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Abstract

We show that Cannon–Thurston maps exist for degenerate free groups without parabolics, that
is, for handlebody groups. Combining these techniques with earlier work proving the existence
of Cannon–Thurston maps for surface groups, we show that Cannon–Thurston maps exist for
arbitrary finitely generated Kleinian groups without parabolics, proving conjectures of Thurston
and McMullen. We also show that point pre-images under Cannon–Thurston maps for degenerate
free groups without parabolics correspond to endpoints of leaves of an ending lamination in the
Masur domain, whenever a point has more than one pre-image. This proves a conjecture of Otal.
We also prove a similar result for point pre-images under Cannon–Thurston maps for arbitrary
finitely generated Kleinian groups without parabolics.
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To Bill Thurston for lasting inspiration.

1. Introduction

Let G be a Kleinian group, LG its limit set in the boundary sphere S2, and
DG(= S2

\ LG) its domain of discontinuity. We paraphrase Question 14 of
Thurston’s problem list [Thu82] below:

QUESTION 1.1. Suppose that Γ is a geometrically finite Kleinian group and
G an arbitrary Kleinian group abstractly isomorphic to Γ via a weakly type-
preserving isomorphism, that is, an isomorphism taking parabolics of Γ to
parabolics of G. Then is it true that there is a continuous map g from the limit
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M. Mj 2

set LΓ (of Γ ) onto the limit set LG (of G) taking the fixed point(s) of an element
γ to the fixed point(s) of the corresponding element γ ′?

A continuous map g as in Question 1.1 is called a Cannon–Thurston map
because of Cannon and Thurston’s seminal paper [CT85, CT07]. We refer to the
Introduction of [Mj14a] for a detailed history of the problem and mention only
that in [Mj14a] we showed that simply or doubly degenerate surface Kleinian
groups without accidental parabolics admit Cannon–Thurston maps. In [Mj14b]
we had shown that point pre-images of the Cannon–Thurston map for simply or
doubly degenerate groups without accidental parabolics correspond to endpoints
of leaves of ending laminations whenever a point has more than one pre-image.
The main aim of this paper is to apply the techniques developed in [Mj14a]
and [Mj14b] to extend these results to arbitrary finitely generated Kleinian
groups without parabolics (and more generally to manifolds whose ends admit a
Minsky model), thus answering affirmatively Question 1.1 as also questions of
McMullen [McM01] and Otal [Ota88]. This completes the project starting with
[Mj14a] and proceeding through [Mj14b, DM16]. (An earlier version of some
parts of this paper existed in draft form in an earlier version of [Mj14a]. The
division of material between [Mj14a] and the present paper is in the interests of
readability.)

One more ingredient is necessary before we proceed with statements of
the main results. A geodesic lamination on a hyperbolic surface is a foliation
of a closed subset by geodesics. Let E be a degenerate end of a hyperbolic
3-manifold with boundary surface S = ∂E . Then there exists a sequence of
simple closed curves {σn} on S whose geodesic realizations exit the end E (this
innocent sounding statement is a consequence of deep work of several authors
including Thurston [Thu80], Bonahon [Bon86], Canary [Can93], Agol [Ago04]
and Calegari–Gabai [CG06]). Then the limit of such a sequence (in the space of
projectivized measured laminations PML(S); for the time being, the reader will
not be too far off if (s)he thinks of the Hausdorff limit on the bounding surface
S of E) is a lamination λ. It turns out that λ is independent of the sequence {σn}

and is called the ending lamination for the end E . The following provides one
of the main theorems of this paper.

Theorem 5.5. Let G be a finitely generated free degenerate Kleinian group
without parabolics. Let i : ΓG → H3 be the natural identification of a Cayley
graph of G with the orbit of a point in H3. Then i extends continuously to a map
î : Γ̂G → D3 between the compactifications Γ̂G,D3 of ΓG,H3, respectively. Let
∂i denote the restriction of î to the boundary ∂ΓG of ΓG . Then ∂i(a) = ∂i(b) for
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a 6= b ∈ ∂ΓG if and only if a, b are either ideal endpoints of a leaf of an ending
lamination of G, or ideal boundary points of a complementary ideal polygon.

The hyperbolic boundary ∂ΓG is (G-equivariantly) homeomorphic to the limit
set of some (any) geometrically finite group (without parabolics) isomorphic to
G. Hence Theorem 5.5 above provides a positive answer to Question 1.1 for
free degenerate Kleinian group without parabolics. There are three main new
ingredients of the proof over and above [Mj14a]:

(a) We need to show that split components sufficiently deep inside an end are
incompressible (Proposition 4.5). This was automatic in [Mj14a].

(b) A crucial idea in the proof of the existence of the Cannon–Thurston map î
in Theorem 5.5 goes back to work of Miyachi [Miy02] (see also [Sou06])
in the case of bounded geometry. There a collection of disjoint embedded
disks are constructed in the (compact) core handlebody cutting it up into a
ball. The boundary circles of these disks are flowed out the end giving rise
to a collection of quasiconvex disks.

(c) The broad idea here is similar to (b). The basic difference between
Miyachi’s approach and ours is that we are forced to use a coarse model
rather than a continuous one, forcing the methods of this paper to be
technically quite a bit more involved. To tackle this issue we need to use the
split geometry model [Mj14a], recalled in Section 3, and introduce certain
‘admissible paths’ in Section 4.5.

The proof of Theorem 5.5 generalizes with some modifications to arbitrary
finitely generated Kleinian groups. The relative hyperbolic boundary ∂ΓG

[Bow12] of a Kleinian group G is (G-equivariantly) homeomorphic to the
limit set of some (any) geometrically finite Kleinian group isomorphic to G,
provided the isomorphism is strictly type-preserving (that is, it maps parabolics
to parabolics and pulls back parabolics to parabolics).

Theorems 4.20 and 5.6. Let G be a finitely generated Kleinian group. Let
i : ΓG → H3 be the natural identification of a Cayley graph of G with the orbit
of a point in H3. Let M = H3/G and assume that each degenerate end E of
M admits a bi-Lipschitz Minsky model (for instance if M has no parabolics, see
Remark 1.2 below). Then i extends continuously to a map î : Γ̂G → D3, where
Γ̂G denotes the (relative) hyperbolic compactification of ΓG . Let ∂i denote the
restriction of î to the boundary ∂ΓG of ΓG .

Let E be a degenerate end of N h
= H3/G and Ẽ a lift of E to Ñ h and let Mg f

be an augmented Scott core of N h . Then the ending lamination LE for the end E
lifts to a lamination on M̃g f ∩ Ẽ . Each such lift L of the ending lamination of
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a degenerate end defines a relation RL on the (Gromov) hyperbolic boundary
∂ M̃g f (equal to the relative hyperbolic boundary ∂ΓG of ΓG), given by aRLb if
and only if a, b are endpoints of a leaf of L. Let {Ri}i be the entire collection of
relations on ∂ M̃g f obtained this way. Let R be the transitive closure of the union⋃

i Ri . Then ∂i(a) = ∂i(b) if and only if aRb.

REMARK 1.2. Theorem 4.20 gives an affirmative answer to a conjecture
of McMullen [McM01] and Theorem 5.5 gives an affirmative answer to
a conjecture of Otal [Ota88] under the assumption of the existence of a
Minsky model. The existence of such a model was established in [Min10,
BCM12] for manifolds with incompressible boundary and announced for the
general (compressible boundary) case in [BCM14]. Since [BCM14] has not yet
appeared we give a sketch of a proof of the existence of a Minsky model in the
special case that M has no parabolics following ideas of Brock, Bromberg and
Souto in the Appendix.

For ease of exposition, throughout this paper, we shall often first work out the
problem for free groups and then indicate the generalization to arbitrary finitely
generated Kleinian groups.

1.1. Outline of paper and scheme of proof. After discussing some
preliminary material on Relative Hyperbolicity and Cannon–Thurston maps
in Section 2, we recall the essential technical tools from [Mj14a] in Section 3.
Section 3 has to do with the fact that any end admits a split geometry structure.
Consider a geometrically infinite end E homeomorphic to S×[0,∞) where S is
a compact hyperbolic surface (possibly with boundary). Split geometry roughly
gives a sequence of embedded surfaces {Σi} exiting E , such that successive
surfaces Σi ,Σi+1 bound between them a block Bi , which either has bounded
geometry, (that is, is uniformly bi-Lipschitz homeomorphic to S × [0, 1] where
the latter has the product metric) or contains a thin Margulis tube running
vertically fromΣi toΣi+1 and ‘splitting’ Bi into split components. Blocks of the
latter kind are called split blocks. Electrocuting the lifts of split components in
the universal cover gives rise to a combinatorial metric dG called a graph metric
on Ẽ .

Section 4 is the core of the paper and proves the existence of Cannon–
Thurston maps for arbitrary finitely generated Kleinian groups G under the
additional assumption that each degenerate end of M admits a Minsky model.
Modulo [Mj14a, DM16] the proof reduces to proving this for manifolds
M = H3/G with compressible core. The prototypical case is that of free
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degenerate Kleinian groups without parabolics, which is what we elaborate on
here in the Introduction.

We briefly recall the proof of Miyachi [Miy02] (or Souto [Sou06]) in the case
of bounded geometry free degenerate Kleinian groups without parabolics. Let H
denote the handlebody compact core of M . The end E(= M \ H) is equipped
with a Sol-type metric as in [CT07]. A finite collection of disjoint disks D1, . . . ,

Dk on H are chosen cutting H up into a ball. Let σi denote the boundary curve of
Di . Then σi can be canonically ‘flowed’ out the end E using the metric on E . In
fact E may be thought of as (bi-Lipschitz homeomorphic to) the universal curve
over a Teichmuller geodesic ray η and each σi gives rise to an annulus Ci –the
‘flow image’ of σi by the flow given by the one-parameter family of Teichmuller
maps along η. The collection {Ai(= Di ∪ Ci)} cut M up into a (noncompact)
ball. The crucial point in [Miy02] (or [Sou06]) that makes their proof work is
the quasiconvexity of each Ai . This is proved there using techniques similar to
[CT07]. Once this is done, it follows more or less automatically that if a geodesic
segment in H̃ joins a pair of points a, b in a complementary component of a lift
D (of one of the Di ’s) then the geodesic in M̃ joining a, b lies (coarsely) in the
corresponding component of (M̃ \ A), where A is the lift of Ai containing D.

In this paper, we do not have the luxury of flowing along a Teichmuller
geodesic. Instead we use the split geometry model of the end E to:

(1) discretize the problem by using the level surfaces Σi given by split
geometry;

(2) construct a discretized flow image, by considering a ‘coarse annulus’
replacement of Ai by taking the union (over i) of closed geodesics on Σi in
the same homotopy class as σi .

We need to work in M̃ rather than Ẽ . Hence, in order to carry over the
split geometry machinery (especially the crucially important graph metric dG)
in the context of compressible cores, we need to ensure that split components
are actually incompressible sufficiently deep into the end E . This is proved
in Section 4.2. With this in place, we prove in Section 4.3 that each Ai is
quasiconvex in M̃ equipped with the graph metric dG (see Lemma 4.9, Corollary
4.10 and Lemma 4.11 in particular).

Next, while in [Miy02, Sou06], it is clear for trivial topological reasons
that each Ai separates M̃ , this is no longer true in our case. We do have
quasiconvexity of Ai in the dG-metric however. It is also true that Ai ∩ Σ̃i

separates the lift Σ̃i of the split surfaceΣi . In order to use this weaker separation
property, we need to ensure that if a geodesic segment in H̃ joins a pair of
points a, b, then the geodesic in M̃ joining a, b has approximants built up
of vertical pieces in blocks B̃i and horizontal pieces (lying on Σ̃i ). We call
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such approximants admissible quasigeodesics and deal with their construction
in Section 4.5.

Once all these ingredients are in place, we prove the existence of Cannon–
Thurston maps for free degenerate Kleinian groups without parabolics in
Theorem 4.19.

Section 5 then generalizes the work of [Mj14b] to show that point pre-images
of multiple points are given by ending laminations. We end by mentioning some
applications, especially work of Jeon, Kim, Lecuire and Ohshika [JKLO14] on
primitive-stable representations and that of the author [Mj11] on discreteness
of commensurators of Kleinian groups. In Appendix, we sketch a proof of the
existence of a Minsky model when M has no parabolics.

2. Preliminaries

2.1. Relative hyperbolicity. We refer the reader to [Far98] for terminology
and details on relative hyperbolicity and electric geometry.

DEFINITION 2.1. Given a metric space (X, dX ) and a collection H of subsets,
let E(X,H) = X

⊔
H∈H(H × [0,

1
2 ]) be the identification space obtained by

identifying (h, 0) ∈ H × [0, 1
2 ] with h ∈ X . Each {h} × [0, 1

2 ] is declared to
be isometric to the interval [0, 1

2 ] and H × { 1
2 } is equipped with the zero metric.

E(X,H) is given a path pseudometric as follows.
Only such paths in E(X,H) are allowed whose intersection with any
{h} × (0, 1

2 ) is either all of {h} × (0, 1
2 ) or is empty. The distance between

two points in E(X,H) is the infimum of lengths of such allowable paths.
The resulting pseudometric space E(X,H) is the electric space associated to

X and the collection H.
We shall say that E(X,H) is constructed from X by electrocuting the

collection H and the induced pseudometric de will be called the electric metric.
(Quasi) geodesics in the electric metric will be referred to as electric (quasi)

geodesics.
If E(X,H) is (Gromov) hyperbolic, we say that X is weakly hyperbolic

relative to H.

Note that since E(X,H) = X
⊔

H∈H(H×[0,
1
2 ]), X can be naturally identified

with a subspace of E(X,H). Paths in (X, dX ) can therefore be regarded as paths
in E(X,H), but are very far from being quasi-isometrically embedded in general.

A collection H of subsets of (X, dX ) is said to be D-separated if dX (H1, H2) >
D for all H1, H2 ∈ H; H1 6= H2. D-separatedness is only a technical restriction
as the collection {H × { 1

2 } : H ∈ H} is 1-separated in E(X,H).
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DEFINITION 2.2. Given a collection H of C-quasiconvex, D-separated sets
in a (Gromov) hyperbolic metric space (X, dX ) we shall say that a geodesic
(respectively quasigeodesic) γ is a geodesic (respectively quasigeodesic)
without backtracking if γ does not return to H after leaving it, for any H ∈ H.

There is a distinguished collection of 1-separated subsets of E(X,H) given
by {H × { 1

2 } : H ∈ H}. An electric quasigeodesic without backtracking in
E(X,H) is an electric quasigeodesic that does not return to H×{ 1

2 } after leaving
it, for any H ∈ H.

