is a faithful σ-weakly continuous representation,
J is a conjugation on H and H+ is a self-dual cone in H with the following
properties:

(1) Jπ(M)J = π(M)′,
(2) Jπ(A)J = π(A)∗ for A in the center of M,
(3) JΦ = Φ for Φ ∈ H+ ,
(4) π(A)Jπ(A)H+ ⊂ H+ for A ∈M.

Every W ∗-algebra admits a unique (up to unitary equivalence) standard rep-
resentation.

The standard representation has several important properties.

Theorem 6.54 (1) For every σ-weakly continuous state ω on M there exists a
unique vector Ω ∈ H+ such that ω(A) = (Ω|AΩ).

(2) For every ∗-automorphism τ of M there exists a unique U ∈ U(H) such that

π(τ(A)) = Uπ(A)U∗, UH+ ⊂ H+ .

(3) If R � t �→ τ t is a W ∗-dynamics on M, there exists a unique self-adjoint
operator L on H such that

π(τ t(A)) = eitLπ(A)e−itL , eitLH+ ⊂ H+ . (6.6)

Definition 6.55 The operator L that appears in (6.6) is called the standard
Liouvillean of the W ∗ dynamics t �→ τ t .

Definition 6.56 Given a standard representation (H, π, J,H+), we also
have the right representation πr : M→ B(H) given by πr(A) := Jπ(A)J . Note
that πr(M) = π(M)′. We will often write πl for π and call it the left
representation.
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6.4.2 Tomita–Takesaki theory

Let M be a W ∗-algebra, (H, π) a faithful σ-weakly continuous representation of
M and Ω a cyclic and separating vector for π(M).

Definition 6.57 Define the operator S0 with domain π(M)Ω by

S0π(A)Ω := π(A∗)Ω, A ∈M.

One can show that S0 is closable.

Definition 6.58 S is defined as the closure of S0 .

For further reference let us note the following proposition, which follows by
the von Neumann density theorem:

Proposition 6.59 If A ⊂ M is a ∗-algebra weakly dense in M, then {AΩ : A ∈
A} is an essential domain for S.

Definition 6.60 The modular operator Δ and modular conjugation J are
defined by the polar decomposition:

S =: JΔ
1
2 .

Definition 6.61 The natural positive cone is defined by

H+ :=
{
π(A)Jπ(A)Ω : A ∈M

}cl
.

Theorem 6.62 (H, π, J,H+) is a standard representation of M. Given (H, π),
it is the unique standard representation such that Ω ∈ H+ .

6.4.3 KMS states

Let (M, τ) be a W ∗-dynamical system. Consider β > 0 (having the interpretation
of the inverse temperature). Let ω be a normal state on M.

Definition 6.63 ω is called a (τ, β)-KMS state if for all A,B ∈ M there exists
a function FA,B (z) holomorphic in the strip Iβ = {z ∈ C : 0 < Im z < β},
bounded and continuous on its closure, such that the KMS boundary condition
holds:

FA,B (t) = ω
(
Aτt(B)

)
, FA,B (t + iβ) = ω

(
τ t(B)A

)
, t ∈ R. (6.7)

Below we quote a number of properties of KMS states.

Proposition 6.64 (1) One has |FA,B (z)| ≤ ‖A‖‖B‖, uniformly on Icl
β .

(2) A KMS state is τ t-invariant.
(3) Let A be a ∗-algebra weakly dense in M and τ -invariant. If (6.7) holds for

all A,B ∈ A, then it holds for all A,B ∈M.
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Proposition 6.65 A KMS state on a factor is faithful.

Definition 6.66 If M ⊂ B(H) and Φ ∈ H, we say that Φ is a (τ, β)-KMS vector
if (Φ| · Φ) is a (τ, β)-KMS state.

6.4.4 Type I factors: irreducible representation

Definition 6.67 Algebras isomorphic to B(H), where H is a Hilbert space, are
called type I factors.

Such algebras are the most elementary W ∗-algebras. In this and the next
subsection we describe various concepts of the theory of W ∗-algebras as applied
to type I factors.

The space of σ-weakly continuous functionals on B(H) (the pre-dual of B(H))
can be identified with B1(H) (trace-class operators) by the formula

ψ(A) = Tr γA, γ ∈ B1(H), A ∈ B(H). (6.8)

In particular, σ-weakly continuous states are determined by density matrices. A
state given by a density matrix γ is faithful iff Ker γ = {0}.
Proposition 6.68 (1) Every ∗-automorphism of B(H) is of the form

τ(A) = UAU∗ (6.9)

for some U ∈ U(H). If U1 , U2 ∈ U(H) satisfy (6.9), then there exists μ ∈ C
with |μ| = 1 such that U1 = μU2 .

