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1. Introduction and summary. Let R be a regular semigroup and denote by <S(/?)
its congruence lattice. For p e <#(/?), the kernel of p is the set ker p = {a e R \ apa2}. The
relation K on <#(./?) defined by XKp if ker A = ker p is the kernel relation on ^(R). In
general, K is a complete H-congruence but it is not a v-congruence. In view of the
importance of the kernel-trace approach to the study of congruences on a regular
semigroup (the trace of p is its restriction to idempotents of R), it is of considerable
interest to determine necessary and sufficient conditions on R in order for K to be a
congruence. This being in general a difficult task, one restricts attention to special classes
of regular semigroups. For a background on this subject, consult [1].

The special regular semigroups treated here are of the following form. Let V be a
regular semigroup, 5 be an ideal of V and Q = VIS be the corresponding Rees quotient.
In addition, we require that the ideal extension V of 5 by Q be strict, that is, that the
multiplication in V is determined by a partial homomorphism <p:Q*^S. Finally, we
assume that Q is an orthogonal sum of 0-simple semigroups and that Q is categorical at
zero. With these hypotheses, we are able, in the final theorem of the paper, to determine
necessary and sufficient conditions on the ingredients making up V that K be a
congruence on ^(V). They involve the same type of condition on 5 and the 0-simple
components of Q as well as on the partial homomorphism <p. On the way to proving this
result, we establish several statements of more general interest. For congruences on
general ideal extensions of semigroups, see [2].

Section 2 contains some notational conventions and special terminology and Section
3 some general results. The case when Q is 0-simple and categorical at zero is treated in
Section 4. The necessary statements leading to the desired generalization are established
in Section 5.

2. Notation and terminology. The equality and the universal relations on any set X
are denoted by e and w, or ex and wx, respectively. The restriction of a function or a
relation 6 to a set X is denoted by 0\x. If 8 is an equivalence relation on X and x e X,
then x8 denotes the 0-class containing X. If also A^X, then

Ad = {x e X | xOa for some a e A}

is the saturation of A by 9; if A6 = A, then 6 saturates A. If X and Y are sets, then
X\Y = {xeX\xeY}.

Let R be any semigroup. By %(/?) we denote the congruence lattice of R. If A c /?,
E(A) denotes the set of idempotents in A. For p e

ker p = {a e R \ ape for some e e E(R)}

is the kernel of p. The kernel relation K is defined by

XKp if ker A = ker p (A, p G <<?(/?)).
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If R has an identity, let R1 = R, Otherwise let fl1 stand for R with an identity adjoined.
For a s R, J{a) denotes the principal ideal of R generated by a.

Now let R be nontrivial and have a zero. If Ra for a e A is a system of subsemigroups
of R containing the zero of R, whose union is R and satisfying RaRp = Ra(~) Rp= {0}

whenever a ^ j 3 , then R is an orthogonal sum of semigroups Ra, to be denoted by X Ra.
a eA

Further, R is categorical at zero if for any a,b,c G R, ab¥=0 and bc^O implies abc ¥= 0.
Clearly, if R is an orthogonal sum of semigroups Ra, then R is regular (respectively,
categorical at zero) if and only if Ra is regular (respectively, categorical at zero) for every
c i E A W e write R* = R\{0}. If p e ^(R) and Op = {0}, then p is 0-restricted. By %{R) we
denote the set of all 0-restricted congruences on R. The relation £R defined by

a£Rb if x a y = 0 < $ x b y = 0 for all x , y s R l

is the greatest 0-restricted congruence on R.
Let V be a regular semigroup, 5 be an ideal of V and Q = VIS be the Rees quotient

of V relative to the ideal 5. Then V is an (ideal) extension of S by Q. A mapping
<p:<2*—»S is a partial homomorphism if for any a,b e Q*, ab^O in (? implies that

If in addition

(acp)b if a sQ*,b sS,
a(b<p) if a e S,b e Q*,

Xa<p)(b(p) if a, b e Q*,ab e S,

then the multiplication in V is determined by <p and V is a sfricf extension of 5. In such a
case, the mapping ip defined by

P if a E Q*

is a retraction of V onto 5.
The notation introduced in the preceding paragraph will be fixed throughout the

paper, where we take V = 5 U Q*.
We now extract from [2, Corollary 1 to Theorem 1 and Proposition 2] the following

description of congruences on V. Let a e ^(5), P be an ideal of Q and r e %(Q) be such
that a,b e 2*, arfc implies a<pab(p. In such a case, (a, P, r) is an admissible triple for
which we define a relation v on V by

if a,b e SUP*.