Notation. For any pseudometric space (Z , ρ) and A ⊂ Z , we shall use the
notation NR(A, ρ) = {x ∈ Z : ρ(x, A) 6 R} as for metric spaces.

LEMMA 2.3 [Far98, Lemma 4.5 and Proposition 4.6]; [Kla99, Theorem 5.3];
[Bow12]. Given δ,C there exists∆ such that if (X, dX ) is a δ-hyperbolic metric
space with a collection H of C-quasiconvex sets, then

(1) Electric quasigeodesics electrically track (Gromov) hyperbolic geodesics,
that is, for all P > 0, there exists K > 0 such that if β is any electric P-
quasigeodesic from x to y, and γ is a geodesic in (X, dX ) from x to y, then
β ⊂ NK (γ, de).

(2) γ ⊂ NK ((N0(β, de)), dX ).

(3) Relative Hyperbolicity: X is weakly hyperbolic relative to H. E(X,H) is
∆-hyperbolic.

Note that we do not need D-separatedness in the hypothesis of Lemma 2.3 as
the definition of electrocution takes care of this.

Let (X, dX ) be a δ-hyperbolic metric space, and H a family of C-quasiconvex,
collection of subsets. Let α = [a, b] be a geodesic in (X, dX ) and β an electric
P-quasigeodesic without backtracking in E(X,H) joining a, b. Order from the
left the collection of maximal subsegments of β contained entirely in some
H ×{ 1

2 } : H ∈H. Let {[pi , qi ]×{
1
2 }(⊂ Hi ×{

1
2 })}i be the collection of maximal

subsegments. Replace, as per this order, each path of the form {pi}×[0, 1
2 ] ∪ [pi ,

qi ] × {
1
2 } ∪ {qi} × [0, 1

2 ] ⊂ Hi × [0, 1
2 ] by a geodesic [pi , qi ] in X . The resulting

connected path βq in X is called an electro-ambient representative of β in X , or
simply the electro-ambient quasigeodesic joining the endpoints of β.

LEMMA 2.4 (See [Kla99, Proposition 4.3], [Mj14a, Lemma 2.5]). Given δ, C,
P there exists C3 such that the following holds:
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Let (X, dX ) be a δ-hyperbolic metric space and H a family of C-quasiconvex
subsets. Let (X, de) denote the electric space obtained by electrocuting elements
of H. Then, if α, βq denote respectively a (Gromov) hyperbolic geodesic and an
electro-ambient P-quasigeodesic with the same endpoints in X, then α lies in a
(Gromov-hyperbolic dX−) C3-neighborhood of βq .

Two paths β, γ in (X, dX ) with the same endpoints are said to have similar
intersection patterns with H if there exists ε > 0, depending only on (X,H),
such that:

• Similar Intersection Patterns 1: If precisely one of {β, γ } meets some H ∈
H, then the dX -distance from the entry point to the exit point is at most D.

• Similar Intersection Patterns 2: If both {β, γ } meet some H ∈ H, then the
distance from the entry point of β to that of γ is at most D, and similarly for
the exit points.

DEFINITION 2.5 [Far98]. Suppose that X is weakly hyperbolic relative to H.
Suppose that any two electric quasigeodesics without backtracking and with the
same endpoints have similar intersection patterns with respect to the collection
{H × 1

2 : H ∈ H}. Then (X,H) is said to satisfy bounded penetration and X
is said to be strongly hyperbolic relative to H.

The next condition ensures that (X,H) is strongly hyperbolic relative to H.

DEFINITION 2.6. A collection H of uniformly C-quasiconvex sets in a δ-
hyperbolic metric space X is said to be mutually D-cobounded if for all Hi ,

H j ∈ H, πi(H j) has diameter less than D, where πi denotes a nearest point
projection of X onto Hi . A collection is mutually cobounded if it is mutually
D-cobounded for some D.

LEMMA 2.7 [Far98, Proposition 4.6], [Bow12]. Given C, δ > 0, there exists P
such that the following holds:

Let X be a δ-hyperbolic metric space and H a collection of ε-neighborhoods
of mutually cobounded C-quasiconvex sets; then any electro-ambient quasi-
geodesic is a (P, P) quasigeodesic in X.

Partial electrocution
Let M be a (not necessarily simply connected) convex hyperbolic 3-manifold
with a neighborhood of the cusps excised. Then we can ensure that each
boundary component of M is isometric to σ × P , where P is either an interval
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or a circle, and σ is a horocycle of some fixed length e0. In the universal cover
M̃ , if we excise (open) horoballs, we are left with a manifold whose boundaries
are flat horospheres of the form σ̃ × P̃ . Note that P̃ = P if P is an interval, and
R if P is a circle (the case for a (Z + Z)-cusp).

Let Y be a convex simply connected hyperbolic 3-manifold. Let B denote a
collection of horoballs. Let X denote Y minus the interior of the horoballs in B.
Let H denote the collection of boundary horospheres. Then each H ∈ H with
the induced metric is isometric to a Euclidean product E1

× L for an interval
L ⊂ R. Here E1 denotes Euclidean 1-space. Partially electrocute each H by
giving it the product of the zero metric with the Euclidean metric, that is, on E1

put the zero metric and on L put the Euclidean metric. The resulting space is
essentially what one would get (in the spirit of [Far98]) by gluing to each H the
mapping cylinder of the projection of H onto the L-factor. Let dpel denote the
partially electrocuted pseudometric on X .

The above construction can be done in the base manifold M itself by equipping
the boundary component σ × P with the product of a zero metric in the σ
direction and the Euclidean metric in the P-direction.

LEMMA 2.8 [MP11, Lemma 1.20]. (X, dpel) is a (Gromov) hyperbolic metric
space.

2.2. Cannon–Thurston maps. Let (X, dX ) and (Y, dY ) be hyperbolic metric
spaces. By adjoining the Gromov boundaries ∂X and ∂Y to X and Y , one obtains
their compactifications X̂ and Ŷ , respectively.

Let i : Y → X denote a proper map.

DEFINITION 2.9. Let X and Y be hyperbolic metric spaces and i : Y → X be a
proper map. A Cannon–Thurston map î from Ŷ to X̂ is a continuous extension
of i .

Lemma 2.1 of [Mit98] below gives a necessary and sufficient condition for
the existence of Cannon–Thurston maps.

LEMMA 2.10 [Mit98]. A Cannon–Thurston map from Ŷ to X̂ exists iff the
following condition is satisfied:

Given y0 ∈ Y , there exists a nonnegative function f (n), such that f (n)→∞
as n→∞ and for all geodesic segments λ lying outside an n-ball around y0 ∈ Y
any geodesic segment in X joining the endpoints of i(λ) lies outside the f (n)-
ball around i(y0) ∈ X.

We shall now give a criterion for the existence of Cannon–Thurston maps
between relatively hyperbolic spaces. Let X and Y be strongly hyperbolic
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relative to the collections HX and HY , respectively. Let i : Y → X be a weakly
type-preserving proper embedding, that is, for HY ∈ HY there exists HX ∈ HX

such that i(HY ) ⊂ HX and images of distinct elements of HY lie in distinct
elements of HX .

In the Lemma below, we specialize to the case where X, Y are convex simply
connected complete hyperbolic manifolds with some disjoint (open) horoballs
removed. HX and HY will denote the resulting collections of horospheres.

LEMMA 2.11 [MP11, Lemma 1.28]. A Cannon–Thurston map for a weakly
type-preserving proper embedding i : Y → X exists if and only if there exists
a nonnegative function f (n) with f (n)→∞ as n→∞ such that the following
holds:

Suppose y0 ∈ Y , and λ̂ in Ŷ = E(Y,HY ) is an electric quasigeodesic segment
starting and ending outside horospheres. If λb

= λ̂ \
⋃

K∈HY
K lies outside

Bn(y0) ⊂ Y , then for any electric quasigeodesic β̂ joining the endpoints of î(λ̂)
in X̂ = E(X,HX ), βb

= β̂ \
⋃

H∈HX
H lies outside B f (n)(i(y0)) ⊂ X.

We shall describe this informally as follows:
If λ lies outside a large ball modulo horoballs in Y then so does any geodesic

in X joining its endpoints.
In [DM16] we proved the existence of Cannon–Thurston maps for Kleinian

groups corresponding to pared manifolds whose boundary is incompressible
away from cusps.

DEFINITION 2.12. A pared manifold is a pair (M, P), where P , contained in
the boundary ∂M of M , is a (possibly empty) 2-dimensional submanifold with
boundary such that:

(1) the fundamental group of each component of P injects into the fundamental
group of M ;

(2) P is a union of annuli and tori;

(3) any cylinder C : (S1
× I, ∂(S1

× I ))→ (M, P) such that π1(C) is injective
is homotopic rel boundary into P;

(4) P contains every torus component of ∂M .

A hyperbolic structure adapted to (M, P) is a hyperbolic structure on M
such that the parabolics are precisely the elements of P . The collection of such
structures is denoted as H(M, P).
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A pared manifold (M, P) is said to have incompressible boundary if each
component of ∂0 M = ∂M \ P is incompressible in M .

The following Theorem summarizes the main results of [Mj14a, Mj14b,
DM16]. It proves the existence of Cannon–Thurston maps for Kleinian groups
corresponding to pared manifolds whose boundary is incompressible away
from cusps. It also describes the structure of these maps in terms of ending
laminations.

THEOREM 2.13 [DM16]. Suppose that N h
∈ H(M, P) is a hyperbolic structure

on a pared manifold (M, P) with incompressible boundary. Let Mg f denote a
geometrically finite hyperbolic structure adapted to (M, P). Then the map i :
M̃g f → Ñ h extends continuously to the boundary ∂i : ∂ M̃g f → ∂ Ñ h .

Let E be a degenerate end of N h and Ẽ a lift of E to Ñ h . Then the ending
lamination LE for the end E lifts to a lamination on M̃g f ∩ Ẽ . Each such lift
L of the ending lamination of a degenerate end defines a relation RL on the
(Gromov) hyperbolic boundary ∂ M̃g f given by aRLb iff a, b are endpoints of a
leaf of L. Let {Ri}i be the entire collection of relations on ∂ M̃g f obtained this
way. Let R be the transitive closure of the union

⋃
i Ri . Then ∂i(a) = ∂i(b) iff

aRb.

3. Split geometry

We recapitulate the essential aspects of split geometry from [Min10, Mj14a].

Split level surfaces
A pants decomposition of a compact surface S, possibly with boundary, is
a disjoint collection of 3-holed spheres P1, . . . , Pn embedded in S such that
S \

⋃
i Pi is a disjoint collection of nonperipheral annuli in S, no two of which

are homotopic.
Let N be the convex core of a hyperbolic 3-manifold minus an open

neighborhood of the cusp(s). Then any end E of N is simply degenerate
[Ago04, CG06, Can93] and homeomorphic to S×[0,∞), where S is a compact
surface, possibly with boundary. A closed geodesic in an end E homeomorphic
to S×[0,∞) is unknotted if it is isotopic in E to a simple closed curve in S×{0}
via the homeomorphism. A tube in an end E ⊂ N is a regular R-neighborhood
N (γ, R) of an unknotted geodesic γ in E .

Let T denote a collection of disjoint, uniformly separated tubes in ends of N
such that:

(a) Otal [Ota95] showed the existence of an εot > 0 (depending only on the
topology of the end E) such that any primitive closed geodesic of length at
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most εot > 0 (referred to below as the Margulis–Otal constant) is unknotted.
We shall refer to tubes around such geodesics as Margulis tubes (strictly
speaking, εot is smaller than the Margulis constant; so this is a slight abuse
of terminology). All Margulis tubes in E belong to T for all ends E of N ;

(b) there exists ε0 > 0 such that the injectivity radius injradx(E) > ε0 for all
x ∈ E \

⋃
T∈T Int(T ) and all ends E of N .

In [Min10], Minsky constructs a model manifold M bi-Lipschitz homeo-
morphic to N and equipped with a piecewise Riemannian structure. We shall
refer to this model as the Minsky model. The features we shall use for M will
be given below. For the time being, we note that M has a collection of tubes, each
with a Euclidean structure on its boundary. The complement of these tubes may
be decomposed as a union of blocks of some standard types. A Lipschitz map F
was constructed in [Min10] from N to M and it was shown by Brock–Canary–
Minsky [BCM12] (see [Bow11] for the general Kleinian groups case) that F
was, in fact bi-Lipschitz. (The bi-Lipschitz homeomorphism between the model
manifold M and the hyperbolic manifold N is established by Brock–Canary–
Minsky in [BCM12] for (pared) manifolds with incompressible boundary. The
extension to the general case was sketched briefly in [BCM12], but details have
not appeared in print. The paper [Bow11] is also in preprint form as of date. To
get around this, we provide a brief sketch in the Appendix using published work
of several authors, reducing the general case to the case with incompressible
boundary.) Thus, let F : N → M be a bi-Lipschitz homeomorphism to the model
manifold M and let M(0) be the image of N \

⋃
T∈T Int(T ) in M under F . Let

∂M(0) (respectively ∂M) denote the boundary of M(0) (respectively M). The
metrics on M and M̃ will be denoted by dM .

Let (Q, ∂Q) be the unique hyperbolic pair of pants such that each component
of ∂Q has length one. Q will be called the standard pair of pants. An
isometrically embedded copy of (Q, ∂Q) in (M(0), ∂M(0)) will be said to be
flat.

DEFINITION 3.1. A split level surface associated to a pants decomposition {Q1,

. . . , Qn} of a compact surface S (possibly with boundary) in M(0) ⊂ M is an
embedding f : ∪i(Qi , ∂Qi)→ (M(0), ∂M(0)) such that:

(1) each f (Qi , ∂Qi) is flat;

(2) f extends to an embedding (also denoted f ) of S into M such that
the interior of each annulus component of f (S \

⋃
i Qi) lies entirely in

F(
⋃

T∈T Int(T )).
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Let Ss
i denote the union of the collection of flat pairs of pants in the image

of the embedding Si . Note that Si \ Ss
i consists of annuli properly embedded in

Margulis tubes.
The class of all topological embeddings from S to M that agree with a split

level surface f associated to a pants decomposition {Q1, . . . , Qn} on Q1 ∪ · · · ∪

Qn will be denoted by [ f ].
We define a partial order 6E on the collection of split level surfaces in an end

E of M as follows:
f1 6E f2 if there exist gi ∈ [ fi ], i = 1, 2, such that g2(S) lies in the unbounded

component of E \ g1(S).
A sequence Si of split level surfaces is said to exit an end E if i < j implies

Si 6E S j and further for all compact subsets B ⊂ E , there exists L > 0 such
that Si ∩ B = ∅ for all i > L .

