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Monotonically Controlled Mappings

Libor Pavlı́ček

Abstract. We study classes of mappings between finite and infinite dimensional Banach spaces that

are monotone and mappings which are differences of monotone mappings (DM). We prove a Radó–

Reichelderfer estimate for monotone mappings in finite dimensional spaces that remains valid for DM

mappings. This provides an alternative proof of the Fréchet differentiability a.e. of DM mappings.

We establish a Morrey-type estimate for the distributional derivative of monotone mappings. We

prove that a locally DM mapping between finite dimensional spaces is also globally DM. We introduce

and study a new class of the so-called UDM mappings between Banach spaces, which generalizes the

concept of curves of finite variation.

1 Introduction

The class of real functions defined on a real interval that can be written as a differ-

ence of two nondecreasing functions appeared for the first time in works of Camille

Jordan. It is a standard result that this class coincides with the class of functions

with locally finite variation. The functions of bounded variation were generalized to

higher dimensions by Enrico de Giorgi and appeared to be an important tool for the

study of geometric variational problems. The theory of monotone operators in Ba-

nach spaces was developed in the 1960’s as a powerful method for solving nonlinear

partial differential equations of elliptic or parabolic type.

The Russian geometer A. D. Alexandrov studied functions of several real variables

that are a difference of two convex functions. The concept of such functions was

generalized and investigated by L. Veselý and L. Zajı́ček in the fundamental paper [17]

and further developed in [6]. These mappings have many interesting applications in

differentiation or optimization theory.

We will study multi-mappings from a Banach space to its dual space that are

monotone and that are differences of two monotone mappings (here called DM).

We show that in finite-dimensional spaces the global and local definitions of the DM

property coincide. The analogous result for monotone mappings holds in an arbi-

trary dimension. We prove a Morrey-type estimate for the derivative of a monotone

mapping in Euclidean spaces, and a Radó-Reichelderfer type estimate for monotone

mapping in the finite dimension. These estimates remain valid also for DM map-

pings, but they are not equivalent to the DM property as we show later. Further, we

define the class of UDM mappings, which is a generalization of curves of locally fi-

nite variation. These mappings can be defined between two arbitrary Banach spaces

even in the more general setting of Banach manifolds (however, this generalization is
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not discussed here). The class of UDM mappings also enjoys the Radó–Reichelderfer

property, which is crucial in the proof of the result about the Fréchet differentiability

of UDM mappings.

2 Preliminaries

Let X,Y be real Banach spaces. The norm of the Banach space X is denoted by ‖ · ‖X ,

and for X = R
n we write simply | · |. The symbol B(x, r) stands for the open ball

centered at the point x with the radius r. We use diam A for the diameter of a set

A ⊂ X, and if f : X → Y is a mapping, we define osc( f , A) := diam f (A). The

topological dual space to X is denoted by X∗. The duality pairing between spaces X

and X∗ (or the scalar product for a Hilbert space X) is denoted by 〈x∗; x〉. The norm

closure of a set M ⊂ X is denoted by M. Let Ω ⊂ X be an open set and let f : Ω → Y

be a mapping. A bounded linear operator A : X → Y is called a Fréchet derivative of

the mapping f at a point x ∈ Ω provided that

lim
v→0

f (x + v) − f (x) − Av

‖v‖X

= 0

in the norm of the space Y . We denote the operator A by f ′(x).

Let f : (a; b) → Y be a mapping (curve). For a < c < d < b we define the

variation of f over [c; d]

d
∨

c

f := sup

{

k
∑

i=1

‖ f (ti) − f (ti−1‖Y

}

,

where the supremum is taken over all partitions c = t0 < t1 < · · · < tk = d.

The variation of a vector valued measure µ is a nonnegative measure denoted

by |µ|. M(Ω; Y ) means the Banach space of Y -valued Radon measures on an open

set Ω ⊂ R
n with finite variation endowed with the norm ‖µ‖M(Ω;Y ) := |µ|(Ω). The

Lebesgue measure in R
n is denoted by Ln or | · |.

Definition 2.1 Let U be an open subset of R
n. We say that u ∈ L1(U ) is a function

of bounded variation if the distributional gradient of u is (representable by) a Radon

R
n-valued measure in U with finite total variation. We denote this function space by

BV (U ). The generalization to mappings with values in the space R
d is immediate.

The following proposition can be viewed as a generalization of the well-known

theorem about the Lebesgue points of a locally integrable function.

Proposition 2.2 ([16]) Let X be a normed linear space and µ ∈ Mloc(R
n; X) be a

vector measure that is singular with respect to the Lebesgue measure. Then

lim
r→0+

|µ|(B(x, r))

|B(x, r)| = 0

for Ln-almost all x ∈ R
n.
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3 Monotone Mappings

3.1 Basic Properties

In the sequel the symbol T : M → 2V will denote that Tm is a subset of V (possibly

empty) for every m ∈ M.

Definition 3.1 Let X be a Banach space with the dual space X∗ and let T : X → 2X∗

be a multi-mapping. Let us denote by Dom(T) the set of all points x ∈ X such that

Tx 6= ∅, and let us call it the effective domain of T. We say that T is a monotone

multi-mapping if for every x1, x2 ∈ Dom(T) and every x∗1 ∈ Tx1, x∗2 ∈ Tx2 the

inequality

(3.1) 〈x∗1 − x∗2 , x1 − x2〉 ≥ 0

is satisfied. The mapping T is called maximal monotone if its graph

Gr(T) := {(x, x∗); x ∈ Dom(T), x∗ ∈ Tx}

is not properly contained in a graph of any monotone mapping.

Definition 3.2 (Minty [13]) Let X be a Hilbert space and let M ⊂ X be its arbitrary

subset. Let A : M ⊂ X → 2X be a multi-mapping. The Cayley transformation

Γ : X × X → X × X

is defined by the formula

Γ(x1, x2) := (x1 + x2,−x1 + x2).

We define the mapping Γ♯A via the equality Gr(Γ♯A) := Γ(Gr(A)). Further, the map-

ping Γ
−1
♯ A is a mapping whose graph is Γ

−1 Gr(A).

Proposition 3.3 ([13]) Let M be an arbitrary subset of a Hilbert space X and let

A : M → 2X be a monotone multi-mapping. Then Γ♯A is 1-Lipschitz. On the other

hand, for a given 1-Lipschitz mapping φ : N ⊂ X → X, the multi-mapping Γ
−1
♯ φ is

monotone.

The following propositions are easy facts about monotone mappings and can be

found in a more general form in [1].

Proposition 3.4 Let u : Dom(u) → 2R
n

be a monotone mapping. Then the set of

x ∈ Dom(u), where u(x) is not a singleton, is a Lebesgue null set.

