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ABSTRACT. Glen’s law is commonly used to model the viscous deformation of poly-
crystalline ice. It is a power law that relates stress to viscous strain rate and contains three
material parameters: n, a power-law exponent, Q, an activation energy, and A0, a material
constant. Because polycrystalline ice is the constituent material of snow, it is to be expected
that the viscous deformation mechanics of snow are related to the viscousbehaviourof poly-
crystalline ice, especially under small strains and low strain rates when kinematic effects in
the ice matrix like bond breakage, bond formation and grain sliding are of secondary
importance. Based on 64 deformation-controlled compression tests on fine-grained snow
in the density range 200^430kg m^3 andtemperature range T ˆ ^20 to ^2³C, we show that
Glen’s law ö with material parameters similar to those for polycrystalline ice ö can be
applied to model the viscous deformation of high-density snow. However, the values of the
ice material parameters are valid for densities above a relatively low density of 400kg m^3;
they are not valid for snow with densities below 360kg m^3.We present the variation of n, Q
and A for snow as a function of density and temperature. A possible explanation for this
behaviour is that the ice grains in low-density snow are less constrained.Therefore, deform-
ation mechanisms, such as grain-boundary sliding, increase in overall importance, leading
to smaller n values and higher activation energies, Q. Although the material behaviour of
low-density snow can be accurately modelled using a power law, the power-law parameters
depart substantially from those of polycrystalline ice. The large variation of n and Q with
temperature and density underscores the difficulty of predicting snow avalanches.

INTRODUCTION

Field tests show that temperature is an important factor for
avalanche formation (Perla, 1977). It is believed that an
increase in temperature causes an acceleration of grain sin-
tering and therefore an increase in snow-cover strength. Con-
versely, at higher temperatures creep processes are
accelerated, and strain and deformation rates increase. This
results in a decrease in stiffness of the snow cover that can
activate the developmentof local stress concentrations, which
are responsible for avalanche formation (Bader and Salm,
1990).These two processes ö work hardening through sinter-
ing, and development of stress concentrations ö are in com-
petition and are believed to determine the stability of the
snow cover. Knowledge about the temperature-dependent
viscoelastic behaviour of the snow layers and the intergranu-
lar sintering processes is therefore of primary importance for
a better understanding of avalanche formation.

Our research deals with the influence of temperature,
snow density and microstructure on the viscous behaviour of
snow. Previous data have been reported by Mellor (1975) and
Voytkovskiy (1977). These works provide an overview of the
mechanical properties of snow. However, the reported data
are mostly from mono-axial creep tests (constant load) at
only a few different temperatures. Mellor and Smith (1966)
reported results of creep tests on snow with densities of 440^

830kg m^3 andtemperatures of ^34.5 to ^0.5³C. An apparent
activation energy Q was determined using an Arrhenius law.
The calculated values 44.8kJ mol^1 < Q < 74.5 kJ mol^1 are
of the same order of magnitude as the values for self-diffusion
in ice (Q º70 kJ mol^1) (Barnes and others,1971). Mellor and
Smith (1966) also reported values of the apparent activation
energy, varying between 87 and100 kJ mol^1, found byYosida
and others (1955) for low-density snow (170 kg m^3 < »
< 250 kg m^3) and in the temperature range ^25³C < T <
^3³C. However, because Mellor’s tests were conducted at
only one stress level (¼ ˆ 50 kPa), an evaluation of the
stress^strain-rate relationship as a function of temperature
and density could not be carried out. More recently,
McClung (1996) and Schweizer (1998) have reported the
results of shear tests on dry fine-grained alpine snow. In both
works, the relationship between strain rate, yield stress and
failure stress has not been investigated in terms of a power
law (Equation (1)), as is usual in polycrystalline ice. Also, no
attempt was made to quantify the influence of temperature
using an Arrhenius law. A statement about the activation
energy is therefore missing in both works.

The viscous behaviour of snow hasbeen modelled using a
power law (Equation (1)) in the microstructure-based consti-
tutive models published by Mahajan and Brown (1993) and
Bartelt and von Moos (2000). However, both the activation
energy (Q ˆ120 kJ mol^1 for T > ^10³C; Q ˆ78 kJ mol^1 for
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T < ^10³C) and the exponent n for polycrystalline ice have
been employed (n ˆ 3.0). Because experimental data were
missing, the exponent n and the activation energy Q were
assumed to be temperature- and density-independent. As will
be shown, this does not agree with our experimental data.

