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Abstract

We study a flexible class of finite-disc process models with interaction between the discs.
We let U denote the random set given by the union of discs, and use for the disc process
an exponential family density with the canonical sufficient statistic depending only on
geometric properties of U such as the area, perimeter, Euler–Poincaré characteristic, and
the number of holes. This includes the quermass-interaction process and the continuum
random-cluster model as special cases. Viewing our model as a connected component
Markov point process, and thereby establishing local and spatial Markov properties,
becomes useful for handling the problem of edge effects when only U is observed
within a bounded observation window. The power tessellation and its dual graph become
major tools when establishing inclusion–exclusion formulae, formulae for computing
geometric characteristics of U, and stability properties of the underlying disc process
density. Algorithms for constructing the power tessellation of U and for simulating the
disc process are discussed, and the software is made public available.
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1. Introduction

This paper concerns probabilistic results of statistical relevance for planar random set models
given by a finite union of discs U = UX, where X denotes the corresponding finite process of
discs. We distinguish between the case where we can observe the discs in X and the random set
case where only (or at most) U is observed. The latter case occurs frequently in applications
and will be of main interest to us.

Our random closed set U is a particular example of a germ–grain model [17], with the grains
being discs. It is well known that any random closed set whose realizations are locally finite
unions of compact convex sets is a germ–grain model with convex and compact grains [43], [44].
However, in order to make statistical inference, we need to restrict attention to a much smaller
class of models such as a random-disc process model, and indeed random-disc Boolean models
play the main role in practice (see [41] and the references therein). The Boolean model is in
an abstract setting given by a Poisson process of compact sets (the grains) with no interaction

Received 21 August 2007; revision received 1 February 2008.
∗ Postal address: Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg,
Denmark. Email address: jm@math.aau.dk
∗∗ Postal address: Department of Probability and Mathematical Statistics, Charles University in Prague, Sokolovská
83, 18675 Praha 8, Czech Republic. Email address: helisova@karlin.mff.cuni.cz

321

https://doi.org/10.1239/aap/1214950206 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950206


322 •SGSA J. MØLLER AND K. HELISOVÁ

between the grains. Many authors (see, for example, [2], [8], [9], [16], [22], and [41]) have
mentioned the need of developing flexible germ–grain models with interaction between the
grains.

We study a particular class of models for interaction among the discs, specified by a point
process density for X with respect to a reference Poisson process of discs. The density is
assumed to be of exponential family form with the canonical sufficient statistic T (X) =
T (U) depending only on X through U, where T (U) is specified in terms of geometric
characteristics for the connected components of U, for example, the area A(U), the perimeter
L(U), the number of holes Nh(U), and the number of connected components Ncc(U). Further
geometric characteristics are specified in Section 4.1 in terms of the power tessellation (see,
for example, [1]), which provides a subdivision of U (see Figure 1 in Section 3). An important
special case of our models is the quermass-interaction process, first introduced in [22], where

T (U) = (A(U), L(U), χ(U)) and χ(U) = Ncc(U)−Nh(U)

is the Euler–Poincaré characteristic (quermass integrals in R
2 are linear combinations of A, L,

and χ ). Another special case is the continuum random-cluster model [15], [23], [28], where
T (U) = Ncc(U).

We show that the power tessellation and its dual graph are extremely useful when establish-
ing

(i) inclusion–exclusion formulae for T (U);

(ii) formulae for computing geometric characteristics of U;

(iii) Ruelle stability and local stability of the density of X, and thereby convergence properties
of Markov chain Monte Carlo (MCMC) algorithms for simulating X.

Note that the use of power diagrams is confined to discs (or balls), while, for example, quermass-
interaction processes for other types of grains have been studied in the literature. Among other
things, we demonstrate that a main geometric result in [22] related to the issue of Ruelle
stability is easily derived by means of the power tessellation and its dual graph. Furthermore,
as explained in Section 4.5, it becomes useful to view our models as connected component
Markov point processes [2], [4], [7], [30] in a similar way as the Markov connected component
fields studied in [33]. In particular, we establish

(iv) local and spatial Markov properties of X, which become useful for handling the problem
of edge effects when only U is observed within a bounded observation window.