Proposition 3.5 Let u : Dom(u) → 2R
n

be a monotone mapping.Then u is locally

bounded in int Dom(u).

Definition 3.6 We say that a mapping a : M → N, where M, N are abstract sets, is

a selection of a multivalued mapping A : M → 2N if a(m) ∈ A(m) for every m ∈ M.

We write briefly a ∈ A for a being a selection of A.
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The following lemma, which is a form of the extension theorem for monotone

mappings, will be useful. It is possible that this lemma is known, but since we were

not able to find any reference, we sketch the proof.

Lemma 3.7 Let Ω ⊂ R
d be a bounded set and let A : Ω → 2R

d

be a bounded mono-

tone multi-mapping. Then there is a monotone multi-mapping Ā : R
d → 2R

d

, with

Dom(Ā) = R
d, which is an extension of A, i.e., Ā|Ω = A. In particular, for A : Ω → R

d

single-valued there is a single-valued extension.

Proof We define a multi- mapping Ã : G := Ω ∪ (R
d \ B(0, R)) → 2R

d

, by

Ã(x) :=

{

A(x) x ∈ Ω,

x x ∈ R
n \ B(0, R),

where B(0, R) ⊃ Ω and R is so large that the multi-mapping Ã is monotone on the set

G. To show that such R exists we proceed as follows. For x, y ∈ Ω or for x, y ∈ G\Ω

the monotonicity condition is fulfilled trivially. We choose arbitrary points x ∈ G\Ω

and y ∈ Ω, y∗ ∈ A(y).

We have

〈Ã(x) − y∗; x − y〉 = 〈x − y∗; x − y〉 ≥ |x|2 − |x||y| − |y∗||x| − |y||y∗|.

Since |y| ≤ a, |y∗| ≤ b for some constants a, b, we easily see that this expression can

be made nonnegative for |x| ≥ R if we choose R sufficiently large. It is well known

that there is a maximal monotone extension Ā of Ã such that Dom(Ā) ⊃ G. Now it

is easy to deduce from [1, Corollary 1.3] that Dom(Ā) = R
d.

Finally, for A being single-valued, an arbitrary selection of Ā, which coincides with

A on Ω, is surely a single-valued monotone extension of A.

Lemma 3.8 Let A : Dom(A) ⊂ X → 2X∗

be a multi-mapping and let Ω ⊂ Dom(A)

be a convex set. Then the restriction A|Ω is monotone if and only if for each x, h ∈
X, a ∈ A|Ω the function

t 7→ ϕ(x, h, a; t) := 〈a(x + th) − a(x), h〉

is nondecrasing on the interval Ix,h := {t ∈ R; x + th ∈ Ω}.

Proof It is clear that A is a monotone multivalued mapping if and only if each selec-

tion a ∈ A is monotone. Let A be a monotone multi-mapping, a ∈ A its arbitrary

selection, and choose x, h ∈ X, s < t such that ϕ(x, h, a; t) and ϕ(x, h, a; s) are de-

fined. We have

ϕ(x, h, a; t) − ϕ(x, h, a; s) = 〈a(x + th) − a(x), h〉 − 〈a(x + sh) − a(x), h〉

=
1

t − s
〈a(x + th) − a(x + sh), (t − s)h〉 ≥ 0,

since a is monotone.
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Conversely, let ϕ be nondecreasing, choose admissible x, h ∈ X and a selection

a ∈ A. We obtain

〈a(x + h) − a(x), h〉 = ϕ(x, h, a; 1) − ϕ(x, h, a; 0) ≥ 0.

This gives the monotonicity of the multi-mapping A.

Definition 3.9 We say that a multi-mapping A : Ω ⊂ X → 2X∗

is locally monotone

in Ω if for every point x0 ∈ Ω there is a (relative) neighborhood U (x0) of x0 in Ω such

that A|U (x0) : U (x0) → 2X∗

is a monotone multi-mapping.

Lemma 3.10 Let A : Dom(A) → 2X∗

be a multi-mapping and Ω ⊂ Dom(A) be a

convex set. Then A|Ω is monotone if and only if it is locally monotone.

Proof The necessity is obvious.

For the sufficiency recall that, due to Lemma 3.8, it is sufficient to show that for

every selection a ∈ A and every x, h ∈ X such that the function ϕ(x, h, a; ·) is defined,

ϕ(x, h, a; ·) is nondecreasing on its domain. The assumption of the local monotonic-

ity of A implies the local monotonicity of each selection a ∈ A. This gives that the

function ϕ(x, h, a; ·) is nondecreasing at every point of its domain. Thus ϕ is nonde-

creasing as follows from the standard calculus result.

3.2 Differential Theory for Monotone Mappings

Consider a monotone multi-mapping u : R
n → 2R

n

. By Proposition 3.4 the set of

points x ∈ Dom(u) such that u(x) is a singleton is the set of full Lebesgue measure in

Dom(u).

Theorem 3.11 (Mignot [1, 12]) Let u : R
n → 2R

n

be a maximal monotone func-

tion and let D be the set of all x ∈ Dom(u) such that u(x) is a singleton. Then u is

differentiable at almost every x0 ∈ D, i.e., there is a matrix u ′(x0) ∈ R
n×n such that

(3.2) lim
x→x0

y∈u(x)

y − u(x0) − u ′(x0)(x − x0)

|x − x0|
= 0.

Remark 3.12 It is easily seen that for a single valued function u the equation (3.2)

reduces exactly to the Fréchet differentiability of u at x0. The fact that for almost every

point x ∈ Dom(u) there is a matrix u ′(x) satisfying (3.2) follows from a combination

of Theorem 3.11 and Proposition 3.4. The standard proof of Theorem 3.11 uses

the Cayley transformation and the Rademacher theorem. We will provide later an

alternative proof for the single valued case that uses the Radó–Reichelderfer property

of monotone mappings.

Let Ω be open. It is shown in [1] that every monotone mapping u : Ω → R
n is of

class L∞ on every compact subset of Ω. The following result is proved in [1] by using

Proposition 3.3.
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Theorem 3.13 (see [1]) Let u : R
n → 2R

n

be a monotone multi-mapping, and let

Ω ⊂ Ω ⊂ int Dom(u) be a bounded open set. Then u, understood as an element of

L∞(Ω; R
n), is a mapping of the class BV (Ω; R

n). Moreover,

(3.3)

∫

Ω

d|Du| ≤ C[diam Ω + osc(u,Ω)]n,

where the constant C = C(n) depends only on the dimension n.