The goal of this paper is to quantify the temperature and
density dependence on the viscous behaviour of snow. A
power law will be used to describe the relationship between
strain rate and yield stress; the values of the activation
energy Q and of the exponent n will therefore be quantified.
The yield stress (¼y) is defined here as the stress at which a
steady-state viscous deformation is reached (Fig.1).The data
analysis is based on test results of mono-axial deformation
controlled compression tests on fine-grained alpine snow
with a density of 200^430kg m^3 at temperatures ranging
between T ˆ ^20³C and T ˆ ^2³C. The reported test
results are part of a larger investigation (200 tests) in which
samples of different density (190 kg m^3 < » < 430 kg m^3)
were also tested in both confined and unconfined compres-
sion at T ˆ ^12³C and in the same range of strain rates. An
important result of this work (Bartelt and von Moos, 2000)
is that the axial yield stress is independent of the applied
confining pressure. In the tests with low-density snow (» ˆ
200 kg m^3), we observed that when the confining pressure
exceeds a critical value, which is probably dependent on den-
sity, densification effects (building of new bonds) take place
and influence the response of the sample, leading to a rapid
increase of the axial yield stress. However, these critical pres-
sures are much higher than those encountered in the natural
snow cover. Subsequently, only unconfined tests were per-
formed to establish the influence of the temperature on the
viscoelastic behaviour of snow. In the larger test series,
strain-rate controlled tests with unloading steps were also
performed, in order to determine the distribution of elastic,
anelastic and viscous strain as a function of the total strain,
density, temperature and strain rate. In this paper, we limit

our attention to the temperature- and density-dependent vis-
cous behaviour of snow.The relationship between strain rate
and yield stress is quantified as a function of temperature
and density. A finite-element model, assuming a stationary
viscous solution for the governing equilibrium equations
(Bartelt and Christen, 1999), has been developed. Some
numerical results, demonstrating the application of the
experimental results, will briefly be reported.

TEST PROCEDURE

The temperature-dependent tests were performed using a
deformation-controlled triaxial apparatus (Bartelt and von
Moos, 2000). In total, 64 tests in compression (4 densities, 4
temperatures, 4 strain rates) were completed. For all tests,
natural fine-grained (d <0.2 mm) alpine snow was used.
This snow was collected nearWeissfluhjoch, Davos, Switzer-
land, at an elevation of approximately 2540 m. At each col-
lection time, a pit was dug in the snow, and a homogeneous
layer with the desired density was identified. Portions of this
layer were then extracted without damaging the snow,
placed in a sealed container and stored at ^12³C. Testing
was normally started within a few days after collection.The
test samples, cylindrical specimens 126 mm long and 58 mm
in diameter, were cut from the stored snow blocks so that the
long axis of the sample was parallel to the layering. To allow
the specimen to adjust to the desired test temperature (Table
1), the sealed containers were placed in the test room for a
few hours. During this time, the temperature of the snow
block was controlled. The specimens were not cut until the
test temperature was reached. Because the investigated snow
was well rounded and fine-grained, even low-density
samples maintained their form during testing.

The specimens were compressed to an axial strain of 5%.
A relaxation period of 45 min was included after 5% was
reached, i.e. the straining was stopped and the stress relax-
ation was measured. The approximate values of the test
parameters are given inTable1.

TEST RESULTS

Figure 1 shows the stress^strain behaviour for one density,
» ˆ 272kg m^3. The stress increases with increasing strain,
although not linearly, until an approximately constant yield
stress is reached (curve a).With increasing strain, work hard-
ening takes place, probablydue to densification effects (build-
ing of new bonds). The rapid drop of stress at the final strain
of 5% is due to relaxation.The yield stress ¼y increases with
increasing strain rate and decreases with increasing tempera-

Fig. 1. Stress^strain curves for four different temperatures and
strain rates, density » ˆ 272 kg m 3̂. (a) T ˆ ^18.9³C, _" ˆ
4.4610 5̂s 1̂; (b) T ˆ ^18.9³C, _" ˆ 4.2610 6̂s 1̂; (c)
T ˆ ^5.0³C, _" ˆ 4.4610 5̂s 1̂; (d) T ˆ ^5.0³C, ˆ
4.2610 2̂s 1̂.The yield stress, ¼y is indicated.