Then v is a congruence on V and conversely, every congruence on V has this form for
unique a, P and T.

The notation v = ^(cr, P, T) will always denote the above congruence implicitly
implying that (a, P, r) is an admissible triple.

3. General results. The first result here is of general interest, the remaining ones
will be used later, some of them several times.

PROPOSITION 3.1. Let R be a regular semigroup such that K is a congruence on
and let H be a homomorphic image of R. Then K is a congruence on

https://doi.org/10.1017/S0017089500031785 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031785


EXTENSION OF CERTAIN SEMIGROUPS 349

Proof. We let 0 be a congruence on R and consider H = Rid. Let A, p, r e ^(H) be
such that KKp. For 5 e {A,p, T}, we define a relation 5 on /? by

a 56 if a 05b ft

Then 5 is a congruence on R. We show next that \Kp. Indeed, for a E R, we have

a ekerA<»aAV»a0Aa20 = (a0)2

2 2 2 e kerp

and thus ker A = ker p whence AKp. It follows by hypothesis that A v TKp v r.
It is well known that the mapping

7 _ ? (ye «(/?))

where adybd(a, b e /?), induces an isomorphism of the interval [8, w) of ^(R) onto
). Since 5 = 5 for 5e{A,p, T}, it follows that AVT = AVT and p v f = p v r Hence

A v xKp v x so that for any a e R,

a0eker(Avr)«a0A<

v ra20 = (a0)2

eker(pvr)

which proves that A v xKp v r and /C is a congruence on ^(H). D

COROLLARY 3.2. y455Mme f/jaf /^ « a congruence on ^(V). Then K is a congruence on
both <g(S) and

Proof. Note that Q — V/S = V/p where p is the Rees congruence on V relative to
the ideal 5. Also 5 is a retract of V under the retraction \\i and is thus a homomorphic
image of V. The assertions now follow by Proposition 3.1. •

According to Proposition 3.1 the class JK of all regular semigroups 5 for which K is a
congruence on ^(5) is closed under homomorphic images. That 5if is not closed for taking
direct products is exhibited on the example of a direct product of a 2-element semilattice
by a 2-element group. That 3if is not closed for taking of regular subsemigroups can be
seen as follows.

For the concepts and results used below, we refer to [5]. Let 5 = S9(G, a) be a Reilly
semigroup where G = Z4, the additive group of integers mod 4, and a is the endomor-
phism of G mapping 1 onto 2. Then a2 is the trivial endomorphism and thus

oo

M = U ker a" = G. Hence condition (iii) of [5, Theorem 5.5] is trivially satisfied so
n = \

that, by condition (vi) of the same reference, K is a congruence on ^(S). Let

T = {(m, g,m) e 5 | m < 1}.

Then T is a semilattice of groups
G, = {(i,g,i)\geG}, i = 0,1
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determined by the homomorphism

, l ) (g e

Since <p is not the trivial homomorphism, [5, Theorem 4.7] implies that K is not a
congruence on ^(7). Here T is a regular subsemigroup of 5.

LEMMA 3.3. For v = <€(<x, P, r), we have

ker v = ker a U {a E P* | a<p e ker <x} U (ker T)*.

Proof. Since cr = v \s, we have ker v D 5 = ker o\ If a E P*, then

0 e ker v » a v e for some e E £(S U P*)

Oaipve^ for some e E £(5 U P*)

<=>atpcre for some e e E(S)G$a<p e ker o\

Clearly, for a e Q\P, a e ker v&a e ker r. D

LEMMA 3.4. ([4, Theorem 3.6]). Let v, = ^(o-,, P,, T,) for / = 1,2. 77ie/i v, vv2
 =

^(o-, P, T) where cr = aivo-2, P = (A U P?)^ v T2) a/id T « r/ie ̂ -restricted congruence on
QIP satisfying the condition x \QSP = (tj V T2)|GNp.

LEMMA 3.5. Let v e ^(V) fl/id a,b e Q* be such that avb. Then a<pvb<p.

Proof. Let x e S. Then axvbx and xavxb and also ax = (a<p)* and xa =x(acp) so that
(6<p);c and x(a<p)vx(b<p). Letting a = v\s, we note that S/a is weakly reductive and

thus a<pvbcp. D

4. The case of Q 0-simple and categorical at zero. In order to treat this case, we
need some preliminary lemmas. The second one is stated in somewhat greater generality
than necessary.