The possibility of the following refinement of the estimate (3.3) was remarked in

[1]. We provide a proof for the reader’s convenience.

Theorem 3.14 Let Ω ⊂ R
n be an open set, let u : Ω → R

n be a monotone mapping,

and let B0 ⊂ B0 ⊂ Ω be a ball. Then there are constants C = C(n, B0) and C̃ =

C̃(u, n, B0) such that for any ball B(a, r) =: B ⊂ B0

(3.4) −
∫

B

d|Du| ≤ C osc(u, B)

r
≤ C̃

r
.

Proof Let u be a given monotone function and B(a, r) =: B ⊂ B0 a ball, let

λ := osc(u, B).

Choose a point x0 ∈ B; consider the change of coordinates 2rx ′ − x0 = x, and

denote as B ′
= B

(

a+x0

2r
, 1

2

)

the set of all points x ′ corresponding to all points x ∈ B.

We define the monotone function v(x ′) := u(x)
λ . Now we have

∫

B

d|Du|(x) =
λ

2r

∫

B

d|Dv|(x) =
λ

2r

∫

B ′

(2r)nd|Dv|(x ′)

≤ C ′λ(2r)n−1(osc(v, B ′) + diam B ′)n
= C ′ ′ osc(u, B)(2r)n−1,

where we have used the estimate (3.3). The second inequality in (3.4) easily follows,

since osc(u, B) ≤ osc(u, B0). This concludes the proof.

The previous theorem asserts a type of Morrey estimate for the derivative of a

monotone function. Suppose that Du is representable by a locally integrable func-

tion f , then the inequality (3.4) can be read as f ∈ M1,n−1(B0; R
n×n). The Morrey

spaces of functions have broad applications in the regularity theory of weak solutions

of partial differential equations; see [9] for basic facts about Morrey spaces. In our

case we have in fact proved the following.

Corollary 3.15 Let Ω be an open set, let u : Ω → R
n be a monotone mapping, and let

B0 ⊂ B0 ⊂ Ω be a ball. Then the derivative Du of the mapping u belongs to the space of

measures

M1,n−1
∗ (B0; R

n×n) :=

{

τ ∈ M(B0; R
n×n); sup

B(x,ρ)⊂B0

1

ρn−1

∫

B(x,ρ)

d|τ | < ∞
}

.
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Proof The corollary follows immediately from Theorem 3.14.

The following theorem can be viewed in some sense as a reverse inequality for

(3.4). Thus it gives that the expressions appearing in inequality (3.4) are comparable.

Another type of L∞- estimate for monotone mappings is mentioned in [1].

Theorem 3.16 Let Ω ⊂ Ω ⊂ Ω0 ⊂ R
n, where Ω0 and Ω are open sets. There exists a

constant C, depending only on Ω such that

osc(u, B(x0, r))

r
≤ C−

∫

B(x0,2r)

d|Du|

for every monotone function u : Ω0 → R
n and every ball B(x0, r) ⊂ B(x0, 2r) ⊂ Ω.

Proof We abbreviate B1 := B(x0, r) and B2 := B(x0, 2r) and denote d := osc(u, B1).

The set u(B1) can be covered by a finite family B consisting of N = N(n) balls of

the diameter 2ρ := 2
5
d. We can find a ball B := B(z, ρ) ∈ B such that

(3.5) |B1 ∩ {u ∈ B}| ≥ |B1|
N

.

We denote E := B1 ∩ {u ∈ B}. There are two points y, ỹ ∈ u(B1) such that

|y − ỹ| ≥ 4ρ. We can suppose that

(3.6) |y − z| ≥ 2ρ

(at least one of the points y, ỹ satisfies this). Let x ∈ B1 be a point such that u(x) = y.

We consider the cone

U :=
{

y ′; 〈y ′ − y; z − y〉 ≤
√

2

2
|y − y ′||y − z|

}

and define the set

(3.7) E ′ := B2 ∩
{

x ′; 〈y − z; x ′ − x〉 ≥
√

2

2
|x ′ − x||y − z|

}

.

Take a point x ′ ∈ E ′ and set y ′
= u(x ′). We observe

(3.8) 〈y − z; x ′ − x〉 ≥
√

2

2
|x ′ − x||y − z|.

Since u is monotone, we have

(3.9) 〈y ′ − y; x ′ − x〉 = 〈u(x ′) − u(x); x ′ − x〉 ≥ 0.

Define

a :=
x − x ′

|x − x ′| , b :=
z − y

|z − y| , c :=
y − y ′

|y − y ′| .
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Suppose that 〈c;−b〉 >
√

2
2

. Since by (3.8) 〈b; a〉 ≥
√

2
2

, we have

√
2 < 〈b; a − c〉 ≤ |a − c|.

Taking the squares and using |a| = |c| = 1, we have 〈a; c〉 < 0. This contradicts (3.9).

Thus, we have

(3.10) 〈z − y; y ′ − y〉 ≤
√

2

2
|z − y||y ′ − y|.

The inequality (3.10) means that y ′
= u(x ′) ∈ U , consequently u(E ′) ⊂ U .

We have that B is a ball of radius ρ that is contained in the cone R
n \U . The center

z lies on the axis of the cone R
n \U . For each y ′ ′ ∈ ∂U that minimizes the distance

from the point z we have

|z − y ′ ′|2 = |z − y|2 − |y ′ ′ − y|2

and

|z − y ′ ′|2 = |z − y|2 − 2〈z − y; y ′ ′ − y〉 + |y ′ ′ − y|2

= |z − y|2 + |y ′ ′ − y|2 −
√

2|z − y||y ′ ′ − y|.

Hence, we conclude |y ′ ′ − y|2 =
1
2
|z − y|2. Thus, by (3.6) |z − y ′ ′|2 ≥ 2ρ2. By the

triangle inequality we get dist(B,U ) ≥ ρ(
√

2 − 1), and consequently for any x ∈ E

and any x ′ ∈ E ′ we have

(3.11) |u(x) − u(x ′)| ≥ ρ(
√

2 − 1).

The relations (3.5) and (3.7) imply the existence of a constant α = α(n) depending

only on the dimension n such that

(3.12) α|E| ≥ |B2|

and

(3.13) α|E ′| ≥ |B2|.

Using the estimates (3.12), (3.13), and (3.11) we have

d = 5ρ ≤ 5√
2 − 1

1

|E||E ′|

∫

E

∫

E ′

dist(U , B) dxdx ′

≤ 5√
2 − 1

1

|E||E ′|

∫

E

∫

E ′

|u(x) − u(x ′)| dxdx ′

≤ k

|B2|2
∫

B2

∫

B2

|u(x) − u(x ′)| dx dx ′.