The paper is organized as follows. In Section 2 we specify our notation and assumptions,
and discuss a general position property of the discs in X. In Section 3 we define and study
the power tessellation of a union of discs in general position. In the main section, Section 4,
we study exponential family properties and the abovementioned issues (i)–(iv). Also, various
examples of simulated realizations of our models are shown in Section 4. In Section 5 we
discuss extensions of our work and some open problems. Finally, most algorithmic details are
deferred to Appendix A.

A substantial part of this work has been the development of codes in C and R for con-
structing power tessellations and making simulations of our models. The codes are available
at www.math.aau.dk/∼jm/Codes.union.of.discs.
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2. Preliminaries

2.1. Setup

Throughout this paper, we use the following notation and make the following assumptions.

By a disc we mean more precisely a two-dimensional closed disc

b = {y ∈ R
2 : ‖y − z‖ ≤ r}

with center z ∈ R
2 and positive radius r > 0, where ‖ · ‖ denotes the usual Euclidean distance.

We identify b with the point x = (z, r) in R
2 × (0,∞) and write b = b(x) = b(z, r). Similarly,

we identify point processes of discs bi = b(zi, ri) with point processes on R
2 × (0,∞).

The reference point process will be a Poisson process � of discs; thus, the random set given
by the union of discs in � is a Boolean model (see, for example, [27]). Specifically, � is
assumed to be a Poisson point process on R

2 × (0,∞) with an intensity measure of the form
ρ(z) dz Q(dr), where dz is the Lebesgue measure on R

2 and Q is an arbitrary probability
measure on (0,∞). In other words, the point process � of centers of discs given by � is a
Poisson process with intensity function ρ on R

2, the radii of these discs are mutually independent
and identically distributed with distribution Q, and � is independent of the radii. (An example
of a simulation from such a process is shown in Figure 3(a)). The concrete specification of ρ

and Q is not important for most results in this paper, but the specification is of course crucial
for statistical inference (see [32]). Local integrability of ρ is assumed to ensure that, with
probability 1, � ∩ S is finite for any bounded region S ⊂ R

2. Since we can view the radii
as marks associated to the points given by the centers of the discs, we refer to Q as the mark
distribution. In the special case where Q is degenerate at R > 0, we can consider R as a
parameter and identify � with �.

In the sequel S denotes a given bounded planar region such that
∫
S

ρ(z) dz > 0. The object
of primary interest is the random closed set

UX =
⋃
x∈X

b(x),

where X is a finite point process defined on S × (0,∞). If X = ∅ is the empty configuration,
we let UX = ∅ be the empty set. Note that the centers of the discs are contained in S,
but the discs may extend outside S. We assume that X is absolutely continuous with respect
to the reference Poisson process �, and denote the density by f (x) for finite configurations
x = {x1, . . . , xn}with xi = (zi, ri) ∈ S× (0,∞) and 0 ≤ n <∞ (if n = 0 then x is the empty
configuration).

We focus on the case where the density is of the exponential family form, i.e.

fθ (x) = exp(θ · T (Ux))

cθ

, (1)

where θ is a real parameter vector, ‘·’ denotes the usual inner product, T (U) is a statistic of the
same dimension as θ , and cθ is a normalizing constant depending on θ (and of course also on
(T , ρ, Q)). Note that fθ (x) > 0 for all x. Further details on the choice of T and the parameter
space for θ are given in Section 4. Note that (1) is also the density of the random set UX with
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respect to the reference Boolean model and that

cθ = exp

(
−

∫
S

ρ(z) dz

)

×
(

exp(θ · T (∅))+
∞∑

n=1

1

n!
∫

S

∫ ∞
0
· · ·

∫
S

∫ ∞
0

exp(θ · T (U{(z1,r1),...,(zn,rn)}))

×
n∏
1

ρ(zi) dz1 Q(dr1) · · · dzn Q(drn)

)
(2)

is in general not expressible in closed form (unless θ = 0).
As noted in Section 1, a quermass-interaction process is obtained by taking T (U) =

(A(U), L(U), χ(U)), where A(U) is the area, L(U) is the perimeter, and χ(U) is the Euler–
Poincaré characteristic of U. We consider here the so-called additive extension of the Euler–
Poincaré characteristic, which is also of primary interest in [22], i.e.