LEMMA 4.1. Let (a, P, z) and (a1, P', r') be admissible triples such that aKa', P = P'
and TKT'. Then %{v,P, x)K%{a\P\ T').

Proof. This follows directly from Lemma 3.3. •

For a partial converse of Lemma 4.1, we have the following result.

LEMMA 4.2. Assume that in every nonzero $-class of Q there exists an element a such
that ap E £(5) and a2 E 5. Let v = <<?(o-,P, r) and v' = <€(tr', P', r') be such that vKv'.
Then aKa', P = P' and TKT'.

Proof. The assertion aKa' follows by Lemma 3.3. Suppose that P¥>P'. By
symmetry, we may suppose that P\P' # 0 . Hence PYP' contains a nonzero ^-class J. By
hypothesis, J contains an element a such that atp e E(S) and a2 e S. In view of Lemma
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3.3, a e ker v whereas a $ ker v'. But then ker v ̂  ker v' contrary to the hypothesis that
vKv'. Therefore P = P'. Now Lemma 3.3 implies that xKx'. D

LEMMA 4.3. Let Q be 0-simple and categorical at zero. Assume that for a m Q*,
a<p e E(S) implies a2 e Q*. Let r = [Q D x' where x' is defined by

ax'b if a,b eQ*,a(p = b<p; OT'O.

Then (es,Q,e) and (e5,{0}, f) are admissible triples. Letting A = "<?(e5, Q, e) and
p = <#(e5, {0}, T), we have XKp and ker A = £(5) U{aeQ*\a<pe E(S)}.

Proof. Clearly r' is an equivalence relation on Q. In order to see that x is a
congruence on Q, let axb and c e Q be such that ac^O. Since a£Qb, we have act,Qbc
which implies that be ̂  0 since t,Q is O-restricted. But then

(ac)cp = (a<p){c<p) = (b<p)(c<p) = (bc)<p

which shows that aexbe. Similarly, if ac = 0, then be = 0 since £G is O-restricted so that
again aexbe. Dually, axb implies caxeb. Therefore x is a congruence on Q, and is trivially
O-restricted. If a, ft e Q* and x e S are such that axb, then ax = (a<p)x = (b<p)x = to which
shows that (e5, {0}, r) is an admissible triple.

Clearly (e ,̂ Q, e) is an admissible triple. By Lemma 3.3, we have

(1)

= £(S)U(kerT)* (2)
where

(ker x)* = {aeQ*\ axa2} = {a s Q* | a£Qa2, a<p = a2<p)

(3)

In order to prove that (1) and (2) are equal, in view of (3), it suffices to show that for
a e Q*, a<p e E(S) implies that at,Qa2. Hence let a e Q* be such that acp e £(5). By
hypothesis a2 e Q*. We now consider the semigroup Q. Let x,y s (21 and note that
«2T^0. If xay ^ 0 , then xa, a2 and ay are different from zero which implies that xa2y ^ 0
since Q is categorical at zero. Conversely, if xa2y ¥> 0, then xa and ay are different from
zero and thus xay ̂  0 by the same assumption. We have proved that aCQa2. Therefore
XKp, as required. •

We are now ready for the desired result. The theorem below generalizes the main
result in [3] as well as [6, Theorem 7.6].

THEOREM 4.4. Assume that Q is 0-simple and categorical at zero. Then K is a
congruence on ^(V) if and only if

(i) K is a congruence both on ^(5) and ^(Q),
(ii) either <p: Q*-* E(S) or there exists a e Q* such that cup e £(5) and a2 e 5.

Proof. Necessity. Part (i) follows by Corollary 3.2. Suppose that the second
alternative in part (ii) does not take place. In the notation of Lemma 4.3, we have \Kp.
Now let 6 be the Rees congruence on V relative to the ideal S, that is 6 = ̂ (w5, {0}, ee).
The hypothesis implies that \v6Kpvd which by Lemma 3.4 yields
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^(w5, Q, es)K
<6(a)S, {0}, T). It follows by Lemma 3.3 that Q = ker T which by Lemma 4.3

gives that a<p e £(S) for all a e Q*. Therefore <p : £>*-> £(5).
Sufficiency. We now abbreviate our notation by writing:

= G,
= {0}.

