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-1. Introduction and summary. Let R be a regular semigroup and denote by 4(R)
its congruence lattice. For p e 6(R), the kernel of p is the set ker p ={a € R | apa®}. The
relation K on 4(R) defined by AKp if ker A = ker p is the kernel relation on €(R). In
general, K is a complete N-congruence but it is not a v-congruence. In view of the
importance of the kernel-trace approach to the study of congruences on a regular
semigroup (the trace of p is its restriction to idempotents of R), it is of considerable
interest to determine necessary and sufficient conditions on R in order for K to be a
congruence. This being in general a difficult task, one restricts attention to special classes
of regular semigroups. For a background on this subject, consult [1].

The special regular semigroups treated here are of the following form. Let V be a
regular semigroup, S be an ideal of V and Q = V/S be the corresponding Rees quotient.
In addition, we require that the ideal extension V of § by Q be strict, that is, that the
multiplication in V is determined by a partial homomorphism ¢:Q*— S. Finally, we
assume that Q is an orthogonal sum of O-simple semigroups and that Q is categorical at
zero. With these hypotheses, we are able, in the final theorem of the paper, to determine
necessary and sufficient conditions on the ingredients making up V that K be a
congruence on 4(V). They involve the same type of condition on § and the O-simple
components of Q as well as on the partial homomorphism ¢. On the way to proving this
result, we establish several statements of more general interest. For congruences on
general ideal extensions of semigroups, see [2].

Section 2 contains some notational conventions and special terminology and Section
3 some general results. The case when Q is O-simple and categorical at zero is treated in
Section 4. The necessary statements leading to the desired generalization are established
in Section S.

2. Notation and terminology. The equality and the universal relations on any set X
are denoted by € and w, or ex and wy, respectively. The restriction of a function or a
relation 6 to a set X is denoted by 8|x. If 8 is an equivalence relation on X and x € X,
then x8 denotes the 6-class containing X. If also A € X, then

A0 ={x € X | x6a for some a € A}

is the saturation of A by 0; if AG = A, then 0 saturates A. If X and Y are sets, then
X\Y={xeX|xeY)

Let R be any semigroup. By 4(R) we denote the congruence lattice of R. If A& R,
E(A) denotes the set of idempotents in A. For p € 4(R),

kerp ={a € R | ape for some e € E(R)}
is the kernel of p. The kernel relation K is defined by
AKp if kerA=kerp (A, p € 6(R)).
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If R has an identity, let R' = R, Otherwise let R' stand for R with an identity adjoined.
For a € R, J(a) denotes the principal ideal of R generated by a.

Now let R be nontrivial and have a zero. If R, for @ € A is a system of subsemigroups
of R containing the zero of R, whose union is R and satisfying R,Rz; =R, N Rg ={0}
whenever a # 8, then R is an orthogonal sum of semigroups R,, to be denoted by EA R,.
Further, R is categorical at zero if for any a,b,c € R, ab #0 and bc # 0 implies abc #0.
Clearly, if R is an orthogonal sum of semigroups R,, then R is regular (respectively,
categorical at zero) if and only if R, is regular (respectively, categorical at zero) for every
a € A. We write R* = R\{0}. If p € 4(R) and Op = {0}, then p is O-restricted. By 6,(R) we
denote the set of all O-restricted congruences on R. The relation { defined by

algb if xay=0&xby=0 forall x,y e R!

is the greatest O-restricted congruence on R.

Let V be a regular semigroup, S be an ideal of V and Q = V/S be the Rees quotient
of V relative to the ideal S. Then V is an (ideal) extension of § by Q. A mapping
¢:0*— S is a partial homomorphism if for any a,b € Q*, ab#0 in Q implies that
(ab)e = (ap)(be). If in addition

(ap)b ifaeQ*bes,
ab =14 a(by) ifaeS,beQ*
(ap)(bp) ifa,be Q*,abes,

then the multiplication in V' is determined by ¢ and V is a strict extension of S. In such a
case, the mapping ¢ defined by
{a(p ifa e Q*
Yra—>

a ifaesl

is a retraction of V onto S.

The notation introduced in the preceding paragraph will be fixed throughout the
paper, where we take V =S U Q*.