DEFINITION 3.2. A curve v in S ⊂ E is l-thin if the core curve of the Margulis
tube Tv(⊂ E ⊂ N ) has length less than or equal to l. A tube T ∈ T is l-thin if
its core curve is l-thin. A tube T ∈ T is l-thick if it is not l-thin.

A curve v is said to split a pair of split level surfaces Si and S j (i < j) if v
occurs as a boundary curve of both Si and S j . A pair of split level surfaces Si and
S j (i < j) is said to be an l-thin pair if there exists an l-thin curve v splitting
both Si and S j .

The collection of all l-thin tubes is denoted as Tl . The union of all l-thick
tubes along with M(0) is denoted as M(l). Unless otherwise indicated, we shall
choose l to be the Margulis–Otal constant, though the discussion below will go
through for any l < εot .

DEFINITION 3.3. A pair of split level surfaces Si and S j (i < j) is said to be
k-separated if:

(a) for all x ∈ Ss
i , dM(x, Ss

j ) > k;

(b) similarly, for all x ∈ Ss
j , dM(x, Ss

i ) > k.

DEFINITION 3.4. An L-bi-Lipschitz split surface in M(l) associated to a
pants decomposition {Q1, . . . , Qn} of S and a collection {A1, . . . , Am} of
complementary annuli (not necessarily all of them) in S is an embedding
f : ∪i Qi

⋃
∪i Ai → M(l) such that

(1) the restriction f : ∪i(Qi , ∂Qi)→ (M(0), ∂M(0)) is a split level surface

(2) the restriction f : Ai → M(l) is an L-bi-Lipschitz embedding.
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(3) f extends to an embedding (also denoted f ) of S into M such that the
interior of each annulus component of f (S \ (∪i Qi

⋃
∪i Ai)) lies entirely

in F(
⋃

T∈Tl
Int(T )).

Note: The difference between a split level surface and a split surface is that the
latter may contain bi-Lipschitz annuli in addition to flat pairs of pants.

We denote split surfaces byΣi to distinguish them from split level surfaces Si .
Let Σ s

i denote the union of the collection of flat pairs of pants and bi-Lipschitz
annuli in the image of the split surface (embedding) Σi . The next Theorem is
one of the technical tools from [Mj14a]. For the convenience of the reader, we
recall the following representative situation from the Introduction to [Mj14a]:

(1) there exists a sequence {Si} of disjoint, embedded, bounded geometry
surfaces exiting E . These are ordered in a natural way along E , that is,
i < j implies that S j is contained in the unbounded component of E \ Si .
The topological product region between Si and Si+1 is denoted Bi ;

(2) each product region Bi is of two types:

Either the product region Bi is thick, that is, there exists a uniform
(independent of i) constant K ′ > 1 such that Bi is K ′-bi-Lipschitz
homeomorphic to Si × [0, 1]. Such product regions are called thick blocks;

Or, corresponding to the product region Bi , there exists a Margulis tube Ti

such that Ti ⊂ Bi . Further, Ti ∩ Si and Ti ∩ Si+1 are annuli on Si and Si+1,
respectively, with core curves homotopic to the core curve of Ti . These are
examples of split blocks.

Thus, for split blocks, the Ti split both Si and Si+1. The complementary pieces
(and their lifts to the universal cover) are examples of split components. Note
that we have little control, however, on the geometry of the split components.
This situation generalizes to give a sequence of split surfaces (rather than actual
surfaces as in the representative situation above) exiting the end, such that
successive pairs are split by some Margulis tubes:

THEOREM 3.5 [Mj14a, Theorem 4.8]. Let N ,M,M(0), S, F be as above and
E an end of M. Fix l less than the Margulis–Otal constant, and let M(l) =
{F(x) : injradx(N ) > l}. Fix a hyperbolic metric on S such that each component
of ∂S is totally geodesic of length one (this is a normalization condition). There
exist L1 > 1, ε1 > 0, n ∈ N, and a sequence Σi of L1-bi-Lipschitz, ε1-separated
split surfaces exiting the end E of M such that for all i , one of the following
occurs:
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(1) an l-thin curve v splits the pair (Σi ,Σi+1), that is, v splits the associated
split level surfaces (Si , Si+1), which in turn form an l-thin pair;

(2) there exists an L1-bi-Lipschitz embedding

G i : (S × [0, 1], (∂S)× [0, 1])→ (M, ∂M),

(equipping S × [0, 1] with the product metric) such that Σ s
i = G i(S × {0})

and Σ s
i+1 = G i(S × {1}).

Finally, each l-thin curve in S splits at most n split level surfaces in the sequence
{Σi}.

In Theorem 3.5 above, n depends on the genus of the surface S. The exact
nature of this dependence is in terms of hierarchies and is explicated in [Mj14a];
it is not important for this paper.

A model manifold M all of whose ends are equipped with a collection of
exiting split surfaces satisfying the conclusions of Theorem 3.5 is said to be
equipped with a weak split geometry structure.

As mentioned in Definition 3.2, pairs of split surfaces satisfying Alternative
(1) of Theorem 3.5 will be called an l-thin pair of split surfaces (or simply a thin
pair if l is understood). Similarly, pairs of split surfaces satisfying Alternative
(2) of Theorem 3.5 will be called an l-thick pair (or simply a thick pair) of split
surfaces.

DEFINITION 3.6. Let (Σ s
i ,Σ

s
i+1) be a thick pair of split surfaces in M . The

closure of the bounded component of M \ (Σ s
i ∪ Σ

s
i+1) between Σ s

i ,Σ
s
i+1 will

be called a thick block.

Note that a thick block is uniformly bi-Lipschitz to the product S × [0, 1] and
that its boundary components are Σ s

i ,Σ
s
i+1.

DEFINITION 3.7. Let (Σ s
i ,Σ

s
i+1) be an l-thin pair of split surfaces in M

and F(Ti) be the collection of l-thin Margulis tubes that split both Σ s
i ,

Σ s
i+1. The closure of the union of the bounded components of M \ ((Σ s

i ∪

Σ s
i+1)

⋃
F(T )∈F(Ti )

F(T )) between Σ s
i ,Σ

s
i+1 will be called a split block. The

closure of any bounded component is called a split component.

Note that each split component may contain Margulis tubes that do not split
both Σ s

i ,Σ
s
i+1.

REMARK 3.8. For each lift K̃ ⊂ M̃ of a split component K of a split block
of M(l)⊂ M , there are lifts of l-thin Margulis tubes that share the boundary of K̃
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in M̃ . Adjoining these lifts to K̃ we obtain extended split components. Let
K′ denote the collection of extended split components in M̃ . Denote the
collection of split components in M̃(l) ⊂ M̃ by K. Let M̃(l) denote the
lift of M(l) to M̃ . Then the inclusion of M̃(l) into M̃ gives a quasi-isometry
between E(M̃(l),K) and E(M̃,K′) equipped with the respective electric metrics.
This follows from the last assertion of Theorem 3.5.

Note here that two split components may intersect along a flat subsurface
along a common horizontal boundary component, and that two extended split
components may intersect along Margulis tubes in addition. However, for the
electrocution operation, this does not pose any problems. This is because while
electrocuting, products with the unit interval of the form K̃ × [0, 1

2 ] are attached
to M̃ by identifying K̃ × {0} with K̃ (⊂ M̃) and then each element of the
collection K̃ × { 1

2 } is given the zero metric.
The electric metric on E(M̃,K′) is called the graph metric and is denoted by

dG . The electric space will be denoted as (M̃, dG). If there are no thick blocks,
the graph metric between two points x, y roughly measures the minimal number
of split components one has to pass through to go from x to y.

The electric metric on E(M̃,K
⋃

Tl) is quasi-isometric to the electric metric
on E(M̃,K′), again by the last assertion of Theorem 3.5. The electric space will
be denoted as (M̃, d1

G).
Note also that in E(M̃,K

⋃
Tl), elements of K and T are electrocuted

separately. On the other hand each element in K′ is a union of an element of K
and abutting elements of T . Thus we cannot say that E(M̃,K

⋃
Tl) and E(M̃,

K′) are isometric.

DEFINITION 3.9. Let Y ⊂ Ñ and X = F(Y ). X ⊂ M̃ is said to be ∆-graph-
quasiconvex if for any hyperbolic geodesic µ joining a, b ∈ Y , F(µ) lies inside
N∆(X, dG) ⊂ E(M̃,K′).

For X (= F(Y )) a split component in a manifold, define CH(X) = F(CH(Y )),
where CH(Y ) is the convex hull of Y in Ñ , provided the ends of N have no
cusps, that is, N = N h . Else define CH(X) to be the image under F of CH(Y )
minus cusps. Further, in order to ensure hyperbolicity of the universal cover, we
partially electrocute the cusps of M (cf. Lemma 2.8).

Then ∆-graph-quasiconvexity of X is equivalent to the condition that
diaG(CH(X)) is bounded by ∆′ = ∆′(∆) as any split component has diameter
one in (M̃, dG).

A split component K (⊂ E) ⊂ N is incompressible if the map i∗ : π1(K )→
π1(N ) induced by the inclusion is injective. Lemma 3.10, Proposition 3.11 and
Proposition 3.12 below were proved in [Mj14a] for M homotopy equivalent to a
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surface, where all split components are automatically incompressible. However,
the proofs in [Mj14a] require only that the split components be incompressible
in M .

LEMMA 3.10 [Mj14a, Lemma 4.16]. Let E be a simply degenerate end of a
hyperbolic 3-manifold N equipped with a weak split geometry model M. For K
an incompressible split component contained in E, let K̃ be a lift to Ñ . Then
there exists C0 = C0(K ) such that the convex hull of K̃ minus cusps lies in a
C0-neighborhood of K̃ in Ñ .

PROPOSITION 3.11 [Mj14a, Proposition 4.23]. If K is an incompressible split
component, then K̃ is uniformly graph-quasiconvex in M̃, that is, there exists ∆′

such that diaG(CH(K̃ )) 6 ∆′ for all incompressible split components K̃ .

PROPOSITION 3.12 [Mj14a, Corollary 4.30]. Suppose that all split components
of M̃ are incompressible. Then (M̃, dG) and hence (M̃, d1

G) are Gromov-
hyperbolic.

In fact electro-ambient quasigeodesics in (M̃, dG) and (M̃, d1
G) have the

following relation.

LEMMA 3.13. Let M be a model of split geometry such that all split components
are incompressible. Let (M̃, dG)(= E(M̃,K′)) and (M̃, d1

G)(= E(M̃,K
⋃

Tl))

be as above. Given o ∈ M̃ and C0 > 0, there exists a function Θ : N → N
satisfying Θ(n)→∞ as n→∞ such that the following holds.

For any a, b ∈ M̃, let βh
ea be an electro-ambient C0-quasigeodesic without

backtracking in (M̃, dG) joining a, b. Let βea = β
h
ea \ ∂ M̃ be the part of βh

ea lying
away from the (bi-Lipschitz) horospherical boundary of M̃. Again, let βh

ea1 be
an electro-ambient C0-quasigeodesic without backtracking in (M̃, d1

G) joining
a, b. Let βea1 = β

h
ea1 \ ∂ M̃ be the part of βh

ea1 lying away from the (bi-Lipschitz)
horospherical boundary of M̃, where we refer to the bi-Lipschitz image under F
of the horospherical boundary of Ñ as the (bi-Lipschitz) horospherical boundary
of M̃.

Then dM(βea, o) > n implies that dM(βea1, o) > Θ(n). Conversely, dM(βea1,

o) > n implies that dM(βea, o) > Θ(n).

Proof. Let K ′ be an extended split component in K′ and K̃ ′ denote its universal
cover. Let K̃ ′ = K̃

⋃
T̃ i where T̃ i are the universal covers of l-thin Margulis

tubes abutting the split component K̃ in K̃ ′. Suppose K is contained in Bi , the
i th block in an end E .
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Then K̃ ′ is hyperbolic and is contained in a C(= C(K ′))-neighborhood of K̃ .
The argument is now a reprise of similar arguments in Section 6 (for example,
Lemmas 6.8 and 6.10) of [Mj14a]:

For all i , there exists C(i), such that βea1 ∩ B̃i lies in a C(i)-neighborhood of
βea ∩ B̃i in M̃ . Suppose dM(βea, o) > n. Hence, by uniform k0-separatedness of
split surfaces (Theorem 3.5), dM(βea1 ∩ B̃i , o) > max(n − C(i), ik0).

Let D(i) = max16 j6i C(i). Then dM(βea1, o) > max(n − D(i), ik0) for all i .
One direction of the Lemma follows.

The converse direction is similar.

We summarize the conclusions of the above propositions below.

DEFINITION 3.14. A model manifold of weak split geometry is said to be of
split geometry if:

(1) each split component K̃ is quasiconvex (not necessarily uniformly) in the
hyperbolic metric on Ñ ;

(2) equip M̃ with the graph metric dG obtained by electrocuting (extended) split
components K̃ . Then the convex hull CH(K̃ ) of any split component K̃ has
uniformly bounded diameter in the metric dG .

Hence by Lemma 3.10 and Proposition 3.11 we have the following (where
we refer the reader to the Appendix, for a sketch of a proof of the existence
of a Minsky model for a general finitely generated Kleinian group without
parabolics).

THEOREM 3.15. Any degenerate end E of a hyperbolic 3-manifold M admitting
a Minsky model also has a model of split geometry. In particular, if j : E →
M denotes the inclusion and if no element of j∗(π1(E)) is a parabolic, then E
admits a model of split geometry.

4. Free groups and finitely generated Kleinian groups

Let G be a free geometrically infinite Kleinian group. Agol [Ago04], and
independently, Calegari and Gabai [CG06] have shown that N = H3/G is
topologically tame, and hence, by work of Canary [Can93], geometrically tame.
Then any manifold M bi-Lipschitz to N is homeomorphic to the interior of a
handlebody with boundary S.

More generally, let G be a finitely generated Kleinian group and G f be a
geometrically finite Kleinian group, abstractly isomorphic to G via a strictly
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type-preserving isomorphism. Let H denote the convex core of H3/G f and let
M be a model manifold bi-Lipschitz homeomorphic to N = H3/G. Then there
is a natural identification i : H → M of H with the augmented Scott core (that
is, Scott core plus parabolics) of M . Let ĩ indicate the lift of i to the universal
cover. For most of the discussion below, it might be helpful at first reading to
have in mind a free geometrically infinite Kleinian group without parabolics. We
fix this notation for H,M, S throughout this section.