(3.14)
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The comparability conditions (3.12) and (3.13) give that the constant k depends only

on the dimension.

The right-hand side of (3.14) can be estimated by using the triangle inequality and

the Poincaré inequality (see [2]) as

k

|B2|2
∫

B2

∫

B2

|u(x) − u(x ′)| dx dx ′

≤ k

|B2|2
∫

B2

(
∫

B2

|u(x) − uB2
| dx +

∫

B2

|u(x ′) − uB2
| dx

)

dx ′

≤ k

|B2|

∫

B2

(

γr−
∫

B2

d|Du| + |u(x ′) − uB2
|
)

dx ′

≤ 2kγr−
∫

B2

d|Du|.

The proof is finished.

Definition 3.17 Let Ω ⊂ R
n be an open set, and let u : Ω → R be a function.

We say that u satisfies a weak Radó–Reichelderfer condition if there is a non-negative

Radon measure µ ∈ M+(Ω) depending only on the function u and the set Ω such

that for arbitrary balls B(a, r) ⊂ B(a, 2r) ⊂ Ω

(3.15)
osc(u, B(a, r))

r
≤ −

∫

B(a,2r)

dµ.

We will say that u satisfies the weak Radó–Reichelderfer property with the weight

µ ∈ M+(Ω). We use the notation u ∈ RR1
∗(Ω). The adaptation for Banach space-

valued mappings is straightforward, and we use the notation u ∈ RR1
∗(Ω; Y ).

Remark 3.18 A class of mappings that enjoy a type of an oscillation bound sim-

ilar to (3.15) appeared for the first time in the monograph [15], where the authors

studied mappings satisfying the bound

(

osc(u, B(r)

r

)p

≤ −
∫

θp,

where 0 ≤ θ ∈ Lp, p = n. The authors also gave applications for change of variables

formulas in an integral. The concept was further studied and developed for other

ranges of the parameter p in [11] and [3]. The generalization for not necessarily

absolutely continuous measures but with p = 1 was done in [4].

Theorem 3.16 implies easily the following corollary.

Corollary 3.19 Let Ω ⊂ Ω ⊂ Ω0 ⊂ R
n, where Ω0 and Ω are open sets and let

u : Ω0 → R
n be a given monotone function. Then u ∈ RR1

∗(Ω; R
n).
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Proof The corollary is an easy reformulation of Theorem 3.16.

Proofs of following two observations are obvious.

Observation 3.20 Let u : Ω → R
n be a mapping, let B0 ⊂ B0 ⊂ Ω be a ball, and

let q : R
n → R

n be a continuously differentiable and Lipschitz continuous mapping.

If the mapping u is of the class RR1
∗(B0; R

n), then the mapping q ◦ u is of the class

RR1
∗(B0; R

n) as well.

Observation 3.21 Let u : Ω → R
n be a mapping, let B0 ⊂ B0 ⊂ Ω be a ball, and let

q : R
n → R

n be a linear mapping. If Du is of the class M
1,n−1
∗ (B0; R

n×n), then D(q◦u)

is of the class M
1,n−1
∗ (B0; R

n×n) as well.

We realize in the next proposition that the mappings of the class RR1
∗ have very

good differentiability properties. The following observation generalizes the result

that can be found in [10]. The proof can be done by a similar way as in [10]. We

deduce this proposition from the result that is due to Duda [5]. Let f : Ω ⊂ X → Y,
where X,Y are Banach spaces and Ω ⊂ X is an open set, be a mapping. Denote

S( f ) :=

{

x ∈ Ω; lim sup
y→x

‖ f (x) − f (y)‖Y

‖x − y‖X

< +∞
}

.

The set S( f ) is a set where the mapping f is pointwise Lipschitz. It is proved in [5]

that if the Banach space Y has the Radon–Nikodým property and X = R
n, then f is

Fréchet differentiable almost everywhere in S( f ).

Assume now that f ∈ RR1
∗(Ω; Y ) and consider the difference quotient from the

definition of the set S( f ). If we set r := |x − y|, we can estimate this quotient as

lim sup
y→x

‖ f (x) − f (y)‖Y

|x − y| ≤ lim sup
r→0+

osc( f , B(x, r))

r
≤ lim sup

r→0+

−
∫

B(x,2r)

dµ.

Next, by the Lebesgue–Radon–Nikodým theorem we can write µ = µs + θLn for

some θ ∈ L1(Ω). Properties of the Radon–Nikodým derivative and Proposition 2.2

imply that

lim sup
y→x

‖ f (x) − f (y)‖Y

|x − y| ≤ θ(x)

for almost every x ∈ Ω. Thus, almost every x ∈ Ω belongs to the set S( f ). This

combined with a result from [5] gives the following proposition.

Proposition 3.22 Let f ∈ RR1
∗(Ω; Y ), where Y is a Banach space having the Radon–

Nikodým property. Then f is Fréchet differentiable almost everywhere in Ω.

Corollary 3.23 Let u : Ω → R
n be a monotone mapping, where Ω ⊂ R

n is an open

set. Then u is Fréchet differentiable at almost every point of Ω.

Proof The corollary follows immediately from Corollary 3.19 and Proposition 3.22.
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4 Differences of Monotone Mappings

4.1 Properties of DM Mappings

Definition 4.1 A multi-mapping A : Ω ⊂ X → 2X∗

is called a DM multi-mapping

if there exist monotone multi-mappings A↑, A↓ : Ω → 2X∗

such that for all x ∈ Ω it

is

Ax ⊂ A↑x − A↓x.

Single-valued DM multi-mappings are called DM mappings. We will also say that

the mapping A has the DM property.

Remark 4.2 We will work mainly with single-valued DM mappings. It is an easy

observation that the class of DM mappings is the smallest linear space generated by

the cone of monotone mappings.

Proposition 4.3 Every Lipschitz mapping from a Hilbert space to itself is a DM map-

ping.

Proof Let α be the Lipschitz constant of A. We use the Schwartz inequality to obtain

〈

(αI − A)x − (αI − A)y; x − y
〉

= α‖x − y‖2 − ‖Ax − Ay‖‖x − y‖

≥ α‖x − y‖2 − α‖x − y‖2
= 0.

Finally, we set A = αI − (αI − A), and the conclusion follows.

Corollaries 3.15 and 3.19 imply two necessary conditions for the DM property of

a mapping u.

Proposition 4.4 Let u : Ω → R
n, where Ω ⊂ R

n is an open set, be a DM mapping,

and let B0 ⊂ B0 ⊂ Ω be a ball. Then the derivative Du belongs to the space of measures

M1,n−1
∗ (B0; R

n×n),

and the mapping u itself belongs to the space RR1
∗(B0; R

n).