(2) Every W ∗-dynamics R � t �→ τt on B(H) is of the form

τt(A) = eitH Ae−itH (6.10)

for some self-adjoint H. If H1 is another self-adjoint operator satisfying
(6.10), then there exists c ∈ R such that H1 = H + c.

Definition 6.69 In the context of (6.9) we say that U implements τ . In the
context of (6.10) we say that H is a Hamiltonian of {τt}t∈R.

A state given by (6.8) is invariant w.r.t. the W ∗-dynamics (6.10) iff H com-
mutes with γ.

There exists a (β, τ)-KMS state iff Tr e−βH <∞, and then it has the density
matrix e−βH /Tr e−βH .

6.4.5 Type I factors: representation on Hilbert–Schmidt operators

Clearly, the representation of B(H) on H is not in the standard form. To con-
struct a standard form of B(H), consider the Hilbert space of Hilbert–Schmidt
operators on H, denoted B2(H).
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Definition 6.70 We introduce two injective representations:

B(H) � A �→ πl(A) ∈ B
(
B2(H)

)
, πl(A)B := AB, B ∈ B2(H);

B(H) � A �→ πr(A) ∈ B
(
B2(H)

)
, πr(A)B := BA∗, B ∈ B2(H).

(6.11)

We set JHB := B∗, B ∈ B2(H).

With the above notation, JHπl(A)JH = πr(A) and(
B2(H), πl , JH, B2

+(H)
)

is a standard representation of B(H).
If a state on B(H) is given by a density matrix γ ∈ B1

+(H), then its standard
vector representative is γ

1
2 ∈ B2

+(H). If τ ∈ Aut
(
B(H)

)
is implemented by W ∈

U(H), then its standard implementation is πl(W )πr(W ). If the W ∗-dynamics
t �→ τ t has a Hamiltonian H, then its standard Liouvillean is πl(H)− πr(H).

6.5 Non-commutative probability spaces

Throughout the section, R is a W ∗-algebra and ω a normal faithful tracial state
on R.

The two most important examples of such a pair (R, ω) are as follows:

Example 6.71 (1) Let (Q,S, μ) be a set with a σ-algebra and a probability
measure. Then taking R = L∞(Q,μ) and

ω(F ) =
ˆ

Q

Fdμ, F ∈ L∞(Q,μ),

we obtain an example of a W ∗-algebra with a normal tracial state.
(2) The algebra HF with the state tr, described in Subsect. 6.2.10, is another

example.

Recall that the triple (Q,S, μ) of Example 6.71 (1) is called a probability
space. Therefore, some authors call a couple consisting of a W ∗-algebra and a
normal tracial faithful state a non-commutative probability space. In any case,
this section is in many ways analogous to parts of Sect. 5.1, where (commutative)
probability spaces were considered.

6.5.1 Measurable operators

Let us start with an abstract construction of measurable operators.

Definition 6.72 The measure topology on the W ∗-algebra R is given by the
family V (ε, δ) of neighborhoods of 0 defined for ε, δ > 0 as

V (ε, δ) := {A ∈ R : ‖AP‖ < ε, ω(1l− P ) < δ,

for some orthogonal projection P ∈ R}.
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M(R) denotes the completion of R for the measure topology. Elements of M(R)
are called (abstract) measurable operators.

Let us now assume that R is isometrically embedded in B(H).

Definition 6.73 A closed densely defined operator on H is called a (concrete)
measurable operator iff it is affiliated to R and

lim
R→+∞

ω
(
1l[R,+∞[(|A|)

)
= 0.

It can be shown that one can identify M(R) with the set of concrete measur-
able operators on H. Thus M(R) becomes a subset of Cl(H).

Proposition 6.74 Let A,B ∈M(R). Then A + B and AB are closable.
(A + B)cl and (AB)cl belong again to M(R) and do not depend on the rep-
resentation of R.

Using the above proposition, we endow M(R) with the structure of a
∗-algebra. One extends ω to the subset M+(R) of positive operators in M(R)
by setting

ω(A) := lim
ε→0+

ω
(
A(1l + εA)−1) ∈ [0,+∞].

6.5.2 Non-commutative Lp spaces

Definition 6.75 For 1 ≤ p < ∞ one sets

Lp(R, ω) :=
{
A ∈M(R) : ω

(|A|p) <∞} ,

equipped with the norm ‖A‖p := ω
(|A|p)1/p .