We first observe that by Lemma 3.3 for [<r], [o-, T] e S?(V), we have

ker[cr] = ker a U {a E Q* \ a<p e ker a}, ker[cr, T] = ker a U (ker r)*,

and thus
TlK<J2,

e ker ax&a e (ker r2)*).

We now let v, = ^(a^Pj, T,) for i = 1,2 and using Lemmas 4.1 and 3.3 consider several
cases.

Case [(Tx]K[a2\ Then <jxK(j2 so by part (i), also a}^a3Ka2\^a3 which gives

[a,] v <g(o-3, P3, T3) = k i v tr3]K[<ri v cr3] = [<r2] v <g(o-3, P3, T3).

Case [a-{\K[cr2, r2]. Then <JXK<J2 and TI/CT2 SO that by part (i), c^ v (T 2 KO- 2 Va 3 and
T! v T3/^r2 v T3 which gives

[o"i. Tj] v [o-3] = [a, v a-3]K[a2 v «r3] = [o-2, T2] v [a-3],

[o"!, T,] V [0-3, T3] = [<Ti V <T3, T, V T3]/C[o-2 V 0-3, T2 v T3]

= [cr2, T2] v [o-3, T3].

Case [ai]K[(T2, T2]. Then crxKu2 so by part (i), axva3K(r2va3 which gives

[o"i] v [o-3] = [cr, v o-3]A:[o-2 v o-3] = [cr2] v [o-3].

By Lemma 4.2, the second alternative in part (ii) cannot take place in this case. The first
alternative in part (ii) implies that ker[o-] = ker a U Q* for any Q e <#(S). In particular,
the hypothesis for this case implies that ker T2 = Q. We now obtain

ker([o-,] v [<r3, T3]) = ker[o-, v <r3] = k e r ^ va 3 ) UQ*, (4)

ker([cr2, T2] v [o-3) T3]) = ker[o-2 v a3, t2 v T3]

= ker(c7-2vo-3)U(ker(T2vT3))* (5)

where ker(<7] v cr3) = ker(tr2 v a3) and ker(t2 v T3) 2 ker T2 = Q and the expressions in (4)
and (5) are equal. Therefore

k l ] V [0-3, T3]K[(T2, t2] V [0-3X3],

as required.
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This exhausts all the cases and thus shows that K is a congruence on ^(V). •

5. The general case. For the proof of the final result in which Q is an orthogonal
sum of 0-simple semigroups categorical at zero, we need a sequence of lemmas.

LEMMA 5.1. Let Q be 0-simple and let v E ^(V). Suppose that there exist b E Q* and
c E 5 such that bvc. Then for every a e Q*, we have avacp.

Proof. Let
/ = {x E Q* | xvy for some y e 5 } U {0}.

Then / is an ideal of Q since S is an ideal of V. The hypothesis implies that / ¥* {0} and
thus I = Q since Q is 0-simple. Now let a e Q*. From the proven statement, it follows that
avd for some d E S. Let x E S. Then axvdx and xavxd and since ax = (a<p)x and
xa =x(a<p), we obtain {a<p)xvdx and x(a<p)vxd. Since this holds for all x E S and S/(v|5) is
weakly reductive, we conclude that a<pvd. But then ava<p. •

LEMMA 5.2. Let Q = 2 Qa where Qa is 0-simple for every a s A. Also let a,b E V,

v E ^(V) and avb. Then ail/vbil/.

Proof. We consider several cases.
Case a,b e S. This case is trivial since aip = a,bty = b.
Case a e S, b e Q*. Then b E Q* for some a s A which by Lemma 5.1 implies that

bvbtp. Hence aip = avbvbif/.
Case a E Q*, b E S. This is dual to the preceding case.
Case a,b e Q*. This case follows directly from Lemma 3.5. •

In the sequel, Q = S Qa where for each a s A, Qa is 0-simple (and regular). For
ae.A

every a E A, let

so that Va is an ideal of V. The next result shows that Va is a retract of V.

LEMMA 5.3. Fix a E A and define a mapping % by

ffl^a ifaeVa,
\ p ifaeV\Va.

Then % is a homomorphism of V onto Va.

Proof. Let a, b E V. If a e Va and b $ Va, then

(ax)(bx) = a(b<p) = ab = (ab)x-

The case a g Va and b e Va is dual. If a, b $. Va, then either a,b,ab e.Q% for some
in which case

{°X)(bx) = (a<p)(b<p) = {ab)<p = (ab)x;

or a E QJ3, fc E (?*, ab sS for some j3, y E 4̂ in which case

= ab = (ab)x-

https://doi.org/10.1017/S0017089500031785 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031785


354 MARIO PETRICH

The case a,b eVa being trivial, we conclude that ^ is a retraction of V onto Va. •

The next result is of indepedent interest.