Table 1.Test parameters. In all, 64 tests were completed. For
each density, four different strain rates were applied at four
different temperatures

Test identification No. (density)
01v04 01v02 01w01 01v03)

(200 kg m 3̂) (270 kg m^3) (360 kg m^3) (430 kgm^3)

Strain rate (s^1) 1.1610^6 4.2610^6 1.1610^5 4.4610^5

Total test duration (min) 800 243 120 64
Temperature (³C) ^19 ^11 ^4 ^2
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ture. The relationship between yield stress, strain rate and
temperature can be expressed as a power law (Glen, 1955)
based on the Arrhenius law:

_" ˆ A0 e¡ Q
RT …¼y†n ˆ A…¼y†n ; …1†

where _" is the applied strain rate (s^1), A0 is a density-
dependent material parameter (kPa^ns^1), Q is the activa-
tion energy (kJ mol^1), R is the gas constant (kJ mol^1K^1),
T is the temperature (K), ¼y is the resulting yield stress
(kPa) and n is a dimensionless exponent.

Stress^strain-rate relationship

Figure 2 shows the relationship between applied strain rate
and yield stress in a log^log plot.The best fit to the data, for
the investigated strain-rate range1.1610^6 s^1 < _" <4.4610^5

s^1, is linear. Therefore, the stress^strain-rate relationship
obeys the power law (Equation (1)). Note that the exponent
n of Equation (1) represents the slope of the plotted lines
(Fig. 2). Additional values of the yield stress as a function of
strain rate, temperature and density are reported inTable 2.

Consider the influence of temperature and density on the
exponent n. As shown in Figure 3, for a mean density of
423 §8 kg m^3, we found a mean exponent n ˆ 3.69 §0.07.
This value is approximately the same for all four investigated
temperatures and agrees well with the values reported for
polycrystalline ice (Weertman,1973). For the investigated den-
sities below » ˆ 423 kg m^3, the test results show something
unexpected. The exponent n is a function of the density and
of the temperature, and increases with increasing density. It is
higher at lower temperatures. Finally, for low densities » ˆ
150^200kg m^3, it seems that n reaches a temperature-inde-
pendent minimum value of approximately n ˆ1.7.

Stress^temperature relationship

For constant-load creep tests, the following equation (Equa-
tion (2)) has often been used to describe the temperature-

dependent secondary creep of polycrystalline ice.The expo-
nent n is assumed to be temperature-independent.

_"s ˆ _"0 e¡ Q
RT …2†

The reference strain rate is denoted as _"0 ˆ A0…¼†n, where ¼
is the applied stress and A0 is a temperature-independent
parameter. Thus, the equation cannot be directly employed
in our analysis. For our strain-rate controlled tests, the expo-
nent n was found to be temperature-dependent.Therefore, in
order to calculate the activation energy Q, we have to make
use of Equation (1) at two different temperatures T1 and T2,

_" ˆ A0 e
¡ Q

RT1 …¼y1†n1 …3†

_" ˆ A0 e
¡ Q

RT2 …¼y2†n2 ; …4†

where T1 < T2, _" is the applied strain rate, ¼y1 and ¼y2 are
the measured yield stresses and n1 and n2 are the calculated

Fig. 2. Applied axial strain rate vs axial yield stress; n is the
exponent of the power law (Equation (1)). Density » ˆ
423 kg m 3̂.

