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COTTET, G.-H. AND KOUMOUTSAKOS, P. D. Vorter methods: theory and practice (Cambridge,
2000}, xiii+313 pp., 0 521 62186 0 (hardback), £37.50 (US5859.95),

The book presents and analyses vortex methods for the direct numerical simulation of incom-
pressible viscous flows. Vortex methods consist of the diseretization of the vorticity field and the
Lagrangian formulation of the governing equations. Until fairly recently disadvantages of vortex
methods such as high computational cost and the inability to provide an aceurate treatment of
viscous effects had limited their application to modelling the evalution of the vorticity field of
unsteacy high Reynolds number Hows with a fairly small number of computational elements,
These difficulties have boen overcome through the advent of fast summation algorithms that
have reduced the computational cost, and alse through recent developments in numerical analy-
sis that have facilitated the aceurate treatment of viscous effects. Vortex methods now offer a
viable alternative to finite difference and spectral methods for high-resolution numerical soli-
tions of the Navier-Stokes equations, Over the last fow years developments in the analysis of
vartex methods have yielded a sound mathematical background for understanding the accuracy
and stability of the methods.

The modern developments of vortex methods originate in the works of A. J. Chorin in the
1970s and in the three-dimensional caleulations of A Leonard in the 1980s. These practical
works stimulated interest in the analysis of vortex methods, and the first complete Convergence
analyses were provided by Q. Hald, J. T. Beale and A. Majda in the late 189705 and early
1980s. Since around 1980 there has been a significant development in fast multiple methods for
the efficient evaluation of the velocity field (by L. Greengard) and a deeper understanding of
convergence properties, with convergence proofs of random-walk methods by D. . Long and
J. Goodman and convergence proof of point vortex methods by T. ¥. Hou and co-workers, This
well-written text by Cottet and Koumoutsakos covers these developments of vortex methaods
from the dual viewpoint of numerical analysis and fluid dynamics. Ti clearly demonstrates that,
unlike other diseretization methods such as finite differences or spectral methods, vortex methods
are intimately linked to the physics that they aim to mimic,

Vortex methods are based on the Lagrangian formulation of the equations of motion of a fluid:
in particular, they make use of Kelvin's theorem which asserts the conservation of cirenlation
along material elements maoving with the fluid. The basgic idea is ta sample the computational
domain into cells in each of which the initial crculation is concentrated on a single point or
particle. The transport equation is dealt with exactly, and the approximation amounts to a
replacement of the initial varticity by a set of particles and a smoothing of the velocity field
that carries these particles. Since the vorticity field is sampled on a grid that evolves with time,
vortex methoeds are sensitive to the smoothness of the veloeity field.

Chapter 1 introduces the goveming equations and Chapter 2 gives a convergence theory
for two-dimensional imviscid Hows. The discussion on convergence features of vortex methods
brings out the conservation properties of the methods. Many inviscid fow invariants are con-
served under vortex approximation methods, These conservation properties provide a guarantee
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that, even when used in underresolved situations, vortex methods will give a correct gualitative
ANEWEeL,

The energy conservation in two-dimensional schemes, which follows from the Hamiltonian
nature of the particle motion in the velocity field, is a feature that distinguishes vortex methods
from the familiar Eulerian methods. For the three-dimensional schemes that are dealt with in
Chapter 3 the conservation of circulation has generally led to a preference for vortex filament
methods rather than vortex particle methods. This chapter discusses several ways that are now
available for enforcing conservation in the three-dimensional vortex particle methods. Chapter 4
deals with the implementation of boundary conditions for inviscid flow vortex simulations. The
kinematic boundary condition (no-through flow) is enforced by means of an extended vorticity
field. The concept of a surface vortex sheet is introduced and Poincaré’s identity is invoked,
relating the values of the velocity field with its values at the boundary. The resulting integral
equations are analysed and their approximation by panel methods is discussed.

Barly simulations using inviscid vortex methods predicted linear growth in the mixing layer
and they were able to predict Strouhal frequency in a variety of bluff-body flow simulations.
However, the inviscid approximation of high Reynolds number Hows has its limitations. In bluff-
body flows viscous effects are responsible for the generation of vorticity at the boundaries, and
an approximation of viscous effects is necessary, at least in the neighbourhood of the body. In
three dimensions the transfer of energy to small scales produced by vortex stretching produces
complex patterns of vortex lines. This complexity increases as time evolves, and viscous effects
provide the only limit in the increase of complexity. The simulation of viscous effects in the
context of vortex methods is diseussed in Chapter 5. Tt is shown that vortex methods are able to
simulate viscous effects accurately, while mamtaining the Lagrangian character of the methods.
In Chapter 6 vortex methods are discussed for unsteady flows in domains containing solid
boundaries. This chapter deals with the no-slip boundary condition and its equivalence with
the vorticity boundary condition, Integral methods are presented for the implementation of
boundary conditions and the techniques are illustrated by direct simulation of bluff-body flows.

Chapter 7 deals with the problem of particle distortion in Lagrangian methods. In numerical
gimulation the clustering and spreading of the particles have various consequences, depending
on the specific numerical schemes that are being adopted. For two-dimensional inviscid Hows
the result is a loss of accuracy in the computed velocity, which may lead to the appearance of
undesirable small scales. For three-dimensional Hows in repions of high strain the depletion of
particles becomes fairly severe as the flow i1s generally associated with vorticity intensification.
To overcome these difficulties there are two possible strategies, which may be used independently
or in eombination. The first approach consists of restarting the particles every fow time steps at
revised locations where the distortions are well controlled. The second one consists of processing
the cireulation carried by the particles in order to correct the effect of the distortion of the flow
and to allow particles to continue to give an accurate deseription of the vorticity. Both strategies
are considered in this chapter. Finally, Chapter 8 deals with hybrid schemes. A scheme of this
type is formed by combining a vortex method and an Eulerian method with a view to by-passing
the difficulties inherent in particle methods near boundaries.

This is a well-presented, readable text that illustrates some of the recent advances in these
powerful methods for simulating incompressible flows.

D. M. SLOAN

CoONSTANDA, C. Dhrect and indirect boundary infegral equation methods (Monographs and Sur-
veys in Pure and Applied Mathematics no. 107, Chapman & Hall/CRC, 2000), vi+201 pp.,
0 8493 0639 6, £43.99.

The book is a detailed study of boundary integral equation methods in application to three
different two-dimensional mathematical models: the Laplace equation, plane strain linearized
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