We now extract from [2, Corollary 1 to Theorem 1 and Proposition 2] the following
description of congruences on V. Let o € €(S), P be an ideal of Q and 7 € %,(Q) be such
that a,b € Q*, atb implies apabe. In such a case, (o, P, 7) is an admissible triple for
which we define a relation v on V by

ath if a,b € Q\P,

ayaby ifa,beSUP

Then v is a congruence on V and conversely, every congruence on V has this form for
unique o, P and 1.

The notation v = %(c, P, 1) will always denote the above congruence implicitly
implying that (o, P, t) is an admissible triple.

avb@{

3. General results. The first result here is of general interest, the remaining ones
will be used later, some of them several times.

ProrosiTION 3.1. Let R be a regular semigroup such that K is a congruence on é(R)
and let H be a homomorphic image of R. Then K is a congruence on ¢(H).
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Proof. We let 0 be a congruence on R and consider H = R/6. Let A, p, 7 € 6(H) be
such that AKp. For & € {A, p, 7}, we define a relation & on R by

adb if a®sbe.
Then & is a congruence on R. We show next that XKﬁ. Indeed, for a € R, we have
a € ker A& ara’& abra’0 = (ab)?
& abp(ab) =a’*0Sapa’*ca e kerp

and thus ker A = ker 5 whence AKp. It follows by hypothesis that Av TKp v T.
It is well known that the mapping

y—=% (ye9R))

where a67b8 (a,b € R), induces an isomorphism of the interval [6, w] of 4(R) onto
%(H). Since & =8 for & € {A, p, 7}, it follows that AvT=Avrand pjvT=pvt Hence
AvtKp v tso that for any a € R,

ab e ker(Av 1) a6 v 1(a8)? = a’0 Sar v 1a°
Sapv1a’Sabp v 1220 = (ah)?
Sabeker(pvr)
which proves that Av tKpv 7 and K is a congruence on $(H). O

CoRrOLLARY 3.2. Assume that K is a congruence on (V). Then K is a congruence on
both €(S) and 4(Q).

Proof. Note that Q =V /S =V/p where p is the Rees congruence on V relative to
the ideal S. Also S is a retract of V under the retraction ¢ and is thus a homomorphic
image of V. The assertions now follow by Proposition 3.1. O

According to Proposition 3.1 the class X of all regular semigroups S for which K is a
congruence on 4(S) is closed under homomorphic images. That J is not closed for taking
direct products is exhibited on the example of a direct product of a 2-element semilattice
by a 2-element group. That ¥ is not closed for taking of regular subsemigroups can be
seen as follows.

For the concepts and results used below, we refer to [5]. Let § = B(G, a) be a Reilly
semigroup where G = Z,, the additive group of integers mod 4, and « is the endomor-

phism of G mapping 1 onto 2. Then «? is the trivial endomorphism and thus

M= CJ, ker a” = G. Hence condition (iii) of [5, Theorem 5.5] is trivially satisfied so

that,';)—y condition (vi) of the same reference, K is a congruence on 4(S). Let
T={(m,g,m)eS|m=1}.

Then T is a semilattice of groups

Gi={(i,g.i)|ge G}, i=0,1
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determined by the homomorphism
¢:(0,8,00>(1,82,1)=(0,8,0)(1,e,1) (g€ G)

Since ¢ is not the trivial homomorphism, [S, Theorem 4.7] implies that K is not a
congruence on €(T). Here T is a regular subsemigroup of S.

Lemma 3.3. For v = 4(o, P, 1), we have
ker v=ker o U{a € P*|ag e ker g} U (ker 7)*.

Proof. Since o =v

s, we have ker vN S =ker o. If a € P*, then

a ekerveave forsome e e E(SUP*)

©apvey forsome e e E(SUP*)
Sagoe forsome e e E(S)<agp e kero.

Clearly, fora e Q\P,aekerv&aceckert. O

Lemma 3.4. ([4, Theorem 3.6]). Let v;=%(o;, P, 1;) for i=1,2. Then v,vv,=
€(o, P, T) where 0 = oy v gy, P=(P,U P)(1, Vv 1) and 1 is the O-restricted congruence on
Q| P satisfying the condition T |pp = (T1V T2)| o

LemMMA 3.5. Let ve (V) and a,b € Q* be such that avb. Then apvbe.

