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Dynamical Zeta Function for Several
Strictly Convex Obstacles

Vesselin Petkov

Abstract. The behavior of the dynamical zeta function Zp(s) related to several strictly convex disjoint
obstacles is similar to that of the inverse Q(s) = ﬁ of the Riemann zeta function ((s). Let II(s) be the
series obtained from Zp(s) summing only over primitive periodic rays. In this paper we examine the
analytic singularities of Zp(s) and II(s) close to the line Rs = s, where s; is the abscissa of absolute
convergence of the series obtained by the second iterations of the primitive periodic rays. We show
that at least one of the functions Zp(s), II(s) has a singularity at s = s,.

1 Introduction

Let Q@ C R",n = 2,3, be an open and connected domain with C*> boundary 02
having the form © = R" \ K, where

K =

o

K;, KinkK;=a, fori # j
1

J

and K are strictly convex compact obstacles for j = 1,...,Q, Q > 3. Throughout
this paper we suppose that K satisfies the following condition introduced by Ikawa

[6]:

(H) The convex hull of every two connected components of K does not
have common points with any other connected component of K.

Consider the reflecting rays in § (see [6] and [19, Ch. 2] for a precise definition).
Under condition (H) every periodic ray is ordinary reflecting, that is, v has no tan-
gent segments. Given a periodic reflecting ray v in Q with m., reflections, we denote
by T, the primitive period (length) of v, by d, = IT,,, I € N, the period of v and by
P, the linear Poincaré map related to . Setting |det(I — P,)| = |I — P, |, itis easy to
prove (see [18, Appendix]) that there exist constants b; > 0, b, > 0, By > 0 so that

(1.1) Bye?th < I — P, | < &b,
Denote by Z the set of all reflecting periodic rays in 2 and set

dy = min diSt,'_ij(Ki,Kj), Dy = maxdist#j(Ki, Kj).
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Dynamical Zeta Function for Several Strictly Convex Obstacles 101

For the counting function of the lengths of periodic rays, there exists a constant
ap > 0 such that

(1.2) HyeZ:d, <g} <Ml
(see [6,22] and [19, Ch. 2]). In this note we examine the dynamical zeta function

(13) Zp(s) = D (=DM T[T = Py |2, s e,
YEZ

where the summation is over all periodic rays v € =. This zeta function is related to
the trace formula for the unitary group associated with the Dirichlet problem for the
wave equation

(O} —AJu=0inR x Q,
(1.4) u=0onR x 99,
M(O,X) = fl(x)v atu(oax) - fZ(x)

The form of Zp(s) is obtained by the Laplace transformation of the distribution

(1.5) S (=)™ T = P75~ dy)

yEE

which in turn is the sum of the principal singularities of u(¢) € D’(R*) given by

u(t) = Ze’”f, t>0.
Aj

Here A; € C are the poles of the scattering matrix S(z) related to the problem (1.4)
and the summation is over all poles counted with their multiplicities. We refer to
[7,8,18,21] for a more detailed description of this link and to [1,5,13,19,21,28] for
the trace formulas leading to (1.5).

Following a result of Ikawa [7, 8], the existence of an analytic singularity of Zp(s)
implies the existence of > 0 such that there are an infinite number of poles {z; } jen
of the scattering matrix S(z) satisfying

0<93z; <6, VjeN,

and the last property is known as the modified Lax—Phillips conjecture. Another
motivation for the analysis of Zp(s) is the folklore conjecture that the singularities of
Zp(s) should determine approximatively the scattering poles.