χ(U) = Ncc(U)−Nh(U), (3)

where Ncc(U) is the number of connected components of U and Nh(U) is the number of
holes of U. The special case where Q is degenerate and T (U) = A(U) is known as the
area-interaction point process, Widom–Rowlinson model, or penetrable spheres model; see,
for example, [3], [15], [22], and [45].

2.2. General position of discs

It becomes essential in this paper that, with probability 1, the discs defined by � are in general
position in the following sense. Identify R

2 with the hyperplane of R
3 spanned by the first two

coordinate axes. For each disc b(z, r), define the ghost sphere s(z, r) = {y ∈ R
3 : ‖y−z‖ = r},

i.e. the hypersphere in R
3 with center z and radius r . A configuration of discs is said to be in

general position if the intersection of any k+ 1 corresponding ghost spheres is either empty or
a sphere of dimension 2 − k, where k = 1, 2, . . . . Note that the intersection is assumed to be
empty if k > 2 and a sphere of dimension 0 is assumed to consist of two points. Figure 1(a)
shows a configuration of discs in general position; we shall use this as a running example to
illustrate forthcoming definitions.

Lemma 1. For almost all realizations of � = {x1, x2, . . .}, the discs b1 = b(x1) and b2 =
b(x2), . . . are in general position.

Proof. By Campbell’s theorem (see, for example, [41]), the mean number of sets of k + 1
ghost spheres whose intersection is neither empty nor of dimension 2− k is given by

∫
R2

∫ ∞
0
· · ·

∫
R2

∫ ∞
0

1
[ k⋂

0

si 	= ∅, dim

( k⋂
0

si

)
	= 2− k

]

×
∏k

0 ρ(zi)

(k + 1)! dz0 Q(dr0) · · · dzk Q(drk),

where 1[·] is the indicator function and si = s(zi, ri). This integral is 0 since, for any fixed
values of r0 > 0, . . . , rk > 0, the indicator function is 0 for Lebesgue almost all (z0, . . . , zk) ∈
R

2(k+1).

All point process models for discs considered in this paper have discs in general position:
by Lemma 1, the discs in X with density (1) are in general position almost surely.
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(a) (b)

(c) (d)

Figure 1: (a) A configuration of discs in general position. (b) The upper hemispheres as seen from above.
(c) The power tessellation of the union of discs. (d) The dual graph.

3. Power tessellation of a union of discs

In this section we define and study the power tessellation of a union of discs

U =
⋃
i∈I

bi .

We assume that the discs bi, i ∈ I , satisfy the general position assumption (GPA).

3.1. Basic definitions

In this subsection there is no need for assuming that the index set I is finite, though this will
be the case in subsequent sections.

For each disc bi, i ∈ I , with ghost sphere si , let s+i = {(y1, y2, y3) ∈ si : y3 ≥ 0} denote
the corresponding upper hypersphere and, for u ∈ bi , let yi(u) denote the unique point on s+i
whose orthogonal projection on R

2 is u. The subset of s+i consisting of those points ‘we can
see from above’ is given by

Ci = {yi(u) : u ∈ bi, ‖u− yi(u)‖ ≥ ‖u− yj (u)‖ whenever u ∈ bj , j ∈ I },
and the GPA implies that the nonempty Ci have disjoint two-dimensional relative interiors.
Thus, as illustrated in Figure 1(b), the nonempty Ci form a tessellation (i.e. subdivision) of⋃

I s+i corresponding to the two-dimensional pieces of upper ghost spheres ‘as seen from
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above’. Projecting this tessellation onto R
2, we obtain a tessellation of U; see Figure 1(c).