For p =∞ one sets L∞(R, ω) := R, and ‖A‖∞ := ‖A‖.
We will often drop ω from Lp(R, ω), where it does not cause confusion. The

spaces Lp(R) are Banach spaces with R as a dense subspace.
Note that if A ∈ L1(R), then M � B �→ ω(AB) ∈ C is a normal functional of

norm ‖A‖1 = ω
(|A|). This defines an isometric identification between L1(R) and

R# , the space of normal functionals on R.
Let (Hω , πω ,Ωω ) be the GNS representation for the state ω. Then L2(R) can

be unitarily identified with the space Hω , as an extension of the map

R � A �→ AΩω ∈ Hω . (6.12)

We have Lq (R) ⊂ Lp(R) if q ≥ p.

Proposition 6.76 (1) For A ∈ Lp(R), 1 ≤ p ≤ ∞, one has ‖A‖p = ‖A∗‖p . In
particular, A �→ A∗ is anti-unitary on L2(R).
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(2) The non-commutative Hölder’s inequality holds: for all 1 ≤ r, p, q ≤ ∞ with
p−1 + q−1 = r−1 , if A ∈ Lp(R), B ∈ Lq (R), then AB ∈ Lr (R) and

‖AB‖r ≤ ‖A‖p‖B‖q . (6.13)

(3) ‖A‖p = sup
{
ω(AB) : B ∈ R, ‖B‖q ≤ 1

}
, p−1 + q−1 = 1, p > 1.

Definition 6.77 An element A of Lp(R) is positive if it is positive as an
unbounded operator on H. We denote by Lp

+(R) the set of positive elements
of Lp(R).

For all 1 ≤ p ≤ ∞, R+ is dense in Lp
+(R) and the sets Lp

+(R) are closed in
Lp(R).

Lemma 6.78 (1) A ∈ R+ iff ω(AB) ≥ 0, B ∈ R+ .
(2) A ∈ Lp

+(R) iff ω(AB) ≥ 0, B ∈ Lq
+(R).

6.5.3 Operators between non-commutative Lp spaces

Let (Ri , ωi), i = 1, 2, be two W ∗-algebras with normal tracial faithful states.

Definition 6.79 T ∈ B
(
L2(R1), L2(R2)

)
is called

(1) positivity preserving if A ≥ 0 ⇒ TA ≥ 0,
(2) hyper-contractive if T is a contraction and there exists p > 2 such that T is

bounded from L2(R1) to Lp(R2).

Using Lemma 6.78 we see as in the commutative case that T is positivity
preserving iff T ∗ is.

Let (R, ω) be a W ∗-algebra with a normal tracial faithful state.

Definition 6.80 T ∈ B
(
L2(R)

)
is called doubly Markovian if it is positivity

preserving and T1l = T ∗1l = 1l.

Theorem 6.81 A doubly Markovian map T extends to a contraction on Lp(R)
for all 1 ≤ p ≤ ∞.

Proof Using that ±T ≤ ‖T‖∞1l and the fact that T is positivity preserving,
we obtain that T is a contraction on L∞(R). Applying Prop. 6.76 (3) and
the above result to T ∗, we see that T is a contraction on L1(R, ω). By the
non-commutative version of Stein’s interpolation theorem (see Prop. 3 of Gross
(1972)), this extends to all 1 < p < ∞. �

6.5.4 Conditional expectations on non-commutative spaces

Let R1 be a W ∗-sub-algebra of R. Let ω1 be the restriction of ω to R1 . Clearly,
Lp(R1 , ω1) injects isometrically into Lp(R, ω).
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Definition 6.82 Denote by ER1 the orthogonal projection from L2(R, ω) onto
L2(R1 , ω1).

Proposition 6.83 (1) ER1 uniquely extends to a contraction from Lp(R) into
Lp(R1) for all 1 ≤ p ≤ ∞.

(2) ER1 is doubly Markovian.
(3) Let A ∈ Lp(R), B ∈ Lq (R1), p−1 + q−1 = 1. Then

ER1 (AB) = ER1 (A)B, ER1 (BA) = BER1 (A).

(4) ER1 considered as an operator on L∞(R) = R is the unique conditional
expectation onto R1 described in Prop. 6.48, that is, satisfying

ω(A) = ω(E(A)), A ∈ R.

6.6 Notes

A comprehensive reference to operator algebras is the three-volume monograph
of Takesaki. In particular, Takesaki (1979) contains basics and Takesaki (2003)
contains the modular theory. Another useful reference, aimed at applications in
mathematical physics, is the two-volume monograph of Bratteli–Robinson (1987,
1996). In particular, proofs of the properties of KMS states of Subsect. 6.4.2 can
be found in Bratteli–Robinson (1996).

Non-commutative probability spaces are analyzed in Takesaki (2003), following
Segal (1953a,b), Kunze (1958) and Wilde (1974).
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