By using (1.1) and (1.2), it is easy to see that there exists s; € R called abscissa of
absolute convergence such that for s > s; the series (1.3) is absolutely convergent.
Despite an extensive search in the physics and numerical analysis literature concern-
ing n-disk problems (see [3, 12,28, 29] and the references cited therein), to the best
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of our knowledge, in the general case the problem of the existence of at least one sin-
gularity of Zp(s) is still open. The existence of an analytic non-real singularity has
been proved by Ikawa [9] in the case when K is the union of several balls with radius
r < 1y, provided ry > 0 is sufficiently small. Recently, Stoyanov [25] generalized
the result of Ikawa for several obstacles satisfying some geometrical conditions and
having diameters less than ry. It was proved in [18] that Zp(s) has no singularities on
the line Rs = 5. In fact, we have a stronger result and following the recent works
of Stoyanov [23,26], we know that there exists dy > 0 such that Zp(s) is analytic for
Rs > s; — do (see also [10] for the special case s; > 0). This means that Zp(s) is
analytic in a domain around #s = s; and this phenomenon of cancellations is typ-
ical for dynamical zeta functions (see [4, 16,23, 24, 26]). On the other hand, since
Zp(s) is a Dirichlet series with real coefficients changing their signs, the situation is
very similar to that for the inverse Q(s) = % of the classical Riemann zeta function
¢(s). It is well known that Q(s) is analytic on the line $¢s = 1 and Q(s) has non-real
singularities on the critical line s = 1/2. Moreover, we have the representation

(1.6) log((s):ZZ%Lm, Rs > 1,

s
m=1 pecP p

where P denotes the set of prime numbers. Consequently, the analytic behavior of
log ((s) for 1/2 < s < 1 is characterized by the continuation of the function

7(s) :Z%, Rs > 1,

peP

and the critical line s = 1/2 is related to m = 2 in the representation (1.6).

Denote by P the set of all primitive periodic rays. In this note we examine the
analytic singularities of Zp(s) close to the line Rs = s,, where s, < s, is the abscissa
of the absolute convergence of the series II,(s) obtained from Zp(s) when we sum
only over the rays 2y, v € P, that is, over the second iteration of primitive rays (see
Section 4 for a precise definition). We show that the line s = s, plays a role in the
investigation of the singularities of Zp(s). Similarly to 7 (s), introduce the function

I(s) = Y (~)™ T I —P,|"2e=T Rs > s,
veP

where the summation is over the primitive rays v € P. Next let hip < s; be the
abscissa of holomorphy of I1(s) given by

hip = inf{# € R : TI(s) is analytic for s > ¢}.
Our main result is the following.

Theorem 1.1 At least one of the functions Zp(s),I1(s) has a singularity at's = s,
and the difference Zp(s) — II(s) is analytic fors € {z € C: Rz > s,}. Moreover, if
sy # iy, then Zp(s) has a singularity at z with Rz > max{s,, hii} — €1, where e; > 0
is sufficiently small.
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In the same way, we may show that if we consider the series obtained by summing
over all iterations of the primitive rays of order (2m — 1), the corresponding function
will be singular at s = s,,, if Zp(s) is analytic at s = s,,,. Here s is the abscissa of
absolute convergence of the series obtained by summing over all iterations of order
k > 2, and we show that s; — h; < s < sx,_1, hy > 0 being the topological entropy of
the billiard flow (see Proposition 3.3). Thus if Zp(s) is analytic for s > s; — h;, for
any fixed M > 2 one obtains a singularity of the sum of series related to the iterations
m < M. This corollary yields some information for the numerical analysis, since in
the numerical experiences one treats series with finite number iterations.

The existence of a singularity zy of II(s) such that ®zy > s, — €, €g > 0, Sz # 0,
is an interesting open problem, but it seems that the difficulty of this problem could
be compared with that of the existence or the absence of singularities of 7(s) for
1/2 < Rs < 1. If fact, the dynamics of the periodic orbits is chaotic and the random
change of signs of the coefficients in (1.3) plays some essential role. We conjecture
that in general Zp(s) is not singular at s, and Theorem 1.1 shows that in this case
I1(s) must be singular at s,. It is expected that there exist non-real singularities z of
I1(s) with Rz arbitrary close to line of holomorphy Rs = hy; of II(s). This will lead
to singularities of Zp(s). In fact we have two possibilities:

(1) 52 # hH> (11) S = hH-

Our analysis in Section 4 implies that in case (i) the function Zp(s) must be sin-
gular either at s = s, (s, > hyy) or at a point z close to the line fs = hyy (s, < hn)
and we obtain a solution of the modified Lax—Phillips conjecture (see [8,9,25]). In
case (ii) we have a phenomenon similar to the famous Riemann conjecture for ¢(s)
and the maximal domain Rs > ¢, where II(s) is analytic, is determined by the line
Rs = s,. Finally, it is not clear if the singularities found in [9, 25] lie in the domain
Rs > s,. We will discuss this problem in Section 4.