Proof Let u = u↑ − u↓, where u↓ and u↑ are monotone mappings.

The estimates for u = u↑ − u↓ follow easily from the estimates for the monotone

mappings u↑ and u↓; see Corollaries 3.15 and 3.19.

Later we will demonstrate that the conditions from Proposition 4.4 are not suffi-

cient for the DM property.

Corollary 4.5 Let Ω ⊂ Ω ⊂ Ω0, where Ω0 and Ω are open sets, and let u : Ω0 → R
n

be a DM mapping. Then u is Fréchet differentiable at almost every point of Ω.

Proof The corollary follows immediately from Corollary 3.23.

Definition 4.6 We say that the mapping A : Ω → X∗ is locally DM if for every

x0 ∈ Ω there is its neighborhood U (x0) such that the restriction A|U (x0) : U (x0) → X∗

is DM.
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The next theorem says that in the finite-dimensional case the DM property de-

pends only on the local behavior of a mapping. A similar theorem for d.c. mappings

was proved by P. Hartman in [7].

Theorem 4.7 Let Ω ⊂ R
d be an open convex set, and let A : Ω → R

d be a locally DM

mapping. Then A is a DM mapping.

Proof Let (Kn)n∈N and (Kn)n∈N be nondecreasing sequences of compact convex sub-

sets of Ω such that

Ω =
⋃

n∈N

Kn =
⋃

n∈N

Kn, K1 ⊂ K1 ⊂ K2 ⊂ K2 ⊂ · · · ,

and the distances dist(∂K j , ∂K j) and dist(∂K j , ∂K j+1) are strictly positive.

Consider the set K1. We find points x1
1, . . . , x1

j(1) ∈ K1 and r1
i > 0 such that

K1 ⊂
j(1)
⋃

i=1

B
(

x1
i ,

1

4
r1

i

)

and such that A is DM as the mapping A : B(x1
i , r1

i ) → R
d. Thus, there are monotone

mappings k1
i : B(x1

i , r1
i ) → R

d, for i = 1, . . . , j(1) such that k1
i − A : B(x1

i , r1
i ) → R

d

are monotone.

We define the sets B1
i := B(x1

i ,
3
4
r1

i ) ∩ K1, where i = 1, . . . , j(1). Consider the

restrictions (k1
i )|B1

i
denoted again as k1

i . These mappings are bounded (this is a con-

sequence of basic properties of monotone mappings; see [14]) monotone mappings

and thus they can be extended to monotone mappings ki,1 : R
d → R

d by Lemma 3.7.

We define

k1 :=

j(1)
∑

i=1

ki,1.

We claim that this mapping is a monotone mapping such that k1 − A is monotone

on the set K1.

It is sufficient to realize that k1 − A satisfies the monotonicity inequality (3.1)

for arbitrary two points that are closer than ε := 1
4

min{r1
i ; i = 1, . . . , j(1)}. But

this is easy: take x, y, |x − y| ≤ ε, then there is a ball B(x1
i ,

1
4
r1

i ) that contains x,

and therefore y is contained in B(x1
i ,

1
2
r1

i ). The monotone mapping ki,1 enjoys the

property that ki,1 −A is a monotone mapping on the set B(xi ,
1
2
r1

i ). This gives that k1

has the desired property as well.

Now we claim the existence of a mapping k1 with the properties:

(i) k1 : R
d → R

d is a monotone mapping,

(ii) k1 − A is a monotone mapping on the set K2,
(iii) k1

= k1 on the set K1.

Assume for a moment that we have constructed such a mapping k1. Then, by

induction, we construct a sequence (kn)n∈N such that

(in) kn : R
d → R

d is a monotone mapping,

(iin) kn − A is a monotone mapping on the set Kn+1,
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(iiin) kn
= kn+1 on the set Kn+1.

Hence the limit limn→∞ kn
=: k exists uniformly on compact subsets of Ω and is

monotone. Since k = k j on K i for j ≥ i, we have that k − A is a monotone mapping

on the whole set Ω.

It remains to construct the mapping k1. For given sets K1 ⊂ K1 ⊂ K2 ⊂ K2 such

that the mapping k1 : R
d → R

d is monotone and k1 − A is monotone on the set K1,

we are looking for a mapping k1 with the properties (i)–(iii). Consider the set K2 \ K1

and the mapping k1 − A. This mapping is locally DM on this set, and thus this set

can be covered by a finite number of open balls G1
1, . . . , G1

m(1) such that there exist

monotone mappings ̺1
1, . . . , ̺

1
m(1) with the property that ̺1

i + k1 − A is monotone

on the set G1
i . We can suppose that dist(G1

i , K1) > ε0 > 0, i = 1, . . . , m(1), since

dist(∂K1, ∂K1) > 0 by the assumption. We can again assume that ̺1
i is bounded on

the set G1
i .

We define the sets G1,i := G1
i ∩(K2 \K1). Let i ∈ {1, . . . , m(1)} be fixed. Consider

the mapping

̺1,i(x) =

{

̺1
i (x) − ci x ∈ G1,i ,

0 x ∈ K1,

where the vector ci ∈ R
d is chosen such that the mapping ̺1,i : K1 ∪ G1,i → R

d is

monotone.

Let us find such vector ci . This vector is chosen suitably if and only if it satisfies

〈̺1
i (x) − ci ; x − z〉 ≥ 0, (x, z) ∈ G1,i × K1.

Thus, it suffices to take ci , which solves the inequality

(4.1) 〈ci ; x − z〉 ≤ −|̺1
i (x)||x − z|, (x, z) ∈ G1,i × K1.

Since the mapping ̺1
i is bounded on the sets G1,i and the sets K1, G1,i are bounded,

we have that the right-hand side of (4.1) can be estimated from below by some α < 0.

The Hahn–Banach theorem (applied on the compact convex sets K1 and G1
i ) enables

us to find di ∈ R
d and ǫ > 0 such that

〈di ; x − z〉 ≤ −ǫ, (x, z) ∈ G1,i × K1.

The desired vector ci is −α
ǫ di .

Let us define the mappings ρ1,i : R
d → R

d as monotone extensions of ̺1,i : G1
i →

R
d (see Lemma 3.7). Set ρ1 :=

∑m(1)
i=1 ρ1,i . Finally k1 := ρ1 +k1 is the desired mapping

satisfying (i)–(iii).

Corollary 4.8 Let A : R
d → R

d be a locally Lipschitz mapping. Then A is a DM

mapping.

Proof This is a direct combination of Theorem 4.7 and Proposition 4.3.

Let us realize one consequence of the construction from the proof of Theorem 4.7.