Standing assumption: For the purposes of this Section, we assume that each
degenerate end E of M admits a Minsky model. As mentioned in Remark 1.2
this is expected to be satisfied always and a proof in the special case that M has
no parabolics is sketched in the Appendix.

4.1. The Masur domain.

DEFINITION 4.1. Let E be an end of a hyperbolic manifold such that E is
homeomorphic to S × [0,∞) for S a finite area hyperbolic surface. A map
h : E → S × [0,∞) is said to be type-preserving, if all and only the cusps
of E are mapped to cusps of S × [0,∞).

THEOREM 4.2 [Ago04, CG06, Bow11, BCM14]. Let G be a finitely generated
Kleinian group and M = H3/G. Let H denote an augmented Scott core of M.
Let E1 be a geometrically infinite end of M \ H. Then E1 is homeomorphic (via
a type-preserving homeomorphism) to a topological product S × [0,∞) for a
hyperbolic surface S of finite area. Further, there exists a neighborhood E of the
end corresponding to E1 such that E is bi-Lipschitz homeomorphic to a Minsky
model for S × [0,∞) and hence to a model of split geometry.

The last part of the last statement follows from Theorem 3.15.
Some ambiguity remains in the statement of Theorem 4.2 above. This lies in

the choice of the ending lamination for E used to build the Minsky model. Since
i : S ⊂ E is type-preserving, no parabolic element of S bounds a compressing
disk. Let ML(S) be the space of measured laminations on S and let PML(S)
denote the space of projectivized measured laminations. Let D(S) be the subset
of PML(S) consisting of weighted unions of disjoint meridians (boundaries of
compression disks lying on S). Let cl(D(S)) denote the closure of D(S). Define
the Masur domain of S by
PMD(S) = {λ ∈ PML(S) : i(λ, µ) > 0} for all µ ∈ cl(D(S)), provided S

has at least two disjoint isotopy classes of compressing disks.
Else, we define
PMD(S) = {λ ∈ PML(S) : i(λ, µ) > 0 for any µ that is disjoint from a

compressing disk}.
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Here i(λ, µ) denotes the intersection number of λ,µ. Let MD(S)(⊂
ML(S)) be the set of measured geodesic laminations whose projective class
lies in PMD(S).

Now, let M = H ∪i Ei , where H is an augmented Scott core. We consider
the ends E j which have compressible boundary, that is, ∂E j(= E j ∩ H) is
compressible in H . Let E be such an E j and S = H ∩ E be the corresponding
boundary component of H . Then any compressible simple closed curve on ∂H
lies on such an S. We fix an S for now and proceed. Let Mod0(S) denote the
subgroup of the mapping class group of S generated by Dehn twists along
essential simple closed curves that bound embedded disks in H . Mod0(S) acts on
PML(S). It was shown by Otal [Ota88] (see also McCarthy and Papadopoulos
[MP89]) that under this action, Mod0(S) acts properly discontinuously on
PMD(S)(⊂ PML(S)) with limit set cl(D(S))(⊂ PML(S)).

REMARK 4.3. Classically [Luf78, Suz77, MM86], Mod0(S) is defined as the
subgroup of the mapping class group Mod(S) of S which extend to the trivial
outer automorphism of π1(H). Luft [Luf78], Suzuki [Suz77] and McCullough–
Miller [MM86] prove that this group is exactly the subgroup of the mapping
class group of S generated by Dehn twists along essential simple closed curves
that bound embedded disks in H .

As mentioned in the introduction to the paper, for any degenerate end E with
boundary surface S, there exists a sequence of simple closed curves {σn} on S,
whose geodesic realizations exit the end E . The limit of these curves in PML(S)
defines an ending lamination for E . However, since S is compressible (in H ),
we may obtain a different sequence of simple closed curves {σ ′n} on S by acting
on σn by different elements of Mod0(S). Note that σ ′n and σn are homotopic in
H∪E and hence have the same geodesic realization in E . Otal [Ota88] (see also
[KS03] for the case with parabolics) shows that any two essential simple closed
curves on S in the Masur domain that are freely homotopic in M lie in the same
Mod0(S)−orbit. We refer the reader to [Can93, Proposition 3.3] for a published
proof . Otal [Ota88] (see also [KS03]) further shows that the subset of weighted
multicurves in PMD(S)/Mod0(S) injects homeomorphically into the space of
currents on M . It follows that the ending lamination for E is well defined up to
the action of Mod0(S):

THEOREM 4.4. For any finitely generated Kleinian group, the ending lamination
λ facing a surface S with a compressing disk lies in the Masur Domain and is a
well-defined element of PMD(S)/Mod0(S).
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For our purposes we shall mostly be satisfied with the fact that E is bi-
Lipschitz homeomorphic to some Minsky model, and hence, by Theorem 4.2
to a model of split geometry.

4.2. Incompressibility of split components. Recall that we are working in
the setup where M is a hyperbolic 3-manifold and H its Scott core (augmented
Scott core, when M has parabolics). Let S be a boundary component of H that is
compressible (rel. cusps when M , and hence H , has parabolics). Let E be the end
with S as its boundary. We would like to show that sufficiently deep within E , all
split components are incompressible in M . Recall that splitting tubes correspond
to thin Margulis tubes in the split geometry model built from the Minsky model.

PROPOSITION 4.5. Let M, H, E be as above. Equip E with a split geometry
structure. Then there exists (a ‘sub-end’) E2 ⊂ E such that

(1) E2 is homeomorphic to S × [0,∞) by a type-preserving homeomorphism
and consists of a union of blocks and tubes from the split geometry model
for E.

(2) All split components of E2 are incompressible, that is, if K is a split
component of E2, then the inclusion i : K → M induces an injective map
i∗ : π1(K )→ π1(M).

Proof. Suppose not. Then there exists a sequence of split components Ki exiting
the end E such that i∗ : π1(K ) → π1(M) is not injective. Since Ki are split
components, Ki = Si × I for some subsurface Si of S. By the Loop Theorem
(see for instance, Hempel [Hem76]), there exist simple closed curves σi ⊂ Si

such that σi bound embedded topological disks in H . Hence σi ∈ D(S). Let Ti

be a splitting tube bounding Ki . Then Ti exit E and has a core curve αi which in
turn corresponds to a simple closed curve on S. It follows that αi is disjoint from
an essential disk and hence some σ ′i ∈ D(S). Since αi are simple closed curves
whose geodesic realizations exit E , it follows that any such sequence of curves
αi converges (in PML(S)) to the ending lamination λ corresponding to the end
E . Hence λ ∈ cl(D(S)) and cannot lie in the Masur domain. This contradicts
Theorem 4.4. The proposition follows.

Henceforth we shall choose l (while fixing l-thin Margulis tubes in the
construction of the split geometry model) to be small enough, so that (E \ E2)

is contained in a thick block and hence all split components are incompressible.
As an immediate consequence we have the following.
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LEMMA 4.6. If K is a split component, then π1(K )(⊂ π1(M)) is geometrically
finite (Schottky, in the absence of parabolics).

Proof. Follows from Lemma 3.10.

PROPOSITION 4.7. If K is a split component, then K̃ is uniformly graph-
quasiconvex in M̃.

Proof. Follows from Proposition 3.11.

PROPOSITION 4.8. (M̃, dG) is a hyperbolic metric space.

Proof. Follows from Proposition 3.12.

4.3. Constructing quasidisks. The construction in this subsection may be
regarded as a graph-metrized coarse analogue of an unpublished construction
due to Miyachi [Miy02] (see also Souto [Sou06] ). The main technical difference
between Miyachi’s construction and ours is that Miyachi constructs continuous
images of disks that actually separate the universal cover M̃ , whereas we only
construct quasidisks. As a consequence it becomes technically more difficult for
us to prove that quasidisks coarsely separate. This is why we need a special
family of paths which we shall call ‘admissible paths’ in the next subsection
which either intersect or come close to the quasidisks we construct below.

Recall that M is a hyperbolic 3-manifold and H its Scott core (augmented
Scott core, when M has parabolics). Also, E is an end such that S = H ∩ E is
compressible. We choose a collection of essential simple closed curves σ1 · · · σg

on S bounding disks D1 · · · Dg with neighborhoods Di × (−ε, ε) such that each
component of H \

⋃
i Di×(−ε, ε) is either a ball or has incompressible boundary

(rel. cusps). Also assume that σi are geodesics in the intrinsic metric on S. To
avoid multiple indices we fix an end E of M and describe the construction
of quasidisks in E . Next, fix a split geometry structure on E as a union of
contiguous blocks Bk , where each Bk is either a split block, or a thick block.

Further, let ∂Bk = Sk−1 ∪ Sk with Sk the upper boundary and Sk−1 the lower
boundary. Also let S = S0 and σi = σi0. Let σik be the shortest closed curve
in the split metric on Sk (that is, in the pseudometric obtained by electrocuting
annular intersections of splitting Margulis tubes with the split level surface Sk)
homotopic in E to σi = σi0. Let Ai = Di

⋃
k σik ⊂ M be the union of the disk

Di and the quasi-annulus
⋃

k σik . Then any lift Ai of Ai to M̃ is isometric to Ai

as Di is homotopically trivial and σik are all freely homotopic to σi = σi0 = ∂Di .
We want to show that Ai are quasiconvex in (M̃, dG) which in turn is

hyperbolic by Proposition 4.8.
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qi Rays
Fix a σ and the disk D it bounds. Let A = D

⋃
k σk ⊂ M , where σk ⊂ Sk . Lift⋃

k σk to the universal cover ˜̃E of E such that any lift σ̃k lies in the universal
cover ˜̃Sk of Sk (We are using this notation to distinguish from lifts to M̃). Let λk

be any such lift σ̃k . We then have the following from [Mj14a].

LEMMA 4.9 [Mj14a, Lemma 5.9]. There exists C > 0 and for all k ∈ N, there
exists B(k) > 0 such that the following hold:

(1) For xk ∈ λk there exists xk−1 ∈ λk−1 with dG(xk, xk−1) 6 C and dM(xk,

xk−1) 6 B(k).

(2) Similarly there exists xk+1 ∈ λk+1 with dG(xk, xk+1) 6 C and dM(xk, xk+1) 6
B(k).

Hence, for all n and x ∈ λn , there exists a C-quasigeodesic ray r (in the dG-
metric) such that r(k) ∈ λk for all k and r(n) = x.

By construction of split blocks, dG(xi , Si−1)= 1. Therefore inductively, dG(xi ,

S j) = |i− j |. Hence dG(xi , x j) > |i− j |. By construction, dG(xi , x j) 6 C |i− j |.
Hence, given p ∈ λi the sequence of points xn, n ∈ N∪ {0} with xi = p gives

by Lemma 4.9 above, a quasigeodesic in the dG-metric. Such quasigeodesics
shall be referred to as dG-quasigeodesic rays.

After projecting Ẽ to M̃ \ H̃ we have the following conclusion.

LEMMA 4.10. There exists C > 0 and for all k there exists Bk satisfying the
following:

For all xik ∈ σik there exists xi,k−1 ∈ σi,k−1 with dG(xik, xi,k−1) 6 C and d(xik,

xi,k−1) 6 Bk .

The following Corollary will turn out to be quite useful. Here we replace A by
the collection Ai of annuli constructed in the third paragraph of this section.

COROLLARY 4.11. There exists C > 0 such that for all k and all xik ∈ σik

there exists q ∈ σi0 and a sequence of points p = xik, . . . , xi0 = q which is a
quasigeodesic in (M̃, dG).

Proof. By construction of split blocks, dG(xik, Sk−1) = 1.
Hence, given p ∈ σik the sequence of points p = xik, . . . , xi0 gives by Lemma

4.10 above, a quasigeodesic in the dG-metric lying entirely on Ai joining p to a
point q ∈ Di .
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We can choose a point zi ∈ Di (quite arbitrarily) and extend any quasigeodesic
constructed as above by adding on a path from q to zi lying entirely in Di and
having uniformly bounded length since Di has bounded diameter.

PROPOSITION 4.12. There exists C0 > 0 such that each A j is C0-quasiconvex
in (M̃, dG).

Proof. By Lemma 4.10 and Corollary 4.11 above, it follows that there exist
K > 1 such that for any two points p1, p2 in A j there exist K -quasigeodesics
γ1, γ2 to z j ∈ D j . By Proposition 4.8 we also have that (M̃, dG) is hyperbolic.
Hence any geodesic αi (i = 1, 2) joining pi to z j lies in some K1-neighborhood
of γi . Further, by hyperbolicity of (M̃, dG), we conclude that a geodesic β joining
p1, p2 lies in a K2-neighborhood of α1∪α2. Hence, finally, β lies in a (K1+K2)-
neighborhood of γ1 ∪ γ2 ⊂ A j . Choosing C0 = K1 + K2, we are through.

The quasidisks constructed above have the following property.

LEMMA 4.13. Let M be a model manifold of split geometry. Let H be a Scott
core of M (augmented Scott core if M has parabolics) and {Di} a maximal
collection of disjoint compressing disks in H. Then there exists a function Θ :
N→ N satisfying Θ(n)→∞ as n →∞ such that for all o ∈ H̃ the following
holds.

Let D be a lift of one of the Di ’s to M̃ and let A be the quasidisk in M̃
constructed from D as above.

Then dM(D, o) > n implies that dM(A, o) > Θ(n).

Proof. By Lemma 4.10 and Corollary 4.11, there exists b1, . . . , bk, . . . and z ∈ D
such that for all xk ∈ σk ⊂ A, dM(xk, z) 6 (b1 + · · · + bk) = ck(say). Hence
dM(xk, 0) > (n − ck).

By uniform ε0-separatedness of split surfaces (Theorem 3.5), dM(xk, 0) > kε0.
Hence dM(xk, 0) > max((n− ck), kε0). ChoosingΘ(n) to be the largest value of
kε0 such that kε0 6 n − ck we are done.

4.4. Reduction lemma. Before we get into the proof of the existence of
Cannon–Thurston maps, we recall some material from Section 6 of [Mj14a]
that will help streamline the proof.

The next Lemma allows us to apply the criterion for existence of Cannon–
Thurston maps in Lemmas 2.10 and 2.11 to electro-ambient quasigeodesics in M̃
rather than hyperbolic geodesics in Ñ . Lemma 4.14 below is a paraphrasing of
what Lemmas 6.8 and 6.10 of [Mj14a] prove in the context of this paper. (Note
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that though [Mj14a, Lemmas 6.8 and 6.10] are stated for simply degenerate
surface groups, the relevant parts of the proofs only use incompressibility of
split components. This is pointed out in [Mj14a, Lemma 8.7].)