2 Symbolic Dynamics

We will write Zp(s) as a Selberg zeta function using the argument of [18, §5]. First
assume n = 3andlet A, ;, i = 1,2, |\, ;| > 1, be the eigenvalues of the Poincaré
map P, of the ray v € P. Set

1
0y = -3 log(Ay1\y2), vy =—logA, 1, py=—logA,,.

The product A\, ; A, > and the sum A, ; + A, are positive and §, < 0. Giveny € P,

introduce
0 ifm, =2k,
T~ =
Tl ifm, =2k+1.

Then for Rs > s; we have

ZD(S) - Z i i Z T,y(—l)mr",r em(_ST-,Jr(S-,Jrkz/.,erpw).

k=0 p=0 m=1~€P

https://doi.org/10.4153/CMB-2008-012-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2008-012-8

104 V. Petkov

We refer to [18] for the details of the proof of this representation. For n = 2 we have
a simpler formula since there is only one eigenvalue A, > 1 and we get

ZD(S) _ Z Z Z T,),(—1)mr7'€m(_5T7+67+kV7),
k=0 m=1~y€P
where 0, = —% log A, v, = 24,. Consider the leading term of Zp(s) obtained for
k = p = 0 (resp. k = 0 for n = 2) and having the form
26) = 2205, Zals) = i L D (=)
dS 0 9 0 £ m = .

We will write Zy(s) by using a symbolic model. Let us recall some notations con-
cerning the symbolic dynamics. Given a Q x Q matrix A(, j); j—1,...q such that

,,,,,

0 ifi=j,
introduce the spaces

EA = {g = {f’ ;?2—00 : é.i S {1; .. '7Q}7 A(gia€i+l) - 1};
Y == (&, &- ) 1 A, Gin) = 1, Vi > 0}

Let 04 be the shift on ¥4, ¥} given, respectively, by

(048)i = &in, Vi €L, (048)i = i, Vi > 0.
For every £ € Y4 there exists a unique ray (&) with successive reflection points on

..., 0K;_1,0K;, 0K}y, . ..
(see [6,19]). Let P;(€) be the j-th reflection point of () and let
f(&) = [[Po(§) = P1(&)]-

If v = v(&) € P has m reflections and primitive period T, then

T, = f(&) + f(0a) + - + f(of 7€) = Suf(E).
Also (See [8,9]) there exists a function g(&) such that

8y = 8(€) + g(048) +--- + g(0} 7€) = S,8(8).

For Rs large we may write Zy(s) as follows,

(=D S(—sf(E)g(6))
a0 -3 E 3 oo,

m u
m=1 oé=¢
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Given a continuous function F(§) € C(X%,), introduce

var, F = sup {|F(§) — F(n)| : & = n; for [i| < n}
EMEXA

and for 0 < 6 < 1 consider the norms

var,F
[Flo = sup ==, [[Flloc = sup [F(E)], [Ello = [[Flloo + |Es-

(S

Let Fyp(X4) C C(X4), Fp(XF) C C(XF) be Banach spaces with norm || - [|g. It fol-
lows from the exponential instability of the billiard ball map that with some constant
0 < 0 < 1, depending on the geometry of K, we have f(£),g(£) € Fp(X4) (see
[8,9,18,23,25] for more details). We introduce the suspended flow o/ over the space

Sh={E1:€€T0<1 < fO))

with the identification (&, f(§)) ~ (g.(£),0) (see [17]) and notice that the topologi-
cal entropy h; > 0 of the suspended flow o/ over Ef; is given by

h,(oa)
h, = su & .
T e T fdn

Finally, recall that the pressure P(F) of a function F € C(3,) is given by

P(F) = sup (hM(O'A) +/ qu) ,

peEM S

where h,(04) is the measure entropy of o4 and the sup is taken over the set M of all
probabilistic measures on 34 invariant with respect to o4.