Table 2. Yield stress ¼y as a function of strain rate, tempera-
ture and density

Density Tem- Yield stress ¼y

perature _" ˆ
1.1610^6*

_" ˆ
4.2610^6

_" ˆ
1.1610^5

_" ˆ
4.4610^5

kg m^3 ³C kPa kPa kPa kPa

415 §3 ^18.9§ 0.1 97.0 133.0 168.0 258.0
429§3 ^11.0 § 0.1 75.0 105.0 136.0 201.0
418 § 6 ^2.3 §0.1 48.4 65.6 96.1 127.0
360 §2 ^18.1 §0.7 47.5 79.2 97.6 138.0
345 §5 ^11.0 § 0.0 43.3 66.5 85.0 123.0
371 §2 ^2.1 §0.3 18.6 37.9 55.1 84.1
272 §5 ^18.9§ 0.1 25.1 36.0 48.0 67.0
272§2 ^11.0 § 0.1 14.7 25.9 34.5 45.5
272§3 ^2.1 §0.2 5.3 15.8 22.2 34.6
205§2 ^18.7 §0.3 4.4 9.1 9.6 15.9
207§1 ^11.4 § 0.3 3.3 4.0 6.7 10.9
225 §3 ^2.3§0.2 1.7 3.3 7.2 17.0

* _" is the applied strain rate in s^1.

Fig. 3.Temperature and density dependence of the exponent n
for strain rates ranging between _" ˆ 1.1610 6̂s 1̂and _" ˆ
4.4610 5̂s 1̂.
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exponents. Note that the subscripts 1 and 2 always refer to
two distinct temperatures T1 and T2. The activation energy
for the temperature range T1 < T < T2 is obtained from
Equations (3) and (4):

Q ˆ R…n1 ln ¼y1 ¡ n2 ln ¼y2†
1

T1
¡ 1

T2

³ ´ : …5†

Figure 4 shows calculated activation energy as a function
of density for three different temperature ranges. As can be
seen for a mean density of 423 §8 kg m^3, the measured acti-
vation energy amounts to Q ˆ 69 §5 kJ mol^1 for ^19³C < T
< ^11³C. This value agrees well with the data reported for
self-diffusion of vacancies through the lattice in polycrystal-
line ice (Barnes and others, 1971). In the temperature range
^5³C < T < ^2³C, we measured Q ˆ 201 §80 kJ mol^1. This
increase in the activation energy at high temperatures (T >
^10³C) has also been reported for polycrystalline ice (Budd
andJacka,1989; Morgan,1991). Because the calculated activa-
tion energies for T > ^11³C cannot be directly related to a
single deformation process (e.g. self-diffusion of vacancies
through the lattice), we speak of an apparent activation energy
when Qcalculated 6ˆ Qselfdiffusion. For a mean density of
360 §10 kg m^3 and a temperature range ^19³C < T <
^11³C, the apparent activation energy is Q ˆ 66 §9kJ mol^1.
This value can also be related to self-diffusion in ice. Note,
however, that as soon as the temperature exceeds ^10³C, the
apparent activation energy increases to a very large value of
Q ˆ 413^426kJ mol^1. This amount does not reflect the
behaviour expected of polycrystalline ice at this strain-rate
and temperature range. Thus, for a density of » ˆ
360 kg m^3 at temperatures above ^4.8³C, we observed a
clear decrease in the exponent n, i.e. n decreases from n =
3.6 to values smaller then 2.4 (Fig. 3). Finally, for a density of
» ˆ 272 §5 kg m^3, at temperatures below ^11³C, the calcu-
lated apparent activation energy Q ˆ 182 §18 kJ mol^1 does
not agree with the values reported for self-diffusion in poly-

crystalline ice. For temperatures above ^11³C we calculate a
mean value of the apparent activation energy ranging
between 328 and 424 kJ mol^1.