LEMMA 4.14 [Mj14a, Lemma 8.7]. Let N be the convex core of a complete
hyperbolic 3-manifold N h minus a neighborhood of the cusps. Equip each
degenerate end with a split geometry structure such that each split component is
incompressible. Let M be the resulting model of split geometry and F : N → M
be the bi-Lipschitz homeomorphism between the two. Let F̃ be a lift of F to
the universal covers. Then for all C0 > 0, and o ∈ Ñ there exists a function
Θ : N→ N satisfying Θ(n)→∞ as n→∞ such that the following holds.

For any a, b ∈ Ñ ⊂ Ñ h , let λh be the hyperbolic geodesic in Ñ h joining them
and let λh

thick = λ
h
∩ Ñ . Similarly let βh

ea be an electro-ambient C0-quasigeodesic
without backtracking in M̃ ⊂ E(M̃,K′) joining F̃(a), F̃(b). Let βea = β

h
ea \ ∂ M̃

be the part of βh
ea lying away from the (bi-Lipschitz) horospherical boundary

of M̃.
Then dM(βea, F̃(o)) > n implies that dH3(λh

thick, o) > Θ(n).

Combining Lemma 4.14 with Lemma 3.13, we have the following.

COROLLARY 4.15. Let N be the convex core of a complete hyperbolic 3-
manifold N h minus a neighborhood of the cusps. Equip each degenerate end
with a split geometry structure such that each split component is incompressible.
Let M be the resulting model of split geometry and F : N → M be the bi-
Lipschitz homeomorphism between the two. Let F̃ be a lift of F to the universal
covers. Then for all C0 > 0, and o ∈ Ñ there exists a function Θ : N → N
satisfying Θ(n)→∞ as n→∞ such that the following holds.

For any a, b ∈ Ñ ⊂ Ñ h , let λh be the hyperbolic geodesic in Ñ h joining them
and let λh

thick = λ
h
∩ Ñ . Similarly let βh

ea be an electro-ambient C0-quasigeodesic
without backtracking in M̃ ⊂ E(M̃,K

⋃
Tl) joining F̃(a), F̃(b). Let βea =

βh
ea \ ∂ M̃ be the part of βh

ea lying away from the (bi-Lipschitz) horospherical
boundary of M̃.

Then dM(βea, F̃(o)) > n implies that dH3(λh
thick, o) > Θ(n).

Again, combining Lemma 4.14 with Lemma 4.13, we have the following.

COROLLARY 4.16. Let N be the convex core of a complete hyperbolic 3-
manifold N h minus a neighborhood of the cusps. Equip each degenerate end
with a split geometry structure such that each split component is incompressible.
Let M be the resulting model of split geometry and F : N → M be the
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bi-Lipschitz homeomorphism between the two. Let F̃ be a lift of F to the
universal covers. Let H be a Scott core of N and {Di} a maximal collection
of compressing disks in H. Then there exists a function Θ : N → N satisfying
Θ(n)→∞ as n→∞ such that for all o ∈ H̃ the following holds.

Let D be a lift of one of the Di ’s to M̃ and let A be the quasidisk in M̃
constructed from D as above. For any a, b ∈ A, let [a, b]h be the hyperbolic
geodesic in Ñ h joining F̃−1(a), F̃−1(b) and let [a, b] = [a, b]h ∩ Ñ .

Then dM(D, F̃(o)) > n implies that dH3([a, b], o) > Θ(n).

Proof. By Lemma 4.13 there exists z ∈ D, a function Θ0 : N → N satisfying
Θ0(n)→∞ as n →∞ and electro-ambient quasigeodesics βa, βb in (M̃, dG),
joining a to z and b to z respectively, such that dM(D, F̃(o)) > n implies that
dM(βa ∪ βb, F̃(o)) > Θ0(n).

Let [a, z]h, [b, z]h be the hyperbolic geodesic in Ñ joining F̃−1(a), F̃−1(b)
respectively to F̃−1(z) and let [a, z] = [a, z]h ∩ Ñ , [b, z] = [b, z]h ∩ Ñ .

Then by Lemma 4.14 there exists a function Θ1 : N → N satisfying
Θ1(n)→∞ as n→∞ such that dM(D, F̃(o)) > n implies that dH3([a, z] ∪ [b,
z], o) > Θ1(n).

Let δ > 0 be such that all geodesic triangles in H3 are δ-thin. Taking
Θ(n) = Θ1(n) − δ, it follows that dM(D, F̃(o)) > n implies that
dH3([a, b], o) > Θ(n).

4.5. Admissible quasigeodesics. We shall need a collection of paths
consisting of horizontal and vertical segments approximating electro-ambient
quasigeodesics. We shall call these admissible quasigeodesics. Let M be a
model manifold each of whose ends is equipped with a split geometry structure
such that all split components are incompressible. Recall that each thick block
and each split block in M is homeomorphic to a product Σ s

i × I . We fix such a
product structure for each block. Let ti = sup{length({x} × I ) : x ∈ Σ s

i } be the
thickness of the i th block.

Recall that F : N → M is a bi-Lipschitz homeomorphism from a hyperbolic
manifold N (minus cusps) to M and let F̃ denote its lift to the universal cover.

An elementary admissible path in M̃ is one of the following:

Type 1: A ‘horizontal’ geodesic in the intrinsic path metric on some lift Σ̃ s
i of a

split surface to M̃ .

Type 2: A ‘vertical’ path of the form x × I (with respect to the fixed product
structure above) in the lift to M̃ of either a thick block or a split block.

Let Bi be a thick block of M and let Ss
i , Ss

i+1 be its horizontal boundary
components. Recall that a product structure Bi = S × I has been fixed. Let
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µ = [a, b] be a geodesic in B̃i ⊂ M̃ such that its endpoints a, b lie on the
horizontal boundary components. Let P(µ) denote the projection of µ onto the
horizontal boundary component (Ss

i or Ss
i+1) containing a. If b belongs to the

same horizontal boundary component as a, define µadm = P(µ). Else define
µadm = P(µ) ∪ {b} × I , where {b} × I is the elementary vertical path through
b. µadm will be called the admissible quasigeodesic corresponding to µ in the
thick block B̃i .

Let B denote the collection of thick blocks.

DEFINITION 4.17. Let βea be an electro-ambient C0-quasigeodesic (without
backtracking), such that it enters or leaves split components at split level
surfaces. Then an admissible quasigeodesic βadm in M̃ corresponding to βea

in M̃ ⊂ E(M̃,K
⋃

Tl) is a path such that βadm ∩ (M̃ \
⋃

K∈K K̃ ∪
⋃

B∈B B̃) =
βea ∩ (M̃ \

⋃
K∈K K̃ ∪

⋃
B∈B B̃).

Further, for each K̃ , βadm ∩ K̃ is a union of elementary admissible paths with
disjoint interiors such that:

(1) βadm ∩ K̃ has at most one vertical path of type (2) above;

(2) for any connected horizontal boundary component Σ̃ s
0 of K̃ , β ∩ Σ̃ s

0 has at
most one ‘horizontal’ geodesic of type (1) above.

Finally for each B ∈ B, βadm ∩ B̃ is the admissible quasigeodesic correspond-
ing to βea ∩ B̃ in B̃.

Definition 4.17 allows us to replace an electro-ambient quasigeodesic by
a path with greater control. We shall be concerned with electro-ambient
quasigeodesics βea in M̃ starting and ending at points in H̃ . Any such
electro-ambient quasigeodesic has a representative entering and leaving split
components at split level surfaces. This follows from the observation that any
electro-ambient quasigeodesic necessarily enters and leaves split blocks as
well as thick blocks along (horizontal) split level surfaces except at most for
maximal pieces that have endpoints in one of the thin tubes in Tl . Hence the
restriction on electro-ambient quasigeodesics βea given by (the first sentence
of) Definition 4.17 may be regarded just as a choice of a representative of
βea or as a mild normalization condition. The construction of the admissible
quasigeodesic βadm corresponding to βea changes this representative of βea by
replacing the intersection of βea with each thick block B̃ or split component K̃
by one horizontal and at most one vertical piece. The reader should thus think
of an admissible quasigeodesic βadm corresponding to βea as an electro-ambient
quasigeodesic
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(1) With the same entry and exit points as βea into either thick blocks (elements
of B̃) or split components (elements of K̃ ).

(2) If the entry and exit points p, q of βea into some B̃ (or K̃ ) lie on the same
horizontal level, join p, q by a horizontal geodesic in the corresponding
level surface to obtain the corresponding piece of βadm.

(3) If the entry and exit points p, q of βea into some B̃ (or K̃ ) lie on levels i
and i + 1, say, then project q (using the product structure of the block B or
K ) to P(q) on level i . Join p, P(q) by a horizontal geodesic in the i th level
surface and then follow it by the vertical segment joining P(q) to q .

The choice of an admissible quasigeodesic corresponding to an electro-ambient
quasigeodesic is not unique. In each piece of the third type above, we can also
choose the vertical segment at p and then follow by a horizontal geodesic in
the (i + 1)th level surface. The ambiguity is bounded however in a sense made
precise in Lemma 4.18 below.

The next Lemma allows us to apply the criterion for existence of Cannon–
Thurston maps in Lemma 2.10 to admissible quasigeodesics in M̃ rather than
electro-ambient quasigeodesics in M̃ . The proof of Lemma 4.18 is exactly like
[Mj14a, Lemma 6.5] and we omit it here (see also the proof of Lemma 3.13
above).

LEMMA 4.18. Let N be the convex core of a complete hyperbolic 3-manifold
N h minus a neighborhood of the cusps. Equip each degenerate end with a split
geometry structure such that each split component is incompressible. Let M be
the resulting model of split geometry. Then for all C0 > 0, and o ∈ M̃ there exists
a functionΘ : N→ N satisfyingΘ(n)→∞ as n→∞ such that the following
holds:

For any a, b ∈ M̃, let βh
ea be an electro-ambient C0-quasigeodesic without

backtracking in M̃ joining a, b. Let βea = βh
ea \ ∂ M̃ be the part of βh

ea lying
away from the (bi-Lipschitz) horospherical boundary of M̃. Again, let βh

adm be
the admissible quasigeodesic corresponding to βh

ea and let βadm = β
h
adm \ ∂ M̃ be

the part of βh
adm lying away from the (bi-Lipschitz) horospherical boundary of M̃.

Then dM(βea, o) > n implies that dM(βadm, o) > Θ(n). Conversely, dM(βadm,

o) > n implies that dM(βea, o) > Θ(n).

4.6. Cannon–Thurston maps for free groups. We are now in a position to
prove the existence of Cannon–Thurston maps for arbitrary finitely generated
Kleinian groups. In this subsection we shall describe the proof for handlebody
groups where the book-keeping is minimal. In the next subsection we shall
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indicate the modifications necessary for arbitrary finitely generated Kleinian
groups. We identify H with its bi-Lipschitz image F(H) contained in M under
the bi-Lipschitz homeomorphism F : N → M from the hyperbolic manifold N
to the model manifold M .

We now want to show that if λ = [a, b] is a geodesic in the intrinsic metric on
H̃ joining a, b ∈ H̃ , and lying outside a large ball about a fixed reference point
p ∈ H̃ ⊂ M̃ , then the (bi-Lipschitz) hyperbolic geodesic λh joining a, b ∈ M̃
also lies outside a large ball about p in M̃ . This would guarantee the existence
of a Cannon–Thurston Map by Lemma 2.10.

To fix notation, let Q be a free Kleinian group without parabolics. Let N =
H3/Q, M = F(N ) and H a compact (Scott) core of M . H̃ with its intrinsic
metric is quasi-isometric to the Cayley graph ΓQ and so its intrinsic boundary
may be identified with the Cantor set ∂Q thought of as the Gromov boundary of
ΓQ . Let Ĥ and M̂ denote the compactifications by adjoining ∂Q and the limit
set ΛQ to H̃ and M̃ respectively.

THEOREM 4.19. Cannon–Thurston for Free Groups The inclusion i : H̃ →
M̃ extends continuously to a map î : Ĥ → M̂.

Proof. Let p ∈ H̃ be a base point, and λ = [a, b] be a geodesic in the
intrinsic metric on H̃ and λh be the (bi-Lipschitz) hyperbolic geodesic joining its
endpoints in M̃ . By Lemma 2.10 it suffices to show that if λ lies outside a large
ball about p in H̃ , then λh lies outside a large ball about p in M̃ .

Suppose that λ lies outside an n-ball about p in H̃ , that is, dH̃ (λ, p) > n. Let
{Di} be a finite collection of compressing disks in H such that each component
of ∂H \

⋃
i ∂Di is a pair of pants.

Since each (lift of) Di separates H̃ and since λ lies outside a large n-ball about
p in H̃ , we conclude that there exists such a lift D lying outside an m = m(n)-
ball about p in M̃ , (that is, dM̃(D, p) > m(n)) and that λ lies in the component of
H̃ \D not containing p, where m(n)→∞ as n→∞. Let A = D∪

⋃
i σi be the

quasidisk containing D constructed in Section 4.3, where σi is a closed curve on
the lift Σ̃ s

i of the i th split surfaceΣ s
i to M̃ . Also, let Σ̃ s

i \σi = Σ̃
s
i +∪ Σ̃

s
i − where

Σ̃ s
i +, Σ̃

s
i − are the two components of Σ̃ s

i \ σi . Similarly, let H̃ \ D = H̃+ ∪ H̃−,
where Σ̃ s

0+ ⊂ ∂ H̃+ and Σ̃ s
0− ⊂ ∂ H̃−. Assume without loss of generality that

λ ⊂ H̃+ and p ∈ H̃−. Let M̃+ = H̃+ ∪
⋃

i Σ̃
s
i + and M̃− = H̃− ∪

⋃
i Σ̃

s
i −. Also

let M̃H =
⋃

i Σ̃
s
i be the union of all the horizontal split surfaces lifted to M̃ .

Let α be an electro-ambient quasigeodesic joining the endpoints of λ in M̃ and
β be an admissible quasigeodesic corresponding to α.

Since β is admissible, it consists of horizontal and vertical pieces. Two cases
arise:
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(a) β ∩ M̃H ⊂ M̃+

(b) β ∩ (M̃+)− ∩ (M̃−)− 6= ∅.

Roughly speaking Cases (a) and (b) correspond respectively to the cases where
β does not or does intersect A coarsely.

Case (a): β ∩ M̃H ⊂ M̃+
By Corollary 4.15 and Lemma 4.18 it suffices to show that there exists a

function Θ : N→ N satisfying Θ(n)→∞ as n →∞ such that the following
holds:

dH̃ (λ, p) > n implies that dM(β, p) > Θ(n).
The existence of such a functionΘ : N→ N follows exactly as in Lemma 4.13.