Below we specify this tessellation in detail.
Let J = {i ∈ I : Ci 	= ∅}. For i ∈ I , define the power distance of a point u ∈ R

2 from
bi = b(zi, ri) by πi(u) = ‖u− zi‖2 − r2

i , and define the power cell associated with bi by

Vi = {u ∈ R
2 : πi(u) ≤ πj (u) for all j ∈ I }.

For distinct i, j ∈ I , define the closed halfplane Hi,j = {u ∈ R
2 : πi(u) ≤ πj (u)}. Each Vi is a

convex polygon, since it is a finite intersection of closed halfplanes Hi,j . The power cells have
disjoint interiors and, by the GPA, each Vi is either empty or of dimension two. Consequently,
the nonempty power cells Vi, i ∈ J , constitute a tessellation of R

2 called the power diagram
(or Laguerre diagram); see [1] and the references therein. In the special case where all the
radii ri are equal we have I = J and the power diagram is a Voronoi tessellation (see, for
example, [29] and [36]), where each cell Vi contains zi in its interior. If the radii are not equal,
a power cell Vi may not contain zi , since Hi,j may not contain zi .

Let Bi denote the orthogonal projection of Ci on R
2. By Pythagoras, for all u ∈ bi ,

πi(u)+ ‖u− yi(u)‖2 = 0. Consequently, for any i, j ∈ I and u ∈ bi ∩ bj ,

‖u− yi(u)‖ ≥ ‖u− yj (u)‖ if and only if πi(u) ≤ πj (u).

Thus, Bi = Vi ∩ bi . By the GPA and the one-to-one correspondence between Bi and Ci , the
collection of sets Bi, i ∈ J , constitutes a subdivision of U into two-dimensional convex sets
with disjoint interiors. We call this the power tessellation of the union of discs and denote it
by B. Furthermore, if i ∈ J , we call Bi the power cell restricted to its associated disc bi

(clearly, Bi = ∅ if i ∈ I \ J ). Since Vi may not contain zi , Bi may not contain zi ; an example
of this is shown in Figure 1(c). We say that a cell Bi is isolated if Bi = bi . This means that
any disc bj , j ∈ I, intersecting bi is contained in bi ; the disc bi is therefore also said to be a
circular clump (see [27] and the references therein).

It is illuminating to consider Figure 1 when making the following definitions. If the
intersection ei,j = Bi ∩ Bj between two cells of B is nonempty then ei,j = [ui,j , vi,j ] is
a closed line segment, where ui,j and vi,j denote the endpoints, and we call ei,j an interior
edge of B. The vertices of B are given by all endpoints of interior edges. A vertex of B lying
on the boundary ∂U is called a boundary vertex, and it is called an interior vertex otherwise.
Each circular arc on B defined by two successive boundary vertices is called a boundary edge
of B. The circle given by the boundary of an isolated cell of B is also called a boundary
edge or sometimes an isolated boundary edge. The connected components of ∂U are closed
curves, and each such curve is a union of certain boundary edges which either bound a hole,
in which case the curve is called an inner boundary curve, or bound a connected component
of U, in which case the curve is called an outer boundary curve. A generic boundary edge of
B is written as �ui, vi� if Bi 	= bi (a nonisolated cell), where the index means that ui and vi

are boundary vertices of Bi , or as ∂bi if Bi = bi . We order ui and vi such that �ui, vi� is the
circular arc from ui to vi when ∂bi is considered anticlockwise.

By the GPA, any intersection among four cells of B is empty, each interior vertex corresponds
to a nonempty intersection among three cells of B, and exactly three edges emerge at each
vertex. Note that each isolated cell has no vertices and one edge. Each interior edge ei,j is
contained in the bisector (or power line or radical axis) of bi and bj defined by ∂Hi,j = {u ∈
R

d : πi(u) = πj (u)}. This is the line perpendicular to the line joining the centers of the two
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discs and passing through the point

zi,j = 1

2

(
zi + zj +

r2
j − r2

i

‖zi − zj‖2 (zi − zj )

)
.