PROPOSITION 5.4. Let Q = £ Qa where Qa is 0-simple for every a eA and let
aeA

va E ^(Va) be such that va\s = Vp\s for any a, p e A. Define a relation v on V by: for
aeVa,be Vp,

\a(pvab<p ifa^/3, a E QZ,avaa<p,b e Q%,bvpbcp.

Then v is a congruence on V. Conversely, every congruence on V can be so represented for
unique Va.

Proof. Let v be as defined above. Clearly v is reflexive and symmetric. Let a e Va,
b E Vp and c E Vy be such that avb and bvc. We consider several cases.

Case a = p = y. Then avabvac so that avc.
Case a¥>p = y. Then a e Q*, b E Q% avaa<p, bvpb(p, a(pvab<p, bvpc. If c E Q%, then

a(pvab<pvac<p and cvyc<p so that avc. If c E 5, then c eVa and b<pvpbvpC implies that bcpvpC
so that avaa(pvab<pvac and thus avc.

Case a = j3 ^ y. This is similar to the preceding case.
Case ai^p^y. Then a e Q%, 6 E (? | and c e Q*. This splits into two cases.
Subcase a ¥= y. Then acpvab<pVpC(p and avaa<p, cvycip imply that avc.
Subcase a = y. Then avaa<pvab<pVpC(pvyc implies that avaacpvac<pvac so that avc.
Therefore v is transitive and is thus an equivalence relation.
In order to show that v is a congruence, we let a E Va, b e Vp and c E Vy be such

that avb.
Case a = /3. If y = a, then trivially acvfec. Otherwise, possibly using Lemma 5.2, we

get aipvabtl/ and thus
ac = (ai/r)(ci//)va(6(//)(ci/r) = 6c

so that again acvbc.
Case a¥= p. Then a e (?*, 6 E gjjj, avaa<p, bvpb<p, a<pvab<p.

Subcase a = y. Then 6c = (6<p)(c<p) e 5. This splits further into two subcases.
Subsubcase ac e g * . Then

acva(a<p)c = (a<p)(c<p)va(6<p)(c<p) = 6c

so that acv6c.
Subsubcase ac e S. Then

ac = (a<p)(ct/0va(6<p)(ci/0 = 6c

and again acv6c.
Subcase )3 = y. This is dual to the preceding case.
Subcase a^y¥= p. Then

ac = (fl<p)(ci/f)vo(6<p)(a/0 = 6c

and acvbc.
Therefore v is a congruence on V.
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Conversely, let v be a congruence on V. For every a eA, let va = v\Va. Then
va E ̂ (V^) and va|5 = v|5 = vp\s. In order to see that v can be obtained as in the first
part of the proposition, it suffices to prove that for a E Q*, b e Q%, a ¥= /3, avb if and only
if ava<pvb<pvb.

Assume first that avb. If a' is an inverse of a, then a = aa'avba'a where ba'a e S.
Hence Lemma 5.1 implies that avacp. Also Lemma 3.5 gives a<pvb(p. Again Lemma 5.1
provides bcpvb so that avaipvbcpvb. The converse is obvious by transitivity.

Trivially, the congruences vo = v|Va are unique. •

LEMMA 5.5. Let Q = 2 Qa, where Q« is 0-simple for every a E A, a e Va, b e V\Va,

v e "#(V), avb. Then avbcp.

Proof. First note that b E Q*. If a s S, then avb by Lemma 5.1 implies that bvb<p
and thus avbcp. If a E Q*, then Proposition 5.4 gives avatpvb(p so again avb<p. •

LEMMA 5.6. Let Q = 2 Qa where Qa is 0-simple for every a E A, A, p E ^(V) and

fix a E A. Then h\Vavp\v^ = (\vp)\Va.

Proof. Write X'= X\Va, p ' = p|va, (Avp)' = (Avp)|v<>. Clearly A' .p 'c(Avp) ' and
thus A'vp' c (A vp)'. For the opposite inclusion, we let a(\vp)'b. Hence there exists a
sequence

akxipx2\x3... xnpb (6)

for some xu x2, • • • , xn E V. We claim that sequence (6) implies the following sequence

a\ylpy2\y3...ynpb (7)
where

' lxj<p otherwise.