3 Summation over the Iterated Periodic Rays

It is well known [17] that for every function p(£) € Fy(X4) there exists h, 1) €
5"‘01/2(2,4) so that
(&) = h(&) + ¥(oal§)) — P(&),

and the function k(&) depends only on the coordinates (&, &, . .. ). In this case we
will write ¢ ~ h. Obviously, if F ~ F, we have P(F) = P(F). Passing to functions
[~ g~ g weget

o~ (=D ~
29 = 3 0 3 s,
m=1 oé=¢

The function R 3 s — P(—skf + kg) is strictly decreasing and given an integer
k > 1 we may introduce the number s; € R determined uniquely by the equality

P(—sgkf + kg) = 0.
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It follows easily from the results in [17] that s is the abscissa of absolute convergence

of the series )
— km., ,—ksT,+kd,
Pyls) = 7 > _(=D"e :
yeP

Indeed, s is the abscissa of absolute convergence of the series

(o)
1
Gi(s) = Z p Z Sn(—skf(E)+kg(€))

m=1 ayé=¢

On the other hand, for Rs > s, we have

Gi(s) = Z ok tkdy i % Z oMK+

yeP m=2 yeP

and as in [17, Ch. 6] and [18, §4], we deduce that the series

1
- em(—skT»,,Jrk&’,)
2

= veP
is absolutely convergent for s > s — € for some small € > 0. Next we will prove the

following.

Lemma 3.1 Forallk > 1 we have siy1 < si.

Proof The pressure of the function —sikf + kg is zero, so we may find a function
h € Fpp(E}) so that h ~ —spkf + kg, P(h) = 0 and we may choose h (for more
details, see [17]) so that

Y JdW=1, veex;.
oan=§

This implies h(n) < oy < 0 foralln € £} and kaA(—skf + g)du < oy for each
€ M. Tt is clear that

hy(o) + (—skk+ D f +(k+1)g) du

4
< sup [hﬂ(a) +/ (—skf + kg) d,u} + S _ %k <0, VueM.
neM YA k k
This implies
P(—sp(k+1)f + (k+1)g) = sup {hﬂ(a) +/ (—sek+ 1) f + (k+ Dg)du| < iy
HEM Ya k
On the other hand, P(—sg1(k+ 1) f + (k+ 1)g) = 0 and since the function
R>s— P(—stk+1)f +(k+1)g)

is strictly decreasing, we get sg41 < Sk- [ |
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To study the convergence of the series over the iterated rays we need the following.

Proposition 3.2  For every k > 1 there exists ¢,(k) > 0, depending on k, such that the

series
- - (=)™ T,+6
> ra= 3 3 s

m=k+1 m=k+1 yeP

is absolutely convergent for Rs > s — €,(k).

Proof Asin the proof of Lemma 3.1, we choose h so that h ~ —ks f + kg, h(n) <
0, for all n € Xj. First, assume that s < 0. We choose ¢ = ¢(k) > 0 small
enough in order to arrange the inequality sup, v« h(n) = o < (k+ 1)kesg|| f]|oo- Let
71 € X} correspond to a primitive periodic ray v € P with m reflections as explained
in Section 2. We obtain S,,(—ksif + kg)(n) = —ks; T, + kd,. On the other hand, it is
clear that T, < m|| f||oc and we get

Smh(n) < m(k + Dkese|| f|loo < (k+ 1)kesiT,.
From the equality S,,,(—ksi f + kg)(n) = Snh(n), we deduce
—st Ty + 6y < (k+ Desg T, Vy € P.
Nowlet0 < u < Ty Then
—sk(1+u)Ty + 6, < (k+ Desg Ty — suTy, < ((k +1)e — kTel) scTy < esi Ty

and we get the lower bound

1 > 1 _ e_sk(1+u)T7+5"f Z 1 _ eESkTW Z 1 _ eZsked(, = — > 0
ek
Thus for0 < u < Wel’ the series
oo (L T45) e(k+1)(—sk(1+u)T~,,+5~,,) (k4 1)(—se (L) T, +5.)
m(—sp(1+u)Ty+0,) +1)(—=s,(1+u) Ty +0,
doe = T smans, = Ceke

m=k+1

is convergent.
Next we obtain

— (k+ Ds(1 + )Ty + (k+ 1),
< —skk Ty + kb + (k+ Desk Ty — (k+ Duse T, < —sp(1 — €)kT, + kd,.
Since si is the abscissa of absolute convergence of the series of k iterated rays, we

deduce
Ze—sk(l—e)kT»,,Jrk&, < 0.