DISCUSSION OF THE TEST RESULTS

The bulk behaviour of snow under load at small strains
(" < 1^2%) is primarily due to the deformation mechanics
of the granular ice skeleton, which is composed of polycrys-
talline ice. The ice skeleton carries the applied load in `̀ force
chains’’ (Voytkovskiy,1977; Gubler,1978; Brown,1980), which
consist of snow grains connected at bonds (Fig. 5). In our
tests, both grain-size and grain shape are similar for the
whole range of densities. All of the snow selected was granu-
lar, with well-bounded grains of approximately 0.2 mm
diameter.The main difference between high and low density
can be seen by evaluating the coordination number N3,
which describes the number of bonds per grain (Gubler,
1978). This varies from N3 < 2.5 for » ˆ 200 kg m^3 to N3 ˆ
4.0 for a snow density » ˆ 430 kg m^3 (Alley, 1986). For low-
density snow (» < ¹400 kg m^3) with low coordination
numbers, the grains are not highly constrained and can
move relative to each other in a shearing motion.Therefore,
bonds in low-density snow are subjected to larger shearing
stresses (Voytkovskiy, 1977). In high-density snow, on the
other hand, the grains are constrained and no longer free to
move relative to each other. This means that the bonds
between grains are mostly subjected to compressive deform-
ation modes, i.e. the shearing stresses tend to vanish. Thus,
high-density snow (» ¶ 430 kg m^3) shows in principle the
same viscous behaviour as polycrystalline ice. The values of
the exponent n and of the apparent activation energy Q
agree well with the values for polycrystalline ice reported in
previous works (Barnes and others, 1971; Weertman, 1973;
Budd andJacka,1989; Morgan,1991). In conclusion, we found
that snow with density » > ¹400kg m^3 has a power-law
exponent n and activation energy Q similar to those of poly-
crystalline ice. The pre-exponent parameter A (Fig. 6) con-
verges to the experimental values calculated using data of
mono-axial compression tests on high-density firn and porous
ice (659kg m^3 µ » µ912 kg m^3) performed by Jacka (1994).

Fig. 4.Temperature and density dependence of the apparent acti-
vation energy Qfordifferent strain rates. (a) _" ˆ1.1610^5 s^1;
(b) _" ˆ 4.2610^6 s^1; (c) _" ˆ 1.1610^6 s^1; (d) _" ˆ
4.4610^5 s^1; (e) mean value.

Fig. 5. The load-bearing `̀chain’’ concept of Gubler (1978),
with a detailed picture of a neck formed between grains (from
Colbeck, 1998).The grain boundary is also depicted.

93

Scapozza and Bartelt:Temperature and viscous deformation mechanics of snow

https://doi.org/10.3189/172756403781815410 Published online by Cambridge University Press

https://doi.org/10.3189/172756403781815410


These data are also displayed in Figure 6 along with data for
polycrystalline ice reported by Barnes and others (1971).

Several explanations can be proposed to show why the
behaviour of snow with a density » < ¹ 400 kg m^3 does not
reflect the properties of polycrystalline ice. Barnes and others
(1971) provided a physical interpretation of the increase in
activation energy in polycrystalline ice at T > ^10³C. They
concluded that the formation of a liquid layer at the triple
point and grain-boundary sliding serve as accommodation
processes for dislocationcreep occurring within the ice grain.
Further, they concluded that the calculated activationenergy
of 120 kJ mol^1 does not refer to a single specific creep process.
However, they stress the fact that the creep behaviour of
normal-grained polycrystalline ice (d ¹1mm) is primarily
determined by creep within the ice grains because the creep-
rate stress dependence remains approximately cubic over the
whole range of the investigated temperatures. In a more
recent work, Goldsby and Kohlstedt (1997) attempt to show
the influence of grain-size sensitive creep mechanisms on the
flow of fine-grained ice produced in the laboratory (grain-
size d in the range 3 mm µ d µ 90 mm) at strain rates _" ¶
1610^8 s^1. Note that this kind of ice does not occur in natu-
rally occurring ice or snow masses. They found an exponent
n ˆ 1.8 and an activation energy Q ˆ 49 §1kJ mol^1 for
strain rates between 10^8 s^1 µ _" µ 10^6 s^1, grain-sizes in the
range 26 mm µ d µ 40 mm in the temperature range ^58³C
< T < ^37³C. Goldsby and Kohlstedt concluded on the basis
of the mechanical results and the microstructural investiga-
tions (environmental scanning electron microscopy (ESEM)

micrograph analysis), that grain-boundaryslidingaccommo-
datedby dislocationmotion is the rate-limiting process in this
n ˆ 1.8 regime.

These works on polycrystalline ice can be used to help us
understand the behaviour of snow. For the density range
200 kg m^3 µ » µ360 kg m^3, we found

(i) A decrease in the power-law exponent n.With decreas-
ing density, we found smaller n values (Fig. 3).

(ii) An increase in apparent activation energy with decreas-
ing density (Fig. 4).

(iii) The nrho isolines (Fig. 3) are strongly dependent on
temperature.