A mapping A : Ω ⊂ R
d → R

d is called potential mapping if there exists a Gateaux

differentiable function on R
d whose Gateaux differential is A.
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Proposition 4.9 Let A : Ω → R
d be a locally DM mapping and assume that for every

point x ∈ Ω there is a neighborhood U (x) ⊂ Ω and a monotone control mapping

kx, which is potential, such that (kx − A)|U (x) is monotone. Then there is a potential

monotone mapping k : Ω → R
d such that k − A is monotone.

Proof Since the proof is similar to the proof of Theorem 4.7, let us only describe

main changes.

The potential monotone mappings ki,1 are gained from the well-known fact that

every convex L-Lipschitz function defined on a bounded convex set can be extended

to a convex (L-Lipschitz) function defined on the whole space. Further, the potential

monotone mappings ̺1
i that can be written as a selection of the subdifferential of

some convex function ϕ1
i : G1

i → R are modified to functions ρ1,i : R
d → R

d in the

following way. We extend the function ϕ1
i to a convex function ϕ1,i : R

d → R. By

adding an appropriate convex function, which is equal to zero on some large ball con-

taining the set K3, we can suppose that the function ϕ1,i has superlinear growth. Now

we can find by the geometric Hahn–Banach theorem an affine function ai : R
d → R

such that

(ϕ1,i + ai)|K1 < min
G1

i

{ϕ1,i + ai} − 10.

We define

ϕ1,i := max
{

ϕ1,i + ai ; min
G1

i

{ϕ1,i + ai} − 5
}

.

The mappings ρ1,i are suitable selections of the subdifferential of ϕ1,i . The other steps

from the proof of Theorem 4.7 are the same.

The motivation for the following simple observation comes from analogous crite-

ria for d.c. mappings; see [17].

Theorem 4.10 Let D ⊂ X be an open convex set. Then the mapping T : D → X∗

is DM if and only if there is a monotone mapping A : D → X∗ such that for every line

segment L = [L0, L0 + L1],

(4.2)
1
∨

0

T⋆
L ≤

1
∨

0

A⋆
L,

where A⋆
L(t) := 〈A(L0 + tL1); L1〉, and T⋆

L is defined analogously.

Proof Lemma 3.8 implies that the function A⋆
L is nondecreasing. We set B := A − T

and show that B is monotone. Then it suffices to write T = A− (A−T) for the proof

of the DM property of T.

The monotonicity of B will be proved by showing that the function B⋆
L is nonde-

creasing. So let 0 ≤ t1 < t2 ≤ 1 be chosen. We have by the monotonicity of A, the

assumption (4.2) and the definition of the variation that

B⋆
L(t2) − B⋆

L(t1) = A⋆
L(t2) − A⋆

L(t1) − (T⋆
L(t2) − T⋆

L(t1)) ≥
t2
∨

t1

A⋆
L −

t2
∨

t1

T⋆
L ≥ 0.
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In fact, we used the relation (4.2) for the line segment [L0 + t1L1; L0 + t2L1]. This gives

the monotonicity of B.

For the reverse implication we set A := T↑ + T↓, where T = T↑ − T↓ is supposed

to be DM. For arbitrary line segment L we have

1
∨

0

T⋆
L =

1
∨

0

(T
↑⋆
L − T

↓⋆
L ) ≤

1
∨

0

T
↑⋆
L +

1
∨

0

T
↓⋆
L =

1
∨

0

(T
↑⋆
L + T

↓⋆
L ) =

1
∨

0

A⋆
L,

where we used that the functions T
↑⋆
L , T

↓⋆
L are nondecreasing.

4.2 UDM mappings

Definition 4.11 Let X,Y be Banach spaces, and let C ⊂ X be a set. We say that a

mapping F : C → Y is a UDM mapping if there is a monotone operator f : C → X∗

such that for every Q ∈ BL(Y,X∗) the mapping Q ◦ F + f : C → X∗ is monotone. The

monotone operator f is called the control mapping for F.

Remark 4.12 It is an easy observation that if |a| ≤ b and F is controlled by f ,

then aF is controlled by b f . Thus if we consider in Definition 4.11 the operators Q

with the norm bounded by some c > 0, we obtain an equivalent definition, and it

is also obvious that the class of UDM mappings forms a linear space. Further, it is

easy to see that if F : C ⊂ X → Y is a UDM mapping controlled by f and L : Y → Z

is a continuous affine mapping, then L ◦ F : C → Z is a UDM mapping controlled

by lip(L) f . Finally, notice that for the case Y = X∗ every UDM mapping is a DM

mapping. Indeed, we can write

F =
1
2
( f + F) − 1

2
( f − F).

Definition 4.13 Let Ω ⊂ X be an open convex subset of a Hilbert space X. Let

u : Ω → X be a mapping. We say that u is a δ-monotone mapping if there is a number

δ > 0 such that for all x, y ∈ Ω

(4.3) 〈u(x) − u(y); x − y〉 ≥ δ‖u(x) − u(y)‖X‖x − y‖X.

Remark 4.14 The class of the δ-monotone mappings is studied in papers by L. Ko-

valev in detail (see for instance [8]).

Proposition 4.15 Every δ-monotone mapping is a UDM mapping. Consequently each

linear combination of δ-monotone mappings is a UDM mapping.

Proof Let Q ∈ BL(X) be arbitrary. We use (4.3) to estimate

〈Q ◦ u(x) − Q ◦ u(y); x − y〉 ≤ ‖u(x) − u(y)‖X‖x − y‖X ≤
〈u

δ
(x) − u

δ
(y); x − y

〉

.

Hence, u/δ is a control mapping for u, and consequently, u is a UDM mapping.

The following lemma will be useful.
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Lemma 4.16 Let X,Y be Banach spaces, and let x ∈ X and y ∈ Y be fixed. Then

‖x‖X‖y‖Y = sup{〈Qy; x〉; Q ∈ BL(Y,X∗)}.

Proof We can suppose that ‖x‖X = ‖y‖Y = 1. The Hahn–Banach theorem implies

the existence of functionals x∗ ∈ X∗, y∗ ∈ Y ∗ with the norms equal to one such that

〈x; x∗〉 = 〈y; y∗〉 = 1.

We define the operator Qx,yz := 〈y∗; z〉x∗. It is evident that ‖Q‖ ≤ 1. We have

〈Qx,y y; x〉 = 〈y∗; y〉〈x∗; x〉 = 1.

This concludes the proof.

Corollary 4.17 Let C ⊂ X be a set, and let F : C → Y and f : C → X∗ be mappings.