We call Ei,j ≡ ∂Hi,j ∩ bi = ∂Hi,j ∩ bj the chord of bi ∩ bj . Obviously, ei,j ⊆ Ei,j .
The dual graph D to B has nodes equal to the centers zi, i ∈ J , of discs generating

nonempty cells, and each edge of D is given by two vertices zi and zj such that ei,j 	= ∅. See
Figure 1(d). Note that there is a one-to-one correspondence between the edges of D and the
interior edges of B.

3.2. Construction

We construct the power tessellation of a finite union of discs by successively adding the discs
one by one, keeping track of old and new edges and whether each disc generates a nonempty
cell or not. The updates are local in some sense and used in the ‘birth part’ of the MCMC
algorithm in Section 4.7. For details, see Section A.1.

4. Results for exponential family models

In this section we study exponential family models for the point process X as specified by the
densityf (x) in (1), assuming that the canonical sufficient statisticT (Ux) is a linear combination
of one or more of the geometric characteristics introduced in the following paragraph. We let
supp(Q) denote the support of Q, let

� = {(z, r) ∈ S × (0,∞) : ρ(z) > 0, r ∈ supp(Q)}

denote the support of the intensity measure of the reference Poisson process �, and let N denote
the set of all finite subsets x (also called finite configurations) of � so that the discs given by
x are in general position. By Lemma 1, X ∈ N with probability 1. For ease of exposition, we
assume that all realizations of X are in N , and set f (x) = 0 if x 	∈ N .

We let T (x) be given by one or more of the following characteristics of U = Ux if x ∈ N :
the area A = A(U), the perimeter L = L(U), the Euler–Poincaré characteristic χ = χ(U), the
number of isolated cells Nic = Nic(U), the number of connected components Ncc = Ncc(U),
the number of holes Nh = Nh(U), the number of boundary edges (including isolated boundary
edges) Nbe = Nbe(U), and the number of boundary vertices Nbv = Nbv(U). In the general
case

T = (A, L, χ, Nh, Nic, Nbv) (4)

with corresponding canonical parameter θ = (θ1, . . . , θ6), and we then call X the T -interaction
process. If, for example, θ2 = · · · = θ6 = 0, we set T = A and refer then to the A-interaction
process. Similarly, for the L-interaction process, we have θ1 = 0 and θ3 = · · · = θ6 = 0, for
the (A, L)-interaction process, we have θ3 = · · · = θ6 = 0, and so on. A quermass-interaction
process [22] is the special case T = (A, L, χ) and θ4 = θ5 = θ6 = 0. Note that (4) specifies
Ncc = χ +Nh and Nbe = Nic +Nbv; cf. Lemma 2, below. Thus, a continuum random-cluster
model [15], [23], [28] is the special case T = Ncc, θ1 = θ2 = θ5 = θ6 = 0, and θ3 = θ4.
Although natural in terms of the power diagram, we may question how useful it is to include Nic
and Nbv in (4), since in practice grains may only approximately be discs and only a digital image
is observed, where the resolution makes it difficult to identify circular structures. Moreover,
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the interplay of (θ5, θ6) with other parameters seems complicated; we return to this aspect at
the end of Section 4.2.

4.1. Exponential family structure

Let

	 =
{
(θ1, . . . , θ6) ∈ R

6 :
∫

exp(πθ1r
2 + 2πθ2r) Q(dr) <∞

}
. (5)

Note that (−∞, 0]2 × R
4 ⊆ 	 and that 	 = R

6 if supp(Q) is bounded. The following propo-
sition states that, under a weak condition on (S, ρ, Q), the exponential family density has 	 as
its full parameter space and T in (4) as its minimal canonical sufficient statistic (for details on
exponential family properties, see [5]).

Proposition 1. Suppose that S contains a set D = b(u, R1) \ b(u, R2), where ∞ > R1 >

R2 > 0, ρ(z) > 0 for all z ∈ D, and Q((0, R2]) > 0. Then the point process densities

fθ (x) = 1

cθ

exp(θ1A(Ux)+ θ2L(Ux)+ θ3χ(Ux)+ θ4Nh(Ux)

+ θ5Nic(Ux)+ θ6Nbv(Ux)) (6)

with x ∈ N and θ = (θ1, . . . , θ6) ∈ 	 constitute a regular exponential family model.