We briefly recount the proof. It suffices to prove that if dM̃(D, p) > m(n), then
dM̃(A, p) > Θ(n). As in the proof of Lemma 4.13, there exist constants b1, . . . ,

bk, . . . (depending only on the geometry of E and the split geometry model) and
a z ∈ D such that for any xk ∈ σk(⊂ A), we have dM(xk, z) 6 b1+ · · ·+ bk = ck

(say). Hence dM(xk, p) > m(n)− ck . Also, using uniform separatedness, dM(xk,

z) > kε0. Therefore, there exists a proper function Θ0 : N→ N such that dM(A,
p) > Θ0(n). Since β is disjoint from A and is admissible, it follows that every
horizontal segment of β is at distance at least Θ0(n) from p.

Any vertical segment τk of β necessarily joins a pair of points yk, yk+1, where
yk, yk+1 lie on the top and bottom horizontal boundaries of the same block (thick
or split) with yk (respectively yk+1) lying on the same horizontal split level
surface as σk (respectively σk+1). Further, the vertical segment has length at most
Ck–the thickness of the kth block. It follows that any point on τk lies at distance at
leastΘ0(n)−Ck from p. Again, there exists ε0 (a lower bound on the separation
between successive horizontal levels) such that any point on τk lies at distance at
least kε0 from p. Choosing Θ(n) = max{Θ0(n)− Ck, kε0}, we are done.

Case (b): β ∩ (M̃+)− ∩ (M̃−)− 6= ∅.
We shall say that β crosses A at x if either x ∈ β ∩ A, or if there exists a

vertical elementary admissible subpath x × I ⊂ β, such that either (x, 0) ∈ M̃+
and (x, 1) ∈ M̃− or (x, 1) ∈ M̃+ and (x, 0) ∈ M̃−.

Let r, q be the first and last points at which β crosses A. Let βar , βqb be the
subpaths of β joining a, r and b, q respectively. Then again, as in Case (a) above,
there exists a function Θ : N→ N satisfying Θ(n)→∞ as n →∞ such that
dH̃ (λ, p) > n implies that dM(βar ∪ βqb, p) > Θ(n). Hence by Corollary 4.15
and Lemma 4.18 it follows that there exists a function Θ2 : N → N satisfying
Θ2(n)→∞ as n→∞ such that dH̃ (λ, p) > n implies that dM(µar ∪µqb, p) >
Θ2(n), where µar (respectively µqb) are the (bi-Lipschitz) hyperbolic geodesics
in M̃ joining a, r and b, q respectively.
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If r, q ∈ A, then, since dM(D, p)> m(n), Corollary 4.16 ensures the existence
of a proper function Θ3 : N → N (that is, Θ3(n) → ∞ as n → ∞) such that
dH̃ (λ, p) > n implies that dM(µrq, p) > Θ3(n), where µrq is the (bi-Lipschitz)
hyperbolic geodesic in M̃ joining r and q . Hence by δ−hyperbolicity of M̃ ,
dM(µab, p) > min(Θ2(n),Θ3(n))− 2δ and we are done.

Else, let r ∈ Σ̃ s
i and q ∈ Σ̃ s

j . There exists r ′ ∈ Σ̃ s
i+1, such that r, r ′ lie on

a vertical segment in β. Further they lie on opposite (+ and −) sides of A.
Similarly, there exists s ′ ∈ Σ̃ s

j−1, such that s, s ′ lie on a vertical segment in
β and on opposite (− and +) sides of A. Hence, (depending on thickness of
the mth block) there exist C(m),m ∈ N such that dM(r, A) 6 C(i) and dM(q,
A) 6 C( j). Choose r1, q1 in σi , σ j respectively such that dM(r, r1) 6 C(i) and
dM(q, q1) 6 C( j).

Then, by Corollary 4.16, there exists a function Θ4 : N → N satisfying
Θ4(n) → ∞ as n → ∞ such that dM(µr1q1, p) > Θ4(n), where µr1q1 is the
(bi-Lipschitz) hyperbolic geodesic in M̃ joining r1 and q1. The existence of
C(m),m ∈ N now guarantees the existence of a proper function Θ5 : N → N
such that dM(µrq, p) > Θ5(n) (reprising, for instance, the argument in the last
paragraph of Case (a) above). Hence by δ−hyperbolicity of M̃ again, dM(µab,

p) > min(Θ2(n),Θ5(n))− 2δ and we are through.

4.7. Finitely generated Kleinian groups. In this subsection, we indicate the
modifications necessary in the proof of Theorem 4.19 to prove the analogous
theorem for finitely generated Kleinian groups.

Let Ng f denote the augmented Scott core of N h
= H3/G. Let i : Ng f → N h

be the natural inclusion map. Thurston showed that there exists a geometrically
finite manifold admitting a strictly type-preserving homotopy equivalence with
N h . The convex core of such a manifold admits a proper homeomorphism to
Ng f . Thus, Ng f may be thought of as the convex core of a geometrically finite
manifold admitting a strictly type-preserving homotopy equivalence with N h .
Let H be Ng f with open neighborhoods of cusps removed. Let N be N h with
open neighborhoods of cusps removed. Then H̃ is strongly hyperbolic relative
to its horospheres and Ñ is strongly hyperbolic relative to its horospheres.
Let Ĥ and N̂ denote their relative hyperbolic compactifications. Note that
Ĥ = N̂g f , where N̂g f is the Gromov compactification of the hyperbolic space
Ñg f . Similarly, N̂ = N̂ h , where N̂ h is the Gromov compactification of the
hyperbolic space Ñ h . Let ĩ : H̃ → Ñ indicate the lift of i . Let M denote the
model manifold for N and let M̂ denote the relative hyperbolic compactification
of M̃ . We identify H with its bi-Lipschitz image in M under the bi-Lipschitz
homeomorphism F : N → M . Let dG be the graph metric on M̃ equipped with
a split geometry structure where all split components are incompressible.
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First, suppose that H has incompressible boundary as a pared manifold. Then
Theorem 2.13 shows that a Cannon–Thurston map exists for ĩ : H̃ → M̃ . The
point pre-image description is also furnished by Theorem 2.13.

Else H may be decomposed as the disk-connected sum (or boundary-
connected sum) #i=1,...,r+s Hi of H1, H2, . . . , Hr+s , where

(1) Hr+1, . . . , Hr+s are pared manifolds with incompressible boundary.

(2) H1, . . . , Hr are handlebodies such that in the boundary-connected sum
decomposition of H , no two are connected to the same boundary
component of #i=r+1,...,r+s Hi . (This ensures that the boundary-connected
sum decomposition is minimal.)

Let D′1, . . . , D′r+s−1 be the compressing disks obtained from the above boundary-
connected sum decomposition. Next for each handlebody Hi (i = 1, . . . , r ), we
choose a minimal collection of disjoint nonseparating compressing disks such
that their complement in Hi is a ball. Taking the union of D′1, . . . , D′r+s−1 with
all these compressing disks for Hi (i = 1, . . . , r ), we obtain a collection Di ,

i = 1 · · ·m of compressing disks. Since m > 1, there is at least one compressing
disk. Note that the collection ∂Di , i = 1 · · ·m forms a maximal collection of
homotopically distinct compressible simple closed curves on ∂H .

THEOREM 4.20. Cannon–Thurston for Kleinian Groups Let H,M, N , Ng f ,

N h be as above. Further suppose that each degenerate end of M admits a
Minsky model. The inclusion ĩ : H̃ → M̃ extends continuously to a map
î : Ĥ → M̂ between the relative hyperbolic compactifications. Equivalently,
ĩ : Ñg f → Ñ h extends continuously to a map î : N̂g f → N̂ h between the
hyperbolic compactifications.

Proof. From Propositions 4.5, 4.8 and 4.12, we can construct quasidisks Ai

corresponding to Di as before and lift them to M̃ (after partially electrocuting
Z-cusps if any).

Now, let λ be a geodesic segment in H̃ lying outside a large ball BN (p) for a
fixed reference point p. λ may be decomposed into (at most) three pieces λ−, λ0

and λ+ as follows:

(1) the middle piece λ0 does not intersect any of the (lifts of the) compressing
disks Di in the interior. (We thus allow for the cases where λ− and/or λ+ are
empty.)

(2) the common endpoint λ− ∩ λ0 lies on some Di . The same is demanded of
λ0 ∩ λ+;
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(3) the point q on λ nearest to p lies on λ0;

(4) if λ intersects exactly one disk D, then λ0 is defined to be the piece of λ
ending on D and containing q; the other piece being designated λ− or λ+.

We shall consider a sequence of λ’s converging to a point ξ on the boundary of
Ĥ (or N̂g f ) in the Hausdorff topology. (Equivalently, the sequence of endpoints
of the λ’s converge to ξ .) Such a sequence must necessarily lie outside larger and
larger balls Bn(p) about p. Two cases arise.

Case A. For a sequence of λ’s lying outside larger and larger balls Bn(p) about
p, and converging to ξ , the sequence of λ’s eventually lies outside any fixed
component of H̃ \∪i Di . This is exactly the same case as in the proof of Theorem
4.19. The same proof goes through by Corollary 4.16.

Case B. Either [p, q] does not intersect any Di or there is (up to
subsequencing) a fixed disk Di that is the last disk that [p, q] intersects.
Since Di is of uniformly bounded diameter, we may shift our base point to a
point p′ in the component H̃i which is the lift of Hi containing q . In this case,
there exists a fixed n0 such that λ lies outside B(n−n0)(p

′). By shifting origin, we
rewrite p′ as p and (n − n0) as n.

Step 1. Now, λ0 ⊂ H̃i ⊂ H̃ as it does not meet any disk Di in its interior.
Since Hi is either a handlebody without parabolics, or a pared manifold with
incompressible boundary, then by Theorems 4.19 or 2.13 respectively, a Cannon–
Thurston map exists for the inclusion H̃i ⊂ M̃ . By (the necessity part of)
Lemmas 2.10 and 2.11, it follows that the hyperbolic geodesic λh

0 joining the
endpoints of λ0 in Ñ h lies outside a large ball about p. Thus, there exists
m1(n)→∞ as n →∞ such that λh

0 lies outside a ball of radius m1(n) about p
in Ñ h .

Step 2. If λ+ (or λ−) is nonempty, then λ− (or λ+) is separated from p by a disk
Di ⊂ H̃ lying outside Bn(p).

Note. Strictly speaking some uniformly bounded pieces of λ+ (or λ−) close
to the intersection point with λ could enter H̃i . To see the existence of a
uniform bound, note first that H̃ is quasi-isometric to (the Cayley graph of)
π1(M)(= π1(H)). Then the disks Di correspond to splittings of the group
π1(H). Geodesic words in π1(H) cannot ‘backtrack’, that is, in the tree of spaces
description of H̃ corresponding to splittings by Di , such paths cannot re-enter a
vertex space after leaving it. Uniform boundedness now follows from the quasi-
isometry between H̃ and (the Cayley graph of) π1(M)(= π1(H)).

However, they can be replaced first by paths lying entirely on Di and then
pushed out of H̃i altogether. Thus, replacing the geodesic segments λ− (or λ+)
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by quasigeodesics if necessary, we can ensure that λ− (or λ+) is separated from
p by a disk Di ⊂ H̃ lying outside Bn(p). We shall ignore this mild technicality.

Recall that M is a bi-Lipschitz model for N , which in turn is N h with cusps
removed. Also recall that dG is the graph metric on M̃ . Then the quasidisk Ai

is quasiconvex in (M̃, dG) and lies outside a large ball of radius m2(n) about
p, where m2(n) → ∞ as n → ∞. Let λh

+
(respectively λh

−
) be the hyperbolic

geodesics joining the endpoints of λ+ (respectively λ−). Again, by constructing
admissible paths and electro-ambient quasigeodesics as in the proof of Theorem
4.19, we obtain a new function m3(n) such that m3(n)→∞ as n →∞ and so
that the hyperbolic geodesics λh

−
or λh

+
lie outside a ball of radius m3(N ) about

p in Ñ h .

Step 3. Therefore, λh
−
∪λh

0 ∪λ
h
+

lies outside a ball of radius m4(n) = min{m1(n),
m3(n)}. Finally, since Ñ h is δ-hyperbolic, the hyperbolic geodesic λh joining the
endpoints of λ lies outside a ball of radius m(n) = m4(n) − 2δ about p. Also,
m(n)→∞ as n →∞. Therefore, by Lemmas 2.10 or 2.11, it follows that the
inclusion ĩ : H̃ → M̃ extends continuously to a map î : Ĥ → M̂ or equivalently
that ĩ : Ñg f → Ñ h extends continuously to a map î : N̂g f → N̂ h . This concludes
the proof.

REMARK 4.21. As mentioned in Remark 1.2, the hypothesis that each
degenerate end of M admits a Minsky model is expected to be superfluous
and is established in Appendix when M has no parabolics.

Let Ĝ F denote the Floyd compactification of a group G (See [Flo80]).
McMullen conjectured in [McM01] that there exists a continuous extension of
i : ΓG → M̃ to a map from Ĝ F to M̂ . It was shown by Floyd in [Flo80] that there
is a continuous map from Ĝ F to Ĥ . Combining this with Theorem 4.20 above for
Kleinian groups with parabolics, we get a proof of the following, which proves
McMullen’s conjecture.

THEOREM 4.22. Let G be any finitely generated Kleinian group and
M = H3/G, Further suppose that each degenerate end of M admits a Minsky
model (for instance if M has no parabolics). Then there is a continuous extension
î : Ĝ F → M̂.

5. Point pre-images of the Cannon–Thurston map

In this section, we first determine the pre-images of multiple points under the
Cannon–Thurston map for degenerate free Kleinian groups G. We then indicate
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the modifications necessary to extend the results to arbitrary finitely generated
Kleinian groups. This is done for two reasons:

(a) Otal had specifically conjectured [Ota88] the structure of the Cannon–
Thurston maps we prove for handlebody groups.

(b) The additional work required for arbitrary finitely generated Kleinian
groups involves extra book-keeping with respect to a finite family of ends.