Then the following assertions are equivalent:

(i) F is UDM with a control mapping f ;

(ii) the estimate

(4.4) ‖F(x1) − F(x2)‖Y‖x1 − x2‖X ≤ 〈 f (x1) − f (x2); x1 − x2〉

is satisfied for all x1, x2 ∈ C.

We will call the inequality (4.4) the control inequality.

Proof The corollary is an immediate consequence of Lemma 4.16.

Corollary 4.18 Let Fn : C ⊂ X → Y and fn : C → X∗, n ∈ N be sequences of

mappings. Assume that each Fn is a UDM mapping with a control mapping fn and that

for every x ∈ C it is Fn(x) → F(x), fn(x) → f (x) weakly-∗ as n → ∞. Then F is a

UDM mapping with the control mapping f .

Proof We pass directly to the limit in the inequality

‖Fn(x) − Fn(y)‖Y‖x − y‖X ≤ 〈 fn(x) − fn(y); x − y〉.

Corollary 4.19 Let C be an open convex subset of R
n, and let Y be a Banach space.

Assume that F : C ⊂ R
n → Y is a UDM mapping. Then F ∈ RR1

∗(C ; Y ).

Proof The proof is an easy combination of Lemma 4.17 and the definition of the

class RR1
∗ (Definition 3.17). Let f be a control mapping for F. Let µ ∈ M+(C) be

a weight from the RR1
∗ property of the mapping f . Let B(x0, r) ⊂ B(x0, 2r) ⊂ C be

balls. We have for x, y ∈ B(x0, r) that

‖F(x) − F(y)‖Y

r
≤ | f (x) − f (y)|

r
≤ osc( f , B(x0, r)

r
≤ −

∫

B(x0,2r)

dµ,

and we pass to the supremum for x, y ∈ B(x0, r).

Proposition 4.20 Let Y be a Banach space and let F : (a; b) → Y be a mapping. Then

F is a UDM mapping if and only if F has locally finite variation.
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Proof Let F be a UDM mapping, f : (a; b) → R be its nondecreasing control map-

ping and let a < c < d < b be arbitrary. By using the Hahn–Banach theorem and by

the control property we obtain

d
∨

c

F = sup

{

k
∑

i=1

‖F(ti) − F(ti−1)‖Y ; c = t0 < t1 < · · · tk = d

}

= sup

{

k
∑

i=1

sup{〈F(ti) − F(ti−1); y∗〉; ‖y∗‖Y∗ ≤ 1}; c = t0 < t1 < · · · tk = d

}

≤ sup

{

k
∑

i=1

| f (ti) − f (ti−1)|; c = t0 < t1 < · · · tk = d

}

=

d
∨

c

f < +∞.

Conversely, let F : (a; b) → Y be a mapping of locally finite variation. Choose arbi-

trary c ∈ (a; b) and define

f (t) =















t
∨

c

F t ≥ c,

−
c
∨

t

F t < c.

If y∗ ∈ BY∗ , a < s < t < b are given, we have

〈F(t) − F(s); y∗〉 + f (t) − f (s) ≥ f (t) − f (s) − ‖F(t) − F(s)‖Y ≥ 0.

Thus, f is a control mapping for F.

The following two theorems present simple results about compositions of UDM

mappings. Let V, X be Banach spaces, and let L ∈ L(V, X) be a bounded linear

operator. The adjoint operator of L is denoted by L∗. The operator L ∈ L(V, X) is

called bounded from below if there is ǫ > 0 such that for every v ∈ V there holds

‖Lv‖X ≥ ǫ‖v‖V .

Theorem 4.21 Let V, X,Y be Banach spaces and let D ⊂ V and C ⊂ X be open

convex sets. Let L ∈ L(V, X) be a bounded linear operator which is bounded from below

and which fulfills LD ⊂ C. Let F : C → Y be a UDM mapping. Then the composition

F ◦ L : D → Y is a UDM mapping.

Proof Let ǫ > 0 be a non-negative number from the boundedness from below of the

operator L. Let f : C → X∗ be a monotone control mapping for F, and let u, v ∈ D

be arbitrary. We have

‖F ◦ L(u) − F ◦ L(v)‖Y‖u − v‖V ≤ 1

ǫ
‖F ◦ L(u) − F ◦ L(v)‖Y‖Lu − Lv‖X

≤ 1

ǫ
〈 f ◦ L(u) − f ◦ L(v); Lu − Lv〉

=
1

ǫ
〈L∗ ◦ f ◦ L(u) − L∗ ◦ f ◦ L(v); u − v〉.

Thus we see by Corollary 4.17 that 1
ǫ L∗ ◦ f ◦ L : D → V ∗ is a monotone control

mapping for F ◦ L.
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Theorem 4.22 Let X,Y, Z be Banach spaces, let C, D be an open convex set of X, Y

respectively. Assume that F : C → D is a UDM mapping with a control mapping f ,

and let G : D → Z be Lipschitz continuous with a constant ℓG. Then the composition

mapping G ◦ F : C → Z is a UDM mapping with the control mapping ℓG f .

Proof Let Q ∈ BL(Z,X∗) and x, y ∈ C be arbitrary. We use Corollary 4.17 and the

Lipschitz continuity of G to estimate

〈Q ◦ G ◦ F(x) − Q ◦ G ◦ F(y); x − y〉 ≤ ℓG‖F(x) − F(y)‖Y‖x − y‖X

≤ 〈ℓG f (x) − ℓG f (y); x − y〉.

Thus, ℓG f is a control mapping for G ◦ F, and hence G ◦ F is a UDM mapping.

The inspiration for the following theorem is the well-known fact that every curve

of locally finite variation, which takes values in a Banach space with the Radon–

Nikodým property, is Fréchet differentiable almost everywhere.

Theorem 4.23 Let C ⊂ R
n be an open convex set, and let Y be a Banach space having

the Radon-Nikodým property. If F : C → Y is a UDM mapping, then F is Fréchet

differentiable almost everywhere in C.

Proof This theorem is a consequence of Corollary 4.19 and Proposition 3.22.

Remark 4.24 The straightforward generalization enables us to consider not neces-

sarily UDM mappings but only mappings that are locally UDM, i.e., for every x ∈ C

there is a ball U (x) such that F|U (x) is a UDM mapping.

4.3 Some Examples of DM and UDM Mappings

Example 4.25 We show that in contrast to the one-dimensional case there is a

mapping u ∈ BV (Ω; R
n) that is not DM. Let L = [L0; L0 + L1] ⊂ Ω be a closed line

segment, and let v : Ω → R
n be a DM mapping. We denote v⋆

L(t) = 〈v(L0 + tL1); L1〉.
We have

∨1
0 v⋆

L < ∞ by Lemma 3.8. Suppose that we have a function u1 ∈ BV (Ω)

for which
∨

(u1, L) = ∞ holds, where L := [0, e1]. Then we put u := (u1, 0, . . . , 0).