This behaviour is not similar to that of polycrystalline ice
with grain-size typical of those found in the natural ice
masses. Because the applied strains were small at moderate
strain rates, effects like bond formation, bond breakage and
large-scale inter-particle slip cannot be responsible for this
behaviour. In the cited ice literature (Barnes and others,
1971; Goldsby and Kohlstedt, 1997), smaller n values and
higher activation energies Q are related to deformation
mechanisms occurring at or near the grain boundaries,
which accommodate intra-granular dislocation creep
(Barnes and others, 1971) or represent the dominant creep
mechanisms (Goldsby and Kohlstedt, 1997). In light of this
fact, we suppose that deformation mechanisms occurring at
or near the grain boundary are more active in low-density
snow. An indication that for low-density snow (» <200kgm^3)
grain-boundary sliding accommodated by dislocation
motion is the rate-limiting process is that the value of n ˆ
1.7 is approximately temperature-independent, as noted by
Goldsby and Kohlstedt (1997), although at a much lower
temperature range. These conclusions are also supported by
the mechanical microstructural model of Voytkovskiy (1977),
which assumes that in low-density snow the grain-boundary
region is subjected to larger shear stresses.

For high-density snow (» ˆ 430 kg m^3) at temperatures
ranging between ^19³C µ T µ ^2³C, we determined a tem-
perature-independent exponent n = 3.6 and apparent activa-
tion energies according to the values found for normal-
grained polycrystalline ice. Therefore, we suppose that for
high-density snow, dislocation creep is the rate-controlling
process.

NUMERICAL MODEL

In order to apply the experimental results in numerical
models (Bartelt and Christen, 1999; Bartelt and Lehning,
2002), the nrho and Qrho isolines (Figs 3 and 4) must be
parameterized.We found that

n ˆ a»2 ‡ b» ‡ c ; …6†

where
a ˆ 1.08610^6 T2 ^ 5.67610^4 T + 7.40610^2 ;
b ˆ ^5.87610^4 T2 + 3.06610^1 T ^ 3.986101;
c ˆ 6.22610^2 T2 ^ 3.226101 T + 4.176103 .
The material parameter A (Fig. 6), which is a function of

density and temperature, is

A ˆ 3:61 £ 107 »¡7:4 for T ˆ ¡12¯C : …7†

Fig. 6. Material parameterA (Equation (1)) as a function of
density, for T ˆ ^12³C and for strain rates ranging between
_" ˆ 1.1610^6 s^1 and _" ˆ 4.4610^5s^1.The values are com-
pared with (a) the A values for high-density firn and porous
ice (659 kg m^3 µ » µ 912 kg m^3) calculated using the test
results of mono-axial compression tests (T ˆ ^3.3³C, octa-
hedral shear stress ˆ 0.2 MPa) reported byJacka (1994); the
test results were normalized to T ˆ ^12³C using Q ˆ
160 kJ mol^1; (b) the A values for polycrystalline ice calcu-
lated with the parameters A0, Q and n reported by Barnes
and others (1971) for T ˆ ^12³C.
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A is a pre-exponential constant (Equation (1)) in (MPa^n s^1),
which can be scaled to another temperature according to
(Sinha,1979)

A1…T1† ˆ A2…T2†
S1;2

; …8†

where S1;2 is a shift function given by

S1;2 ˆ exp
Q

R

1

T1
¡ 1

T2

³ ´µ ¶
: …9†

Q is the activation energy for the corresponding temperature
range T1 µ T µ T2 and density », and R is the gas constant;
T1 and T2 are the temperatures (K). Note that the power-law
relation for A (Equation (7)) is similar to the experimentally
defined equations for unconfined compressive strength of
high-density snow (500 kg m^3 < » <600 kg m^3) reported
by Russell-Head and others (1984).

As shown in Figure 4, there is a large variation of the
apparent activation energy Q with temperature and density.
As noted by Budd andJacka (1989) for polycrystalline ice, it is
difficult to describe the temperature dependence of creep
using the concept of activation energy. This undertaking is
more difficult for snow, because its density dependence has
to be taken into account. Our attempts to describe the vari-
ation of the apparent activation energy Q with temperature
and density using a mathematical relationship valid for all
temperatures and densities have failed. For the numerical
model, we used the mean values of Q as reported in Figure 4.
For intermediate densities, i.e. densities between those investi-
gated, we linearly interpolated the experimental results.