Proof. Recall that an exponential family model is regular if it is full and of minimal form
[5]. Later in Proposition 6, we verify that fθ is well defined if and only if θ ∈ 	, so the model
is full. Let �S denote the restriction of � to S × (0,∞). Since 	 ⊇ (−∞, 0]2 × R

4 is of
full dimension 6 and since there is a one-to-one linear correspondence between T in (4) and
(A, L, Ncc, Nic, Nbv, Nh), the model is on minimal form if the statistics A, L, Nic, Ncc, Nbv,
and Nh are affinely independent with probability 1 with respect to �S (see [5]). In other words,
the model is on minimal form if, for any (α0, . . . , α6) ∈ R

7, with probability 1,

α1A(U�S
)+ α2L(U�S

)+ α3Nic(U�S
)+ α4Ncc(U�S

)+ α5Nbv(U�S
)

+ α6Nh(U�S
)=α0 �⇒ α0 = · · · = α6 = 0.

(7)

We verify this, using the condition on (S, ρ, Q) imposed in the proposition, and considering
realizations of �S as described below, where these realizations consist of configurations of
discs with centers in D and radius less than or equal to R2. For such configurations, given by
either one disc, two nonoverlapping discs, or two overlapping discs, and if α5 = α6 = 0, we
immediately obtain (7). Extending this to situations where only α6 = 0 and where we have
three discs with pairwise overlap but no common intersection, we also immediately obtain (7)
and the set consisting of such configurations where Nh(U�S

) = 0 has a positive probability.
The condition on (S, ρ, Q) also allows us, with a positive probability, to construct a set of
realizations where Nh(U�S

) = 1, namely by considering sequences of discs which only overlap
pairwise and which form a single connected component. Thereby, for any (α0, . . . , α6) ∈ R

7,
with probability 1, (7) is seen to hold.

4.2. Interpretation of parameters

In this subsection we discuss the meaning of the parameters θ1, . . . , θ6 in the T -interaction
process, (6).
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We first recall the definition of the Papangelou conditional intensity λ(x, v) for a general
finite point process X ⊂ S× (0,∞) with a hereditary density f with respect to the distribution
of � (see [34] and the references therein). For all finite configurations x ⊂ S × (0,∞) and
all discs v = (z, r) ∈ S × (0,∞) \ x, the hereditary condition means that f (x) > 0 whenever
f (x ∪ {v}) > 0, and, by definition,

λ(x, v) =
⎧⎨
⎩

f (x ∪ {v})
f (x)

if f (x) > 0,

0 otherwise.

This is in a one-to-one correspondence with the density f , and has the interpretation that
λ(x, v)ρ(z) dz Q(dr) is the conditional probability of X having a disc with center in an
infinitesimal region containing z and of size dz and radius in an infinitesimal region containing
r and of size dr , given that the rest of X is x.

For functionals W = A, L, . . . , define W(x, v) = W(Ux∪{v})−W(Ux). The T -interaction
process, (6), has a hereditary density with Papangelou conditional intensity

λθ (x, v) = exp(θ1A(x, v)+ θ2L(x, v)+ θ3χ(x, v)+ θ4Nh(x, v)

+ θ5Nic(x, v)+ θ6Nbv(x, v)) (8)

if x ∪ {v} ∈ N , and λθ (x, v) = 0 otherwise. Note that N is hereditary, meaning that x ∈ N
implies that y ∈ N if y ⊂ x. The process X is said to be attractive if

λθ (x, v) ≥ λθ (y, v) whenever y ⊂ x and x ∈ N (9)

and repulsive if
λθ (x, v) ≤ λθ (y, v) whenever y ⊂ x and x ∈ N . (10)

Note that, since quermass integrals are additive,

A(x, v) = A(bv)− A(bv ∩Ux), L(x, v) = L(bv)− L(bv ∩Ux),

χ(x, v) = 1−Nh(bv ∩Ux).
(11)