Thus, we have u⋆
L(t) = u1(te1) which gives

∨1
0 u⋆

L = ∞. Thus u cannot be DM. It

is well known that a mapping defined on an open subset Ω of R
n is a mapping of

bounded variation if and only if it has a representative that has the bounded varia-

tion over almost all line sections of Ω by the lines parallel with the coordinate axis.

Examples of functions of bounded variations that do not have the finite variation on

all line segments are known. We construct such an example by using the results about

monotone mappings.

For the transparency we will work only in the two-dimensional space but it will

be clear that a similar construction can be done in a space of an arbitrary finite di-

mension. Let [a; b] ⊂ R be a compact interval and let f : [a; b] → R be an arbitrary

bounded function which does not have the finite variation
∨b

a f . Consider the map-

ping u : D := [a; b] × {0} ⊂ R
2 → R

2 defined by the formula

u(x1, x2) = (x1, f (x1)).
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It is easy to see that this mapping u : D → R
2 is monotone and bounded. Lemma 3.7

enables us to find a mapping v : R
2 → R

2 that is a monotone extension of the map-

ping u. Using Theorem 3.13 we have that v is a mapping of locally bounded varia-

tion. Let Q : R
2 → R

2 be a linear mapping given by the matrix Q =
(

0 −1
1 0

)

. This

linear mapping, which is in fact the anti-clock-wise rotation by the angle π/2, is ob-

viously Lipschitz continuous; thus the composition −w(x) := Q ◦ v(x) is a mapping

of bounded variation (see [2]). Since 〈w(te1); e1〉 = − f (t) the mapping w cannot be

DM again by Lemma 3.8.

Let us realize that this example also gives a counterexample of a DM mapping

that is not a UDM mapping, and it also demonstrates that satisfying the Radó–

Reichelderfer condition by the mapping v and the Morrey condition by the measure

Dv is not sufficient for posing the DM property by the mapping v. Indeed, first ob-

serve that v is a UDM mapping. Theorem 4.22 asserts that w = Q ◦ v is a UDM

mapping as well. But this is a contradiction, since w is not DM as we have ensured.

Further, the mapping v fulfills the Radó–Reichelderfer condition by Corollary 3.19,

and the measure Dv fulfills the Morrey estimate by Corollary 3.15. Observations 3.20

and 3.21 imply that the same conclusion holds for the mapping w = Q ◦ v and the

measure Dw. The absence of the DM property for the mapping w was already dis-

cussed.

Finally, if we consider the mapping z(x) := v ◦ Q(x), we obtain for −t ∈ [a; b],

〈z(te2); e2〉 = 〈u(−t, 0); e2〉 = f (−t).

This demonstrates the non-stability of DM mappings with respect to inner compo-

sitions.

Example 4.26 This example demonstrates some effects for monotone and UDM

mappings that have no counterpart in the case of convex and d.c. functions.

It is easily seen that if Ψ : X → R is a convex function, then Ψ is a d.c. function

with the control function Ψ. We show that there is a monotone mapping F : R
2 →

R
2, no multiple of which can be a control mapping for F in the sense of Definition

4.11.

Let us define F : R
2 → R

2 by the formula

F(x) :=

{

x
|x| x 6= 0,

0 x = 0,

where | · | stands for the Euclidean norm. Let us notice that the mapping

x 7→
{

x
|x|λ x 6= 0,

0 x = 0,

where λ < 1, is shown to be δ-monotone (consequently by Proposition 4.15, UDM)

in [8] (in a bit of a tricky way).

At first we realize that F is a monotone mapping. This follows from the fact that F

is a selection of ∂| · |.
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We show that there is no K > 0 such that

(4.5)
∣

∣

∣

x

|x| −
y

|y|
∣

∣

∣
|x − y| ≤ K

〈 x

|x| −
y

|y| ; x − y
〉

is fulfilled for all x, y ∈ R
2. We can do an analytic computation, but we can proceed

in a more geometric way. The inequality (4.5) in fact means that the angle between

the vectors x− y and F(x)−F(y) is less than or equal to π/2−ǫ, where ǫ = ǫ(K) > 0.

For x1, y1 ∈ S1 set xt := tx1 and ys := sy1. For fixed t > 1 the angle between the

vectors xt − ys and x1 − y1 can be arbitrary close to π/2 by taking s > 0 and |x1 − y1|
sufficiently small . Thus, the inequality (4.5) cannot be fulfilled for any K > 0.

Remark 4.27 Let us note that the previous example is not too surprising. Let X

be a Hilbert space, and let Ω ⊂ X be an open convex set. If a monotone mapping

F : Ω → X is a UDM mapping with some multiple of F as a control mapping, then F

is necessarily δ-monotone. It is proved in [8] (the proof is not obvious) that every δ-

monotone mapping is locally Hölder continuous with an exponent λ depending only

on δ. This is why the discontinuous mapping cannot be controlled by its multiple in

Example 4.26.

Example 4.28 We show an example of a UDM mapping which fails to be continu-

ous in an interior point of its domain. Let us define F(x) := 1{0}, i.e., F(0) = 1 and

F(x) = 0 for R
2 ∋ x 6= 0. Let f := x/|x| for x 6= 0 and f (0) := 0. We have already

realized in Example 4.26 that f : R
2 → R

2 is a monotone mapping.

We prove that F is a UDM mapping with the control mapping f . Since for x, y 6= 0

the control inequality

|F(x) − F(y)||x − y| ≤ 〈 f (x) − f (y); x − y〉

is trivial, we need to check this inequality for x 6= 0 = y. But this is easy, since we

have

|F(x) − F(0)||x| = |x| ≤
〈

x

|x| ; x

〉

.

This gives the desired conclusion.

This example can be easily modified. Let (an)n∈N ⊂ R
2 be a countable dense

subset of R
2, and let Fn(x) := 1

n2 1{an} and

fn(x) :=

{

x−an

n2|x−an| x 6= an,

0 x = an.

We can show as in the first part of the example that Fn is a UDM mapping with the

control mapping fn. The series f :=
∑∞

n=1 fn, converges by the Weierstrass criterion,

and the mapping f : R
2 → R

2 is a monotone mapping. The mapping F : R
2 → R

2

defined by F :=
∑∞

n=1 Fn is also correctly defined. We conclude by Corollary 4.18

that F is a UDM mapping with control mapping f . Thus we have found a UDM

mapping that is discontinuous on the dense set.
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