The proof of the claim is by induction on i in the following statement

a\ylpy2\y3 ... y,\xl+ip... xnpb

the case >,-pjc,-+i being analogous, where yQ = a and xn+i = b.
The case / = 0 is a special case of the general step /. For that step, we have the

following cases.
(i) xhxi+1 E Va. This case is trivial.
(ii) Xj E Va, xi+1 s Va. Then Xj\xi+lq> by Lemma 5.5.
(iii) Xi & Va, Xj+i G Va. This is dual to the preceding case.
(iv) Xj,xi+i g Va. Then Xj(p\xi+1(p by Lemma 3.5.
By induction, the assertions contained in sequence (7) are proved. Since yt G 5 we

have y, e Va for i = l,2,...,n and thus ak'wp'b. Therefore (Avp) 'gA'vp ' and
equality prevails. •

LEMMA 5.7. Let Q = 2 Qa where Qa is 0-simple for every a eA and let v E
aeA

Thenkerv= [J ker(v|v-o).
as A
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Proof. Let a e ker v. Then ava2 and thus, if a e Va, we have av\Ka2 so that
a e ker(v|vJ. It follows that ker v £ U ker(v|v/J and the opposite inclusion is trivial. • .

a e.A

The next result is of independent interest.

PROPOSITION 5.8. Let Q = £ Qa where Qa is 0-simple for every a eA. Then K is a
asA

congruence on <S(V) if and only if K is a congruence on <#(Va) for every a eA.
Proof Necessity. By Lemma 5.3, for any a e A, Va is a homomorphic image of V and

thus, by Proposition 3.1, K is a congruence on ^(Va).
Sufficiency. Let A, p, 6 e <#(K) be such that XKp and let a e A. Then

ker(A | VJ = ker A n Va = ker pHVa = ker(p | yj

and thus A|v« ̂ p|vv The hypothesis implies that A ^ v ^ l ^ Kp\Vavd\Va which by Lemma
5.6 gives (Avfi)!^ K(pv9)\K. Since this holds for any a eA, Lemma 5.7 implies that
A v BKp v e. Therefore K is a congruence on %(K). •

We are now ready for the main result of the paper.

THEOREM 5.9. Let V be a regular semigroup and a strict extension of S by Q, with the
multiplication determined by (p:Q*—*S. Assume that Q is an orthogonal sum of 0-simple
semigroups Qa, a e A, categorical at zero. Then the following statements are equivalent.

(i) K is a congruence on ^(V).
(ii) Letting Va = S U Q*, K is a congruence on ^(Va) for every a e A.

(iii) K is a congruence on ^(S) and for every a e A, K is a congruence on ^(Qa) and
either <p : Q*—* E(S) or there exists a e Q* such that acp e E(S) and a2 e 5.

Proof. The equivalence of parts (i) and (ii) is a special case of Proposition 5.8,
whereas the equivalence of parts (ii) and (iii) follows directly from Theorem 4.4. •

We conclude by giving an abstract characterization of the semigroups Q appearing in
the above theorem.

PROPOSITION 5.10. Let Q be a nontrivial regular semigroup with zero. Then Q is an
orthogonal sum of 0-simple semigroups if and only if for any e,f e E(Q*), e <f implies
that e$f.

Proof. Necessity. Let Q = 2 Qa where Qa is 0-simple for every a eA and let
aeA

e,f e E(Q*) be such that e </ . Then e e Qa and / e Q0 for some a, /3 e A and e = ef
implies that a = j3. But then e$f since Qa is 0-simple.

Sufficiency. Let a, b e Q be such that ab ¥> 0, let x be an inverse of a and y be an
inverse of ab. Then (abyax)ab = ab <£ 0 so that e = abyax ¥" 0,

e2 = (abyax)(abyax) = (abyab)yax = abyax = e,

e{ax) = (ax)e = e.

Hence letting/ = ax, we obtain e,f e E(Q*) and e^f. If e = / , then e$f. Otherwise e < /
and the hypothesis implies that e$f. Now a eJ(f) = J(e)^J(ab) so that J(a)^J(ab).
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The opposite inclusion always holds and thus a$ab. A similar argument will show that
also b$ab so that a$b.

We have proved that ab J^O implies a$b$ab. By contrapositive, we conclude that Q
is an orthogonal sum of nonzero ^-classes together with zero, and these are clearly
0-simple. •
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