Proposition 2. The following assertions hold:

(a) the A-interaction process is attractive if θ1 < 0 and repulsive if θ1 > 0;

(b) under weak conditions, for example, if S contains an open disc, the L-interaction process
is neither attractive nor repulsive if θ2 	= 0;

(c) under other weak conditions, basically meaning that S is not too small compared to
inf supp(Q) (as exemplified in the proof), the W -interaction processes with W = χ, Nh,

Nic, Nbv are neither attractive nor repulsive if θi 	= 0, i = 3, 4, 5, 6;

(d) under similar weak conditions as in (c), the continuum random-cluster model (i.e. the
Ncc-interaction process, where θ3 = θ4 and θ1 = θ2 = θ5 = θ6 = 0) is neither attractive
nor repulsive if θ3 	= 0.

Proof. From (11), part (a) follows immediately, which is a well-known result [3]. We have
L(bv ∩Ux1) > 0 = L(bv ∩U∅) if bv ∩ bx1 	= ∅. This provides a simple example where
λθ2(x, v) is decreasing or increasing in x if θ2 > 0 or θ2 < 0, respectively. On the other hand, if
S contains an open disc, we may obtain the opposite case. Figure 2(a) shows such an example,
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x1 x2

x3

(a) (b)

x1 x2

x3

v

v

Figure 2: Examples of four discs of equal radii. (a) When we add x3 to {x1, x2}, the dotted arcs disappear
and the dashed arc appears, so L(bv ∩U{x1,x2,x3}) < L(bv ∩U{x1,x2}). (b) Nbv({x1, x2}, v) = 4 and

Nbv({x1, x2, x3}, v) = 2.

with four discs of equal radii, where the four centers of the discs can be made arbitrarily close
and where L(bv ∩Ux1,x2,x3) < L(bv ∩Ux1,x2). Thereby part (b) is verified.

To verify parts (c) and (d), we again consider discs bv, bx1 , bx2 , . . . of equal radii, since it
may be possible that Q is degenerate.

Suppose that bv ∩ bx1 = ∅, bv ∩ bx2 	= ∅, and bx1 ∩ bx2 	= ∅, and let x = {x1, x2}. Then
χ(y, v) = 2 and χ(x, v) = 1 if y = {x1}, while χ(y, v) = 1 and χ(x, v) = 2 if y = {x2}.
Since χ = Ncc in these examples, we obtain part (c) in the case of the χ -interaction process
and part (d) in the case of the Ncc-interaction process.

Suppose that bv, bx1 , and bx2 have no common intersection, but that each pair of discs are
overlapping, i.e. they form a hole. If y = {x1, x2} and the hole disappears when we consider
x = {x1, x2, x3} then Nh(y, v) = 1 and Nh(x, v) = 0. Note that Nbv(y, v) = 4 and it may be
possible that Nbv(x, v) = 2, as exemplified in Figure 2(b). On the other hand, if y = {x1} and
x = {x1, x2} then Nh(y, v) = 0, Nh(x, v) = 1, Nbv(y, v) = 2, and Nbv(x, v) = 4. Hence, we
have established part (c) in the case of the Nh-interaction and Nbv-interaction processes.

Finally, the case of the Nic-interaction process in part (c) follows simply by considering two
overlapping discs and two disjoint discs.

Thus, in terms of the ‘local characteristic’ λθ (x, v), we can easily interpret the importance
of the parameter θ1 in the A-interaction process and also that of θ2 in the L-interaction process
provided that Q is degenerate, while the role of the parameters in the other processes is less clear.
Their meaning is better understood in ‘global terms’ and by simulation studies. In comparison
with the reference Poisson process, the A-interaction processes with θ1 > 0 and θ1 < 0 tend to
produce realizations with a larger and smaller area A(Ux), respectively; see Figure 3(b) and (c),
and similarly for the W -interaction process with W = L, χ, Nh, Nic, Nbv, Ncc. For models
with two or more parameters, the interpretation is more complicated