VEP
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Thus we conclude that

o
Z Zem(fsk(lJru)Tn,Jr&,) < o0,

m=k+1 y€P

and the series

- (=)™
Z Z em(—sT»‘,Jr(i‘,)
m

m=k+1 yeP

%s ab§olutely convergent for Jts > sp — 57 Setting €,(k) = 57, we obtain the result
in this case.
Passing to the case s; > 0, choose € = €(k) > 0 to arrange the inequalities

sup h(n) < —(k+ Dkest|| fl oo,
7]EEX

=5 Ty + (Y)‘w < —(k+ DeskT,, VT, € P.

For 0 < u < 7 wededuce —s (1 — )T, + 6, < —(k+ Desi T, + suT, < —esi T,

which yields

oo
Z (s (1= T, 46) < Ce’ke(k+1)(—sk(l—u)Tq+6q).

m=k+1

On the other hand,
—(k+Ds(1 — )Ty + (k+ 1), < —se(1+ €)kT, + kb,

and this leads to

m=k+1 yEP

Finally, in the case sy = 0, we arrange

sup h(n) < —(k + Dkel| f| oo
neLy

5, < —(k+1)eT,,VT, € P.

Repeating the above argument, we establish for 0 < u < %5 the convergence of the

series
oo
E § em(uTn‘,,Jrﬁw) < 00,

m=k+1 yeP

and this completes the proof. ]
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To compare s; and s;, consider the measure v € M for which we have
P(—sif+g) =h,(0a) +/ (=si1f+g)dv=0.
YA
This measure is called the equilibrium state of —s; f + g (see [17]). Then we obtain

k—1

P(—k(si — ) f+kg) > hy(oa)+k [ (=sif +@)dv+(k—Dh [ fdv

ZA EA

= (k=D | fdv—hlon)] = 0.

XA
Comparing this with P(—ksi f + kg) = 0, we deduce
k—1

(3.1) Sk > 8§ — h.

Thus we have proved the following.

Proposition 3.3  The sequence sy is convergent and limy_, oo Sk > s1 — hy.

It is interesting to note that the abscissa ¢y of simple convergence of the Dirichlet
series Zy(s) satisfies the estimate ¢y > s, — hy, but it is difficult to compare ¢y with s.

4 Singularities on the Line 35 = s,

Consider the Dirichlet series P,(s) = % Zﬁ/ cp e~ 2T7+2%, | with positive coefficients.
According to a classical result, this series has an analytic singularity at s = s,. On
the other hand, Proposition 3.2 implies that the sum over all iterated rays ky,y € P,
k > 3, given by Z;:; Py(s), is analytic for Rs > s, — €,(2) for some €,(2) > 0. It
is clear that the singularities of Zy(s) for s > s, are related to those of the series
obtained by summing only over the primitive rays

Pi(s) = Z(—l)“eiSTdr‘*’fyﬁ_

veP

Let h, be the abscissa of holomorphy of the Dirichlet series P;(s). More precisely, h,
is the minimal real number ¢ such that P (s) is analytic for Rs > t. We have three
possibilities:

(i) by > 55, (i) hy = s, (iii) hp < s,.

In case (i), the function P; (s), and hence Zy(s), has either a singularity on the line
Rs = hy, or there exists a sequence of singularities z; with Rz; — h,,|Jz;| — oo.
In case (iii), the function P,(s) produces a singularity of Zy(s) at s = s,. In case (ii),
we must examine the singularities of the sum P;(s) + P,(s). Of course, if P (s) is
analytic at s = s,, we have the same situation as in case (iii). Thus a cancellation of
the singularities of P;(s) + P,(s) at the point s, is possible only if P;(s) is singular at
s = s,. Thus we have the following.
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Theorem 4.1 At least one of the functions Zy(s), P1(s) has a singularity at s = s,.
Moreover, the difference Zy(s) — P;(s) is analytic fors € {z € C: Rz > s, }.