Proof. Let x € S. Then axvbx and xavxb and also ax = (a¢)x and xa = x(ap) so that

(a@)xv(be)x and x(ap)vx(be). Letting o = v|s, we note that S/o is weakly reductive and
thus apvbe. [

4. The case of O 0-simple and categorical at zero. In order to treat this case, we
need some preliminary lemmas. The second one is stated in somewhat greater generality
than necessary.

Lemma 4.1. Let (o, P, 1) and (o', P', ') be admissible triples such that cKo', P = P’
and 1K1'. Then €(o, P, 1)K%(c', P, T').

Proof. This follows directly from Lemma 3.3. O

For a partial converse of Lemma 4.1, we have the following result.

LeEMMA 4.2. Assume that in every nonzero $-class of Q there exists an element a such
that ap € E(S) and a*€ S. Let v=%(c,P,1) and v' = 4(c’', P', ') be such that vKv'.
Then oKo', P=P' and ©K71'.

Proof. The assertion oKo' follows by Lemma 3.3. Suppose that P#P'. By
symmetry, we may suppose that P\P' # . Hence P\P’ contains a nonzero $-class J. By
hypothesis, J contains an element a such that ap € E(S) and a® € S. In view of Lemma
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3.3, a € ker v whereas a ¢ ker v'. But then ker v s ker v' contrary to the hypothesis that
vKv'. Therefore P = P'. Now Lemma 3.3 implies that tKt'. O

Lemma 4.3. Let Q be O-simple and categorical at zero. Assume that for a € Q*,
ap € E(S) implies a* € Q*. Let T={, N t' where 1’ is defined by

at’b if a,be Q% ap=bg; 07'0.

Then (es5,Q,€) and (e5,{0},7) are admissible triples. Letting A= €(es,Q,€) and
p = b(es, {0}, 7), we have AKp and ker A = E(S)U{a € O* | ap € E(S)}.

Proof. Clearly t' is an equivalence relation on Q. In order to see that 7 is a
congruence on Q, let ath and c € Q be such that ac #0. Since a{pb, we have ac{pbc
which implies that bc # 0 since {p is O-restricted. But then

(ac)e = (ap)(ce) = (bop)(ce) = (bc)e

which shows that actbc. Similarly, if ac =0, then bc =0 since {, is O-restricted so that
again actbc. Dually, atb implies catch. Therefore 7 is a congruence on Q, and is trivially
O-restricted. If a, b € Q* and x e § are such that ath, then ax = (ap)x = (be)x = bx which
shows that (e, {0}, 7) is an admissible triple.

Clearly (e, Q, €) is an admissible triple. By Lemma 3.3, we have

kerA=E(S)U{a e Q* |ap € E(S)}, ()]

ker p = E(S) U (ker 7)* )
where
(ker 7)* ={a € Q* | ata®} ={a € Q* | alpa?, ap = a’¢p}
={a € O* | a{Qaz, ap € E(S)}. 3

In order to prove that (1) and (2) are equal, in view of (3), it suffices to show that for
a € Q*%, ap € E(S) implies that alpa®. Hence let a € @* be such that agp € E(S). By
hypothesis a* € Q*. We now consider the semigroup Q. Let x,y e @' and note that
a®#0. If xay #0, then xa, a® and ay are different from zero which implies that xa%y #0
since Q is categorical at zero. Conversely, if xa’y #0, then xa and ay are different from
zero and thus xay #0 by the same assumption. We have proved that alpa”. Therefore
AKp, as required. O

We are now ready for the desired result. The theorem below generalizes the main
result in [3] as well as [6, Theorem 7.6].

THEOREM 4.4. Assume that Q is O-simple and categorical at zero. Then K is a
congruence on 4(V) if and only if

(i) K is a congruence both on €(S) and 6(Q),

(ii) either @ : Q*— E(S) or there exists a € Q* such that ap € E(S) and a® € S.

Proof. Necessity. Part (i) follows by Corollary 3.2. Suppose that the second
alternative in part (ii) does not take place. In the notation of Lemma 4.3, we have AKp.
Now let 6 be the Rees congruence on V relative to the ideal S, that is 6 = 6(ws, {0}, €p).
The hypothesis implies that AvOKpv@® which by Lemma 3.4 yields
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€(ws, Q, €5)K6(ws, {0}, 7). It follows by Lemma 3.3 that Q = ker 7 which by Lemma 4.3
gives that ag € E(S) for all a € Q*. Therefore ¢: Q*— E(S).
Sufficiency. We now abbreviate our notation by writing:

[e] ifP=0Q,
po={7
“UoPD=\(, 1 itp=10}
We first observe that by Lemma 3.3 for [¢], [0, 7] € €(V), we have
ker[o]=keroU{a € Q*|ap e kera},  ker[o, 7] = ker o U (ker 7)*,

and thus
[01]K[o2] & 01Ka,
{o1, tlK|oa, 2] & 0 Ko, 1K1,
[01]K[02, T2) © (01K03; ap € ker 0, & a e (ker 1,)%).