The extra generality at this stage would tend to clutter up the exposition.
We shall not have need to distinguish between the hyperbolic manifold and its

bi-Lipschitz model any longer and will denote the manifold by M .
We set up some notation for the purposes of this section. Let G be a

free degenerate Kleinian group without parabolics. Suppose that G is not
geometrically finite. Let M = H3/G be the quotient manifold. Note that the
limit set of G is all of the sphere at infinity. Hence M is its own convex core. Let
H be a compact core of M . H is a handlebody whose inclusion into M induces
a homotopy equivalence. In fact, M deformation retracts onto H . Then H̃ is
embedded in M̃ = H3. Let Γ denote the Cayley graph of G with respect to some
finite generating set of G. Assume that Γ is equivariantly embedded in H̃ with
edges being mapped to geodesic segments. Let S denote the boundary surface
of H . We assume that the ending lamination ΛE L is a geodesic lamination on
S equipped with some (any) hyperbolic metric. This is well defined only up to
Dehn twists along simple closed curves in S that bound disks in H and gives a
well-defined ending lamination in the Masur domain by Theorem 4.4. To make
this explicit, we denote the ending lamination in the Masur domain by ΛE L H .
M \ Int(H) is homeomorphic to S × [0,∞) and is bi-Lipschitz homeomorphic
to an end MS of a simply degenerate hyperbolic manifold without accidental
parabolics [Bow05] [BCM14]. Thus S×[0,∞) ⊂ M equipped with its intrinsic
path metric is bi-Lipschitz homeomorphic to MS . We shall have need to pass
interchangeably between these two below.

5.1. EL leaves are CT leaves. Let i : H̃ → M̃ denote the inclusion. Let ∂i
denote the continuous extension of i to the boundary in Theorem 4.19. Note that
the inclusion of Γ into H̃ with its intrinsic metric is a quasi-isometry. So we
might as well replace the inclusion of Γ into M̃ by that of H̃ into M̃ . We shall
show that point pre-images of multiple points under ∂i correspond to endpoints
of leaves of an ending lamination in the Masur domain.

The inclusion of S into H as its boundary induces a surjection of fundamental
groups. Let N denote the kernel. Let SN (= ∂ H̃) denote the cover of S
corresponding to N .
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To distinguish between the ending lamination ΛE L H (in the Masur domain)
and bi-infinite geodesics whose endpoints are identified by ∂i , we make the
following definition.

DEFINITION 5.1. A CT leaf λCT is a bi-infinite geodesic whose endpoints are
identified by ∂i .

An EL leaf λE L is a bi-infinite geodesic whose endpoints are ideal boundary
points of either a leaf of the ending lamination, or a complementary ideal
polygon.

We shall show that

• An EL leaf is a CT leaf.

• A CT leaf is an EL leaf.

PROPOSITION 5.2. EL is CT Let G be a free degenerate Kleinian group without
parabolics. Let u, v be either ideal endpoints of a leaf of an ending lamination
of G, or ideal boundary points of a complementary ideal polygon. Then
∂i(u) = ∂i(v).

Proof. This is almost identical to [Mj14b, Proposition 3.1]. However, since the
setup is somewhat different we include a sketch of a proof. Take a sequence of
short geodesics si exiting the end. Let ai be geodesics in the intrinsic metric on
the boundary S (of H ) freely homotopic to si . By topological tameness [Ago04]
[CG06] and geometric tameness [Thu80, Ch. 9] we may assume further that
ai ’s are simple closed curves on S. Join ai to si by the shortest geodesic ti in
S × [0,∞) connecting the two curves. Then the collection ai may be chosen to
converge to the ending lamination on S [Thu80, Ch. 9]. Also, in SN ⊂ H̃ ⊂ M̃ ,
we choose lifts ai(⊂ S̃) (of ai ) which are finite segments whose endpoints are

identified by the covering map P : ˜S × [0,∞)→ S × [0,∞). We also assume
that P is injective restricted to the interior of ai ’s mapping to ai . Similarly there
exist segments si ⊂ M̃ which are finite segments whose endpoints are identified
by the covering map P : M̃ → M . We also assume that P is injective restricted
to the interior of si ’s. The finite segments si and ai are chosen in such a way that
there exist lifts t1i , t2i , joining endpoints of ai to corresponding endpoints of si .
The union of these four pieces looks like a trapezium (see Figure 1 below, where
we have omitted subscripts for convenience).

Next, given any leaf λ of the ending lamination, we may choose translates of
the finite segments ai (under the action of π1(H)) appropriately, such that they

https://doi.org/10.1017/fmp.2017.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.2


Cannon–Thurston maps for Kleinian groups 37

Figure 1. Trapezium

converge to λ in SN . For each ai , let

bi = t1i ◦ si ◦ t−1
2i

where t−1
2i denotes t2i with orientation reversed. If the translates of ai we are

considering have endpoints lying outside large balls around a fixed reference
point p ∈ SN , it is not hard to see that bi ’s lie outside large balls about p in M̃ .

Here is a quick sketch. We think of ti as vertical and ai , si as horizontal. We
justify this heuristic. We choose ti to be a distance minimizing geodesic between
a loop in S × {0} corresponding to ai and loop in S × {i} corresponding to si .
Saying that ti is vertical is meant to convey the idea that ti is indeed well behaved
with respect to the block structure (coming from split geometry of the end) in
terms of the progress it makes out the end. A (coarse) measure of the vertical
coordinate of z ∈ ti is the number of (thick or split) blocks that lie ‘below’ z.
The segments t1i , t2i make definite progress out the end S × [0,∞) in the sense
that the number of blocks below z (that is, coarse vertical coordinate of z) is a
proper function (say Φ) of the length of the initial segment of ti up to z. Further,
this proper function Φ is independent of the index i . This follows from the fact
that a distance minimizing geodesic like ti can spend only a bounded amount of
time in each (split or thick) block. The bound depends on the block in general
but this is adequate for definite progress.

Next, t1i , t2i are both lifts of ti . Similarly si is contained in S̃ × {i} and ai

is contained in S̃ × {0} allowing us to legitimize the statement that they are
‘horizontal’. Thus each Si and paths lying on them are being thought of as
horizontal and paths that make definite progress transversely are being thought
of as vertical.

Also si lies at a large vertical height (at least O(i)) from H and hence si lies at
a large distance (at least O(i)) from p. Next, the initial point of t1i lies at a large
horizontal distance dhor from p. Note that dhor may be chosen to be as large as
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we like (independent of i). The vertical distance from p increases monotonically
(according to the proper function Φ independent of i) as we proceed along t1i .
The horizontal component (of a point z on t1i ) can go down at each step (as we
move from the mth block to the (m + 1)th block) by a constant depending only
on m. Since dhor may be chosen to be arbitrarily large, it follows that for any
point on t1i (or t2i ) at least one of the vertical or horizontal distances is large.
Note. A parenthetical comment is in order. It is indeed possible (as was pointed
out to us by the referee) to have a situation where:

(1) geodesics t1i and t2i in H3 start and end outside large compacts;

(2) and the geodesic ai also lies outside large compacts;

(3) but the geodesic σi joining the endpoint of bi do intersect a given compact
Ko.

To ensure this, the geodesics t1i and t2i must lie very close to σi for a very long
period of time, and hence must themselves come close to Ko. This is prevented
in our situation by the definite progress of ti (and hence t1i or t2i ).

Returning to the proof, we summarize by saying that t1i (and similarly t2i ) lie
at a large distance from p. Since si is uniformly bounded in length, it follows
that bi lies at a large distance from p.

Since H3 is δ-hyperbolic for some δ > 0, it follows that the geodesic joining
the endpoints of bi (and hence ai which has the same endpoints) lies in a 2δ-
neighborhood of bi .

At this stage we invoke the existence theorem for Cannon–Thurston maps,
Theorem 4.19. Since ai ’s converge to λ and the hyperbolic geodesics joining the
endpoints of ai exit all compact sets, it follows that ∂i(u) = ∂i(v), where u, v
denote the boundary points of λ. The Proposition follows.

Generalization to arbitrary finitely generated Kleinian groups: Any finitely
generated Kleinian group is geometrically tame ([Ago04] [CG06] [Thu80] Ch.
9) and has finitely many ends. Observe that the proof of the above Proposition
used the freeness of G only at the stage of applying Theorem 4.19. The same
proof goes through verbatim for freely decomposable Kleinian groups with
degenerate ends. The only modification to the above proof is that we consider
one end of the manifold M at a time (and the pigeon-hole principle) along with
Theorem 4.20 in place of Theorem 4.19 to obtain the following Proposition.

PROPOSITION 5.3. EL is CT–General Case Let G be a finitely generated freely
decomposable Kleinian group. Let u, v be either ideal endpoints of a leaf of
an ending lamination of G, or ideal boundary points of a complementary ideal
polygon. Then ∂i(u) = ∂i(v).
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5.2. CT leaves are EL leaves. As usual we deal first with free degenerate
groups without parabolics. We restate Theorem 2.13 in a form that we shall
use. Recall that M \ Int(H) is homeomorphic to S × [0,∞) and is bi-Lipschitz
homeomorphic to an end MS of a simply degenerate hyperbolic manifold without
accidental parabolics [Bow05] [BCM14]. Hence by Theorem 2.13 we have the
following.

THEOREM 5.4 [Mj14b]. Let S,MS be as above. Then the inclusion of universal
covers j̃ : S̃ → M̃S extends continuously to the boundary. Further, pre-images
of points on the boundary are precisely ideal boundary points of a leaf of the
ending lamination ΛE L S of MS , or ideal boundary points of a complementary
ideal polygon whenever the Cannon–Thurston map is not one-to-one.

We identify the Cayley graph Γ of the free group with a subset of H̃ ⊂ M̃ ,
viz. the orbit of a base point joined by edges. The next Theorem is one of the
main Theorems of this paper.

THEOREM 5.5. Let G be a free degenerate Kleinian group without parabolics.
Let i : ΓG → H3 be the natural identification of a Cayley graph of G with the
orbit of a point in H3. Then i extends continuously to a map î : Γ̂G → D3, where
Γ̂G denotes the (Gromov) hyperbolic compactification of ΓG . Let ∂i denote the
restriction of î to the boundary ∂ΓG of ΓG .

Then ∂i(a) = ∂i(b) for a 6= b ∈ ∂Γ iff a, b are either ideal endpoints of a
leaf of an ending lamination of G, or ideal boundary points of a complementary
ideal polygon.

Proof. By Theorem 4.19 the inclusion i : Γ → M̃ extends continuously to a map
between the Gromov compactifications î : Γ̂ → D3. Let ∂i denote the values of
the above continuous extension to the boundary. Suppose ∂i(a) = ∂i(b). ΛE L

is the ending lamination of M regarded as a subset of S. Let ΛE LG denote ΛE L

lifted to SG = ∂ H̃ , which is a cover of S. We want to show that a, b are the
endpoints of a leaf ofΛE LG . Suppose (a, b)Γ is the bi-infinite geodesic from a to
b in Γ ⊂ M̃ . Assume without loss of generality that (a, b) passes through 1 ∈ Γ .
Let ak, bk be points on (a, b) such that ak → a and bk → b. Let akbk denote
the geodesic in M̃ joining ak, bk . By continuity of the Cannon–Thurston map
(Theorem 4.19) there exists N (k)→∞ as k→∞ such that akbk lies outside an
N (k)-ball about 1 ∈ Γ ⊂ M̃ , where radius is measured in the hyperbolic metric
on M̃ . Isotoping akbk slightly, we can assume without loss of generality that it
meets Γ ⊂ M̃ only at its endpoints (since Γ is 1-dimensional). We can further
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isotope akbk rel. endpoints by a bounded amount (depending on the Hausdorff
distance between H̃ and Γ ⊂ H̃ ) such that akbk ∩ SG = {ck, dk}, where:

(1) ck, dk ∈ SG = ∂ H̃ with d(ak, ck) and d(bk, dk) uniformly bounded
(independent of k);

(2) if ckdk denotes the subpath of akbk between ck, dk then (modifying N (k)
by an additive constant if necessary) ckdk lies outside an N (k)-ball about
1 ∈ Γ ⊂ M̃ ;

(3) ckdk intersects H̃ only at the endpoints ck, dk .

Thus akbk is a concatenation of three pieces, akck , ckdk , dkbk , where akck

and dkbk are uniformly bounded in length and lie in H̃ , whereas ckdk lies in
M̃ \ Int(H̃).

Let [ck, dk]G denote the geodesic in the intrinsic metric on SG which is
homotopic (rel. endpoints) to ckdk in M̃ \ Int(H̃). Since G is free, we can assume
that its Cayley graph is a tree and (since H̃ is quasi-isometric to Γ ) [ck, dk]G

passes through a point ok ∈ SG at a uniformly bounded distance from 1 ∈ Γ .
Recall that S̃(⊂ M̃S) is the universal cover of S inside the universal cover

of the end MS . Lift [ck, dk]G to some geodesic c̃k, dk(⊂ S̃) in the intrinsic
metric on S̃. Further assume that there exists some fixed o ∈ S̃ such that the
corresponding lift o′k of ok lies in a uniformly bounded neighborhood of o. Let
(ckdk)

∼ denote the corresponding lift of ckdk having the same endpoints as c̃k, dk

(such a choice is possible as [ck, dk]G and ckdk are homotopic rel. endpoints in
the complement of Int(H̃) in M̃). It follows that (ckdk)

∼ lies outside an N (k)-
ball about o′k in M̃S . Hence (modifying N (k) by a further additive constant if
necessary), (ckdk)

∼ lies outside an N (k)-ball about o ∈ M̃S . Therefore, by the
existence of Cannon–Thurston maps for j : S̃ → M̃S (Theorem 5.4) it follows
that if c̃∞d∞ denotes any subsequential limit of the segments c̃k, dk on S̃, then
∂ j (c∞) = ∂ j (d∞) and hence again by Theorem 5.4 c∞, d∞ are endpoints of
leaves (or vertices of a complementary ideal polygon) of the ending lamination
ΛE L S of S ⊂ MS . Finally, since c̃∞, d∞ is a bi-infinite geodesic passing through a
bounded neighborhood of o, it projects to a leaf (or diagonal of a complementary
ideal polygon) of ΛE LG in SG . Such leaves are also well defined as leaves of
the ending lamination ΛE L H , that is, as leaves of the ending lamination of M
regarded as an element of the Masur domain, cf. Theorem 4.4. We have thus
finally shown that ΛCT ⊂ ΛE L H . Combining this with Proposition 5.2 and
Theorem 4.19 we have the Theorem.

Note that in the proof of Theorem 5.5 we have used freeness of G to conclude
only two things:
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(1) The manifold M has exactly one end.

(2) The path λ in H̃ can be isotoped off the Cayley graph of G embedded in H̃ .