We may compare the functions Zy(s) and Zp(s). As was shown in [8,18,25] there
exists f1; > 0 such that Zp(s) — Zy(s) is analytic for s > s; — p;. The number p;
depends on the geometry of obstacles (see [18, Appendix] and [25]). In some cases
we may show that s, > s; — p;. For example, this is true if n = 2 and s, < 0.
Nevertheless, it is more natural to deal with the function II(s) introduced in Sec-
tion 1. As above, let hyy be the abscissa of the holomorphy of the Dirichlet series I1(s)
introduced in Section 1. We consider again three cases:

1) b > s, (ii) by = 52, (iii) g < s.

For m > 2 and n = 3, the analysis of the series

oo oo
1
Hm(s) — Z Z Z ;(_l)mm em(—sT»‘,+6ﬁ,+kuﬁ,+pﬂA‘,)7 Rs > 51

k=0 p=0 y€P

is completely similar to that of P, (s). In fact the abscissa of absolute convergence of
I1,,(s) coincides with that of P,,(s) and we may apply Proposition 3.2 for the series

i IL.(s) = i i i Z %(_l)mr,‘, em(_ST’\+5’\+kV‘J+Pﬂ’))7

m=j+1 m=j+1 k=0 p=0veP

assuming j > 1. Case n = 2 is treated in a similar way and repeating the argument
of the proof of Theorem 4.1, we obtain Theorem 1.1.
In the same way, we may consider the function

TT5(s) = TI(s) + T(s) + TI5(s) = » (=)™ T, |1 — Py~ /2e™% s >
YEEs

where the summation is over all rays v € =3 C =, which are either primitive or are
obtained by two or three iterations of primitive periodic rays. Then at least one of
the functions Zp(s), II3(s) has a singularity at s = s4 and it is possible to iterate this
argument.

Let us mention that from our results it is not clear if the analytic singularity z of
I1(s) or Zp(s) given by Theorem 1.1 is a pole. In fact, it is known that the function
Zy(s) is meromorphic for

|log )|

2[|flles”

0 < 6 < 1 being the constant introduced in Section 2. On the other hand, we have
sy > ht/2 and s, lies in the above domain if || f|loc < |log8|. It is expected that
Zy(s) and Zp(s) are meromorphic in a larger domain or in the whole complex plan.
For n = 2 some results in this direction are obtained by Morita [15].

s > 51
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It is interesting to mention that for all k € N, we have
&
(4.1) sk > by = sup —.
ver Ty
In [18] it was established that by < 0, so we need to check (4.1) only for s; < 0. In
this case the argument of the proof of Proposition 3.2 shows that
—sitTy + 60, < T, ¥y € P,
with some ¢, < 0 and we obtain (4.1). The number b, has been introduced in [18]
and it is related to the sequence of poles
0y 2 é 2m+1
N mm, v 2m )7Ti

Sm~y = 1 Tmy =
Y T’y Tal, ’ Y Tﬁ/ T. )

)4

mew,

obtained from the series formed by all iterations of a fixed periodic primitive ray .

For several strictly convex small obstacles, Ikawa [9] and Stoyanov [25] established
the existence of a non-real singularity

T
=a+i—, e R,
zo=a+i a Q@

of Zp(s) with d; sufficiently close to Dy. Following the analysis in [25, Section 7], we
conclude that s; — bx < a < s; with

1 .
by > —ln(l + Km‘“DO).
DO 1Z0)

Here Kmin > 0 is the minimal normal curvature of 9K and 1, > 0 is a constant
depending on d, the diameter of K and

Xo = min{dist(K;, convex hull (K; UK})) : j #i,i #1,1# j} > 0.

For obstacles having sufficiently small diameters, we may arrange the inequality
bx > h,. Indeed, it is sufficient to have

K

d() min
< — <
hulow) < 5 1n(1 + o Do) <bg | fdu

v EA
for every o4 invariant measure p € M. If the diameters of the obstacles are suf-
ficiently small, then ki, is large enough, while b and Xo remain bounded from

. . DU
below. Thus in this case we have

dO Kmin
su h,,(a)g—ln(l+ D)
/LEJE[: oA DO Yy 0

which implies bx > h;. Combining this with (3.1), we obtain immediately
st —bx <s1—h < s, VkeN.

Consequently, the line $ts = s; lies in the domain where we have complex singu-
larities and this agrees with the conjecture that we must have complex singularities
of Zp(s) close to the line Rs = hyy or close to the line s = s,.
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