We now let v; = 6(o;, P, 7;) for i =1,2 and using Lemmas 4.1 and 3.3 consider several
cases.
Case [01]K[o;). Then o,Ko, so by part (i), also o, v 03K, Vv o3 which gives

[01]v €(03, Ps, 13) = [0 v 03)K[o2 v 03] = [02] v €(03, P3, T3).

Case [0,]K[o2, 12]. Then o,Ko, and 7,K7; so that by part (i), oy vo;Ko,vo; and
7, v 13K7, v T3 which gives

(o1, ] v]os]) = [o1 v o3]K[oy v 03] = [0, T2] V]3],
[, )V [os, 1) = [0y vos, Ty vI3]K[o, v o3, TV T3]
= [0'2, Tz] A\ [0'3, 73].
Case [o)K[o3, 72). Then o Ko, so by part (i), o, v o3;Ko, v o3 which gives
[o1]vios]=[o1 v a3]K[ozv 03] = [02] v[a3].

By Lemma 4.2, the second alternative in part (ii) cannot take place in this case. The first
alternative in part (ii) implies that ker[o] = ker o U Q* for any Q e %(S). In particular,
the hypothesis for this case implies that ker 7, = Q. We now obtain

ker([a,] v [o3, 13]) = ker[o, v o3) = ker(o; vo3) U O, G))]

ker([o,, T2 v[03, T3]) = ker[o, v 03, T v T3]
=ker(o, v o3) U (ker(ry v 73))* %)

where ker(o, v o3) = ker(o, v o3) and ker(r,v 7;3) 2 ker 7, = Q and the expressions in (4)
and (5) are equal. Therefore

[o1] v o3, T3)K][as, T3] v]o373),

as required.
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This exhausts all the cases and thus shows that K is a congruence on 4(V). O

5. The general case. For the proof of the final result in which Q is an orthogonal
sum of 0-simple semigroups categorical at zero, we need a sequence of lemmas.

LemMa S5.1. Let Q be O-simple and let v € 6(V). Suppose that there exist b € Q* and
¢ € S such that bvc. Then for every a € Q*, we have avae.
Proof. Let
I={x e Q* | xvy for some y e S}U{0}.
Then I is an ideal of Q since S is an ideal of V. The hypothesis implies that / # {0} and
thus 7 = Q since @ is 0-simple. Now let a € Q*. From the proven statement, it follows that
avd for some deS. Let xe S Then axvdx and xavxd and since ax = (ap)x and

xa = x(ag), we obtain (ap)xvdx and x(ag)vxd. Since this holds for all x € S and S/(v|s) is
weakly reductive, we conclude that agvd. But then avap. O

Lemma 52, Let Q= 3 Q, where Q, is O-simple for every a € A. Also leta,b eV,
acA
v e G(V) and avb. Then ayvby.

Proof. We consider several cases.

Case a,b € S. This case is trivial since ay = a, by = b.

Case a € S, b e Q* Then b € QF for some « € A which by Lemma 5.1 implies that
bvby. Hence ay = avbvbi.

Case a € Q*, b € S. This is dual to the preceding case.

Case a,b e Q*. This case follows directly from Lemma 3.5. O

In the sequel, Q= ¥ Q, where for each a € A, Q, is O-simple (and regular). For

acA
every a € A, let
Vo=SUQ3Z

so that V, is an ideal of V. The next result shows that V, is a retract of V.

Lemma 5.3. Fix « € A and define a mapping x by

{a—»a ifaeV,,
a—ap ifaeV\V,.

Then x is a homomorphism of V onto V,,.
Proof. Leta,beV.IfaeV,and b ¢ V,, then
(ax)(by) = a(be) = ab = (ab)y.