To prove an analogue of Theorem 5.5 for arbitrary finitely generated Kleinian
groups we continue with the notation that M is a hyperbolic manifold with
augmented Scott core H . Then M has finitely many ends. We first note, that
if λ = (a∞, b∞) is a CT leaf then there exist an → a∞ and bn → b∞ such
that the geodesic realizations µn of [an, bn] in M̃ leave arbitrarily large compact
sets. We may assume that M̃ \ H̃ consists of lifts of the ends of M to M̃ . Each
µn intersects finitely many such lifts of ends and hence has subsegments µn1,

. . . , µnk , where each µni lies in a lift H̃ ∪ Ei for some end Ei of M . Assume
that such a decomposition is minimal (that is, k is the minimal possible for µn).
Then, since µn leaves arbitrarily large compact sets, so must each µni . Further,
each µni has endpoints in H̃ . It follows that there will be at least one of the µni ’s
- call it νn - such that:

(a) νn is contained entirely in one of these lifts of the ends;

(b) endpoints cn, dn of νn lie on H̃ ;

(c) cn → c∞ and dn → d∞, where c∞, d∞ lie in the boundary of H̃ ;

(d) finally, by considering all segments νn (the nonuniqueness of νn is used at
this stage) satisfying properties (a)–(c), there exists a finite sequence a∞ =
a0, . . . , an = b∞ such that each pair (ai , ai+1) arises as a limiting pair c∞,
d∞ as in (c).

We may therefore assume for the time being that µn lies in precisely one of
the lifts of the ends E of M . If Sh

= H ∩ E be its boundary then the ending
lamination lies in the boundary of the (relatively) hyperbolic group j∗(π1(Sh))

(hyperbolic relative to the cusp groups if any), where j : Sh
→ M is inclusion.

Fact (2) now goes through for arbitrary finitely generated Kleinian groups, as
the inclusion of the augmented Scott core into M is a homotopy equivalence (in
fact a deformation retract) and we are only interested in leaves which are limits
of segments whose geodesic realizations lie inside the lift of a fixed end.

With this modification, and with Theorem 4.20 in place, the proof of Theorem
5.5 goes through for arbitrary finitely generated Kleinian groups provided a
Minsky model obtains (for instance if M has no parabolics, cf. Appendix).
However, owing to Item (d) above, the statement is a bit more involved.

THEOREM 5.6. Let G be a finitely generated Kleinian group. Let M = H3/G
and assume that each degenerate end of M admits a Minsky model (for instance
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if M has no parabolics). Let i : ΓG → H3 be the natural identification of a
Cayley graph of G with the orbit of a point in H3. Then i extends continuously to
a map î : Γ̂G → D3, where Γ̂G denotes the (relative) hyperbolic compactification
of ΓG . Let ∂i denote the restriction of î to the boundary ∂ΓG of ΓG .

Let E be a degenerate end of N h
= H3/G and Ẽ a lift of E to Ñ h and let Mg f

be an augmented Scott core of N h . Then the ending lamination LE for the end
E lifts to a lamination on M̃g f ∩ Ẽ . Each such lift L of the ending lamination
of a degenerate end defines a relation RL on the (Gromov) hyperbolic boundary
∂ M̃g f (equal to the relative hyperbolic boundary ∂ΓG of ΓG), given by aRLb iff
a, b are endpoints of a leaf of L. Let {Ri}i be the entire collection of relations
on ∂ M̃g f obtained this way. Let R be the transitive closure of the union

⋃
i Ri .

Then ∂i(a) = ∂i(b) iff aRb.

6. Applications

In this section we shall first mention a couple of applications of the main
Theorems of this paper. Finally we indicate an extension of the Sullivan–
McMullen dictionary between complex dynamics and Kleinian groups.

6.1. Primitive-stable representations. In [Min13] Minsky introduced and
studied primitive-stable representations, an open set of P Sl2(C) characters of
a nonabelian free group, on which the action of the outer automorphism group
is properly discontinuous, and which is strictly larger than the set of discrete,
faithful convex-cocompact (that is, Schottky) characters.

In [Min13] Minsky also conjectured that
A discrete faithful representation of F is primitive-stable if and only if every

component of the ending lamination is blocking.
Using the structure of the Cannon–Thurston map for handlebody groups,

Jeon, Kim, Lecuire and Ohshika [JKLO14] have solved this conjecture. We
sketch their proof for degenerate free groups without parabolics with associated
representation denoted by ρ. They show that for the ending lamination ΛE of
a degenerate free group without parabolics, W h(ΛE ,∆) is connected and has
no cutpoints. Then they argue by contradiction. If ρ is not primitive-stable, then
there exists a sequence of primitive cyclically reduced elements wn such that
ρ(· · ·wnwnwn · · · ) is not an n− quasigeodesic. After passing to a subsequence,
wn and hence · · ·wnwnwn · · · converges to a bi-infinite geodesic w∞ in the
Cayley graph with two distinct endpoints w+, w− in the Gromov boundary of
F identified by the Cannon–Thurston map. It follows from a Lemma due to
Whitehead that wn cannot be primitive for large n, a contradiction.
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6.2. Discreteness of commensurators. In [LLR11] and [Mj11], the main
results of this paper are used to prove that commensurators of finitely generated,
infinite covolume, Zariski dense Kleinian groups are discrete. The proof
proceeds by showing that commensurators preserve the structure of point
pre-images of Cannon–Thurston maps.

6.3. Extending the Sullivan–McMullen dictionary. A celebrated theorem
of Yoccoz in Complex Dynamics (see Hubbard [Hub93], or Milnor [Mil00])
proves the local connectivity of certain Julia sets using a technique called ‘puzzle
pieces’, which consists of a decomposition of a complex domain into pieces each
of which under iteration by a quadratic map converges to a single point. The
dynamical system can then be regarded as a semigroup Z+ of transformations
acting on a complex domain.

Split components can be regarded as a 3-dimensional analogue of puzzle
pieces. Let us try to justify this analogy. Suppose there is a group G acting
cocompactly on H3. Let H ⊂ G be a subgroup. Let G/H denote the coset space.
Then what we would want as the right analogue is that if one takes a sequence of
elements gi going to infinity in the coset space, the iterates of the convex hull of
the limit set of H converge to a point in the limit sphere. Thus going to infinity
in the coset space G/H would be the right Kleinian groups analogue of going to
infinity in the semigroup Z+ of transformations acting on a complex domain.

In the context of this paper, H would be the fundamental group of a split
component. However, for us G is a surface Kleinian group and does not act
cocompactly on H3. We think of the quotient space H3/H as parametrizing
the set of normal directions to the split component. The graph metric gives a
combinatorial distance on H3/H and we think of (H3/H, dG) as the analogue of
the semigroup Z+. Thus, instead of going to infinity by iteration in the semigroup
Z+, we go to infinity in the graph metric. Further, the analogue of the requirement
that iterates go to infinity, is that the visual diameter goes to zero as we move to
infinity in the graph metric. This is ensured by hyperbolic quasiconvexity, and
also follows easily from graph quasiconvexity. Note that graph quasiconvexity
is a statement that gives uniform shrinking of visual diameter to zero as one goes
to infinity.

Thus we extend the Sullivan–McMullen dictionary (see [Sul85], [McM98])
between Kleinian groups and complex dynamics by suggesting the following
analogy:

(1) Puzzle pieces are analogous to split components.

(2) Convergence to a point under iteration is analogous to graph
quasiconvexity.
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One issue that gets clarified by the above analogy is a point raised by
McMullen in [McM01]. McMullen indicates that though the Julia set J (Pθ ),
where

Pθ (z) = e2π iθ z + z2

need not be locally connected in general by a result of Sullivan [Sul83], the
limit sets of punctured torus groups are nevertheless locally connected. Local
connectivity of Julia sets would therefore not be the right analogue of local
connectivity of limit sets in this setup. Instead we look at the techniques for
proving local connectivity of limit sets vis-a-vis the techniques for proving local
connectivity of Julia sets. Thus, by proposing the analogy between puzzle pieces
and split components as above, this issue is to an extent clarified. In short, the
analogy is in the technique rather than in the result.

An analogue of the Z+ dynamical system may also be extracted from the split
geometry model. Note that each block corresponds to a splitting of the surface
group, and hence an action on a tree. As i →∞, the split blocks Bs

i and hence
the induced splittings also go to infinity, converging to a free action of the
surface group on an R-tree dual to the ending lamination. Thus iteration
of the quadratic function corresponds to taking a sequence of splittings of the
surface group converging to a (particular) action on an R-tree.

Problem. The building of the Minsky model and its bi-Lipschitz equivalence to
a hyperbolic manifold [Min10] [BCM12] gives rise to a speculation that there
should be a purely combinatorial way of doing much of the work. Bowditch’s
rendering [Bow11], [Bow05] of the Minsky, Brock–Canary–Minsky results is a
step in this direction. This paper brings out the possibility that the whole thing
should be doable purely in terms of actions on trees. Of course there is an action
of the surface group on a tree dual to a pants decomposition. So we do have
a starting point. However, one ought to be able to give a purely combinatorial
description, ab initio, in terms of a sequence of actions of surface groups on
trees converging to an action on an R-tree. This would open up the possibility of
extending these results (including those of this paper) to other hyperbolic groups
with infinite automorphism groups, notably free groups.
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Appendix. Model manifold for compressible boundary

In this Appendix, for the sake of completeness, we provide a sketch of a
bi-Lipschitz Minsky model for general M without parabolics, following work
and ideas of several authors, notably Brock, Bromberg and Souto. No claim to
originality is made here. Our aim is modest: to reduce the problem of existence
of such a model to the case with incompressible boundary discussed in [BCM12]
and hence conclude the existence of a bi-Lipschitz model geometry in general.
We shall focus on a degenerate end E such that ∂E = S is compressible.
We would like to prove that E has a bi-Lipschitz model as in [BCM12]. By
passing to the cover of M corresponding to the end E (that is, the cover of M
corresponding to the image of π1(E) in π1(M)), we might as well assume that
M is a compression body. We sketch the proof below in the case when S(= ∂E)
is closed. The case when S has parabolics, and hence M has rank-one cusps, is
technically quite a bit more involved and we refer the reader to [BBES03, p. 148]
where the presence of accidental parabolics is addressed.

The model geometry for the case where E has bounded geometry has been
treated in detail in [Mos03, Bow13, Ohs98] (see also [Mit98]) and so we assume
that E has unbounded geometry. The main idea is to isolate E and reduce to the
incompressible case. The point is to show that the asymptotic geometry of E is
bi-Lipschitz to an incompressible simply degenerate end.
Step 1. Existence of disk-busting curves: We consider a sequence of simple
closed curves ci on S whose geodesic realizations exit E and have length going
to zero. We note first that for large enough i , these curves nontrivially intersect all
compressing disks with boundary in S. If not, there exists compressing disk Di

with ∂Di ⊂ S such that ∂Di ∩ ci = ∅. Normalizing ci by its length and taking a
limit in PML(S), it would follow that the (limiting) ending lamination does not
lie in the Masur Domain, a contradiction (cf. the definition of the Masur domain
after Theorem 4.2). Hence, for all large enough i , the curves ci are disk-busting.

Hence if we drill out the geodesic realizations of ci from E , and equip the
resulting manifold with a complete hyperbolic structure with a rank-2 cusp
where ci has been drilled (while fixing the end invariants), the new end Ei is
incompressible. Then, by [BCM12], Ei has a model geometry. We would be
done if we could establish that E and Ei are bi-Lipschitz homeomorphic, as this
would transfer the bi-Lipschitz model of Ei to E . Instead of drilling, we shall
perform the closely related construction of grafting below.
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Step 2. Grafting constructions: In [Bro07, BB04, BBES03, BB11], two kinds
of grafting constructions are used. We call these up-grafting and down-grafting
below.

The standard construction [Bro07] (Section 4, where grafting an infinite
annulus is described) involves cutting the manifold open along a semi-infinite
cylinder and gluing in a wedge. Thus one up-grafts an annulus along the geodesic
realization of ci in M as in [Bro07, BB04] to get a cone manifold Ni with cone
angle 4π along the geodesic realizations of ci .

The other kind of grafting (which we call down-grafting) is described in detail
in [Bro07] (see Section 4 of the paper, especially Theorem 4.2. I am grateful to
Ken Bromberg for explaining this construction to me.).

We give a quick summary. Take an annulus going out the end based at the
curve c0. We pass to the cover of E associated to the subsurface obtained by
taking the complement of the curve. For ease of exposition, assume that c0 is
nonseparating. In the cover the annulus will have two isometric lifts. Cut the
cover along both of them and then glue them together. The result is a cone
manifold Mc0 that is homeomorphic to S × R.

To ensure that (up or down) grafting is possible, one needs two conditions:

(a) that the geodesic is unknotted;

(b) that the geodesic is sufficiently small. This allows the relevant technical
tools of [Bro07], [BB04] (Section 5, especially Theorem 5.1 which proves
the existence of the geometrically finite cone manifold), to go through.

The first condition follows from the second thanks to work of Otal [Ota95,
Ota03] (See also [Sou08]). Shortness of curves is guaranteed by unbounded
geometry of E .
Step 3. Double grafting and convergence: Choose sufficiently short (short
enough to allow grafting in Step 2 to go through) disk-busting curves c0 and
ci (i ∈ N). Along c0 perform down-grafting to obtain a cone manifold Mc0

that is homeomorphic to S × R. As a result, one end (the up end) will be the
original unbounded geometry end. The down end will be geometrically finite.
This process effectively isolates the “up” end (isometric to E) with the other end
of Mc0 being geometrically finite. We need to show that E is bi-Lipschitz to the
end of a simply degenerate manifold.

Along the ci curves now perform the standard (up) grafting construction on
Mc0 described in Step 2 above to obtain quasi-Fuchsian cone manifolds Ni .
Smooth quasi-Fuchsian manifolds Mi may be obtained from Ni by decreasing
the cone angle to 2π [Bro07].

The main technical Theorems of Brock and Bromberg on inflexibility
[BB11, Theorem 3.6], [BB14, Theorems 1.1, 1.2] now guarantee that the
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cone deformations do not change the hyperbolic structure much away from
the boundary. More precisely, fix an arbitrary compact core M of Mc0 and
assume that all the curves ci have geodesic realizations outside M. Then the
inflexibility Theorem [BB11, Theorem 3.6] shows that the cone deformation
from Ni to Mi has small effect in the thick part of M (more precisely, the
harmonic strain field decays exponentially with distance from the boundary). It
follows that the hyperbolic structures on Ni and Mi when restricted to M are
(1+ εi)-bi-Lipschitz to each other, where εi → 0 as i →∞.

Now, in the cone manifolds Ni , between the two curves c0 and ci , there is
a larger and larger product region that is isometric to a product region in the
original end E . Therefore, (from the inflexibility theorem above) the sequence of
smooth quasi-Fuchsian manifolds Mi converges to a simply degenerate manifold
M∞ whose degenerate end E∞ is bi-Lipschitz to the original end E . Since E∞
has a model geometry by [Min10, BCM12], so does E .
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