The relationships presented above (Equations (6^9))
were employed in a plane-strain constitutive law for steady-
state creep, used by Bader and Salm (1990)

¼ij ˆ ‰N Š _"ij ‡ _"ll¯ij

m ¡ 2

³ ´
; …10†

where

‰NŠ ˆ
² 0 0
0 ² 0
0 0 ²

2

2

4

3

5 ;

² is a stress-, density- and temperature-dependent viscosity

² ˆ 1

A0 e¡ Q
RT ¼n¡1

and m is the inverse of the viscous analogue of Poisson’s ratio.
The parameter m was set to m ˆ 1, i.e. the viscous ana-

logue of Poisson’s ratio was set to zero, because only the devia-
toric component of the stress tensor was considered.Thus, the
strain directions _"x, _"y and ®xy and the stress components ¼x,
¼y and ½xy are assumed to be independent. This assumption
accurately reflects the observed behaviour during confined
and unconfined triaxial tests (Scapozza and Bartelt, unpub-
lished information): (1) The axial yield stress is independent
of the applied confining pressure; (2) non-zero values of Pois-
son’s ratio occur only after a critical strain, denoting the onset
of work hardening. This critical strain is reached after yield-
ing. Furthermore, the assumption that the shear viscosity is
related to the normal viscosity (²shear ˆ ²compression/2) is
hypothetical for the present application and must be proved
by separate compression and shear tests under the same test
conditions (temperature, strain rate and density).

The constitutive law given by Bader and Salm (1990)
was introduced into a finite-element model. In a first step,
the stress state is determined from an elastic calculation.

Then the steady-state strain rates are determined according
to Equation (10). An applicationof the model is to determine
stress and strain-rate concentrations around a weak layer of
given length a (Fig.7), as a function of overburden snow and
temperature. Figure 8 plots the strain-rate concentration
along the weak layer as a function of temperature. The
simulations show that an increase in temperature of 9³C
can produce an increase in the peak strain rate of about
three orders of magnitude.

A future development of the finite-element model will
consider the viscoelastic behaviour of snow. Work-hardening
effects due to large volume changes (20% strain) will also be
considered. The present model does not consider age-

Fig. 7. Weak-layer finite-element model. L ˆ 50 m is the
length of the slope, a ˆ 8 m is the length of the weak layer
and ¿ ˆ 35³ is the inclination.The snow cover is composed
of two layers with d1 ˆ d2 ˆ 1.0 m and a very thin weak
layer with ds ! 0 m. Densities and temperatures are »1 ˆ
400 kg m 3̂, »2 ˆ 200 kg m 3̂, T1 ˆ ^5³C. T2 varies between
T2 ˆ ^12³C and T2 ˆ ^3³C.

Fig. 8. Influence of the temperature on the strain-rate distribu-
tion along the weak layer. The properties of the simulated
snowpack are shown in Figure 7.
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hardening effects due to physical processes, such as grain me-
tamorphism, occurring in the snowpack.The development of
the microstructural snowpack properties over time is con-
tained in a one-dimensional numerical snowpack model
(Lehning and others,1998; Bartelt and Lehning, 2002)which
now also contains the viscosity formulation listed above.

CONCLUSIONS

We observed that for high-density snow (» > ¹400 kg m^3 ),
Glen’s law with material parameters similar to those for
polycrystalline ice can be applied to model the viscous
behaviour of snow. Conversely, we found that Glen’s law
with ice parameters cannot be applied to model snow with
densities between 200 kg m^3 µ » µ360 kg m^3. This com-
plexity has not been taken into account in previous thermo-
mechanical constitutive models. We believe that the large
variation of the power-law parameters as a function of den-
sity is due to different deformation mechanisms occurring in
the load-bearing ice skeleton. Although our constitutive
model quantitatively fits the experimental results, it still
cannot be applied to lower-density snow (» <¹180 kg m^3)
or other snow types (e.g. faceted grains or depth hoar). The
fracture properties of snow, important for avalanche forma-
tion, have also not been investigated.

Future experiments with higher strain rates and differ-
ent snow types are required in order to provide a complete
picture of the mechanical behaviour of snow. These results
are still lacking for a predictive understanding of avalanche
formation.
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