The casea ¢ V,and b € V, is dual. If a, b ¢ V,, then either a, b,ab € Q} for some B € A,
in which case '

(ax)(by) = (ap)(be) = (ab)e = (ab)y;

oraeQp, beQ%abeS for some B,y € A in which case

(ax)(bx) = (ap)(be) = ab = (ab)y.
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The case a, b e V, being trivial, we conclude that y is a retraction of V onto V,. O
The next result is of indepedent interest.
ProprosiTiION 5.4. Let Q = OEA Q. where Q, is O-simple for every a € A and let

Vq € G(V.,) be such that v,|s = vs|s for any a, B € A. Define a relation v on V by: for
aeV, beV,,
av,b ifa =,

vb <=>{
a apv.be ifa#B, ac Q% av.ap,b e Q% bvsbe.

Then v is a congruence on V. Conversely, every congruence on V can be so represented for
unique V,.

Proof. Let v be as defined above. Clearly v is reflexive and symmetric. Let a e V,
b € Vg and c € V, be such that avb and bvc. We consider several cases.

Case a = B = v. Then av,bv,c so that avc.

Case a # B =. Thena € Q3, b € Qf, av,ap, bvghbo, apv,be, bvge. If c € Q}, then
apv,bev,ce and cv,co so that ave. If ¢ € §, then ¢ € V, and bevgbvgce implies that bevge
so that av,aev,bev,c and thus avc.

Case a = B # v. This is similar to the preceding case.

Case a # 3 #v. Then a € Q% b € O} and c e QF. This splits into two cases.

Subcase a # y. Then apv,bevsce and av,ap, cv.,ce imply that avc.

Subcase a = y. Then av,apv,bevgcev,c implies that av,apv,cov,c so that avc.

Therefore v is transitive and is thus an equivalence relation.

In order to show that v is a congruence, we let a e V,, b € V; and c € V,, be such
that avb.

Case a = B. If y= a, then trivially acvbc. Otherwise, possibly using Lemma 5.2, we
get ayv, by and thus

ac = (ay)(cy)va(bip)(cy) = be
so that again acvbc.
Case a # B. Then a € Q%, b € Qf, av,ap, bvgbe, apv,be.

Subcase a = vy. Then bc = (be)(ce) € S. This splits further into two subcases.
Subsubcase ac € QF. Then

acv,(ap)c = (ap)(ce)Va(be)(cp) = be
so that acvbc.
Subsubcase ac € S. Then
ac = (ag)(cy)va(bo)(cy) = be
and again acvbc.

Subcase B = y. This is dual to the preceding case.
Subcase a # vy # . Then

ac = (a¢)(cy)va(be)(cy) = be

and acvbc.
Therefore v is a congruence on V.
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Conversely, let v be a congruence on V. For every a € A, let v, =v|,. Then
Vo € 4(V,) and v,|s = v|s = vg|s. In order to see that v can be obtained as in the first
part of the proposition, it suffices to prove that fora € Q%, b € O}, a # B8, avb if and only
if avapvbevb.

Assume first that avb. If @’ is an inverse of a, then a =aa’'avba’a where ba'a € S.
Hence Lemma 5.1 implies that avap. Also Lemma 3.5 gives agvbe. Again Lemma 5.1
provides bevb so that avapvbevb. The converse is obvious by transitivity.

Trivially, the congruences v, = V|v, are unique. O

LemMma 5.5, Let Q= 3 Q., where Q. is O-simple for every a € A,a e V,, b e V\V,,
acA

v e 6(V), avb. Then avbe.

Proof. First note that b e Q* If a € §, then avb by Lemma 5.1 implies that bvbe
and thus avbe. If a € O*, then Proposition 5.4 gives avapvbe so again avbe. O

LEMMA 5.6. Let Q= 3 Q, where Q, is O-simple for every a € A, A,p € €(V) and
aecA

v.=@Avp)ly.

p' =plv., (Avp) =(Avp)|y,. Clearly A’,p'c(Avp)' and
thus A'vp' (A vp) For the opposite inclusion, we let a(A v p)'b. Hence there exists a

sequence
aAx,px;Ax3. .. X,pb (6)
for some x,, x3,...,x, € V. We claim that sequence (6) implies the following sequence
ary,py:Ays. . . yapb (M
where

_ {x,- ifx, eV,
Y x;¢ otherwise.

The proof of the claim is by induction on i/ in the following statement

Ay, pysAys .. YidXiap ... X,pb

the case y;px;,, being analogous, where y,=a and x,.,., =b.

The case i =0 is a special case of the general step i. For that step, we have the
following cases.

(i) x;,x;+, € V,. This case is trivial.

(ii) x; € V,,, x;41 ¢ V,. Then x;Ax;,, ¢ by Lemma 5.5.

(iil) x; ¢ V,, x;4, € V,. This is dual to the preceding case.

(iv) x;,x;.1 ¢ V,. Then x;pAx;,,¢ by Lemma 3.5.

By induction, the assertions contained in sequence (7) are proved. Since y; € § we
have y; eV, for i=1,2,...,n and thus aA’vp’'b. Therefore (Avp) cA'vp’' and
equality prevails. O

LemMmA 5.7. Let Q= 3 Q, where Q, is 0-simple for every a € A and let v € G(V).
aeA
Then kerv= | ker(v|y,).
acA
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Proof. Let a ekerv. Then ava® and thus, if aeV,, we have av|, a* so that
a e ker(v|y). It follows that ker v< | ker(v|y,) and the opposite inclusion is trivial. 0.
aeA

The next result is of independent interest.
ProrosiTION 5.8. Let Q= 3 Q, where Q, is O-simple for every a € A. Then K is a
acA
congruence on (V) if and only if K is a congruence on €(V,) for every a € A.

Proof. Necessity. By Lemma 5.3, for any a € A, V,, is a homomorphic image of V and
thus, by Proposition 3.1, K is a congruence on 4(V,).
Sufficiency. Let A, p, 6 € (V') be such that AKp and let @ € A. Then

ker(A|y,) =ker ANV, =kerp NV, =ker(p|y)

and thus A|y, Kp|,.. The hypothesis implies that A|y, v 6}y, Kp|y, v 8|y, which by Lemma
5.6 gives (A v 8)|,, K(pv8)|,,. Since this holds for any @ € A, Lemma 5.7 implies that
Av O0Kp v 6. Therefore K is a congruence on €(V). O

We are now ready for the main result of the paper.

THEOREM 5.9. Let V be a regular semigroup and a strict extension of S by Q, with the
multiplication determined by ¢ : Q*— S. Assume that Q is an orthogonal sum of 0-simple
semigroups Q., a € A, categorical at zero. Then the following statements are equivalent.

(i) K is a congruence on €(V).
(ii) Letting V, =S U Q¥ K is a congruence on 6(V,) for every a € A.
(iii) K is a congruence on 6(S) and for every a € A, K is a congruence on 6(Q,) and
either ¢ : Q*— E(S) or there exists a € Q} such that ap € E(S) and a®> € S.

Proof. The equivalence of parts (i) and (ii) is a special case of Proposition 5.8,
whereas the equivalence of parts (ii) and (iii) follows directly from Theorem 4.4. O

We conclude by giving an abstract characterization of the semigroups Q appearing in
the above theorem.

ProrosiTion 5.10. Let Q be a nontrivial regular semigroup with zero. Then Q is an
orthogonal sum of O-simple semigroups if and only if for any e,f € E(Q*), e <f implies

that e #f.
Proof. Necessity. Let Q = 3 Q, where Q, is O-simple for every @ € A and let
aeA

e,f € E(Q*) be such that e<f. Then e e Q, and f € Q4 for some a,B € A and e =ef
implies that a = 8. But then e$f since Q, is 0-simple.

Sufficiency. Let a,b € Q be such that ab #0, let x be an inverse of a and y be an
inverse of ab. Then (abyax)ab = ab # 0 so that e = abyax #0,

e? = (abyax)(abyax) = (abyab)yax = abyax =e,

e(ax) = (ax)e =e.

Hence letting f = ax, we obtain e,f € E(Q*) and e <f. If e =f, then e#f. Otherwise e <f
and the hypothesis implies that e#f. Now a € J(f) =J(e) =J(ab) so that J(a) = J(ab).

https://doi.org/10.1017/50017089500031785 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500031785

EXTENSION OF CERTAIN SEMIGROUPS 357

The opposite inclusion always holds and thus ajab A similar argument will show that
also b #ab so that a ¢b.

We have proved that ab 0 implies a}b}ab. By contrapositive, we conclude that Q
is an orthogonal sum of nonzero $-classes together with zero, and these are clearly
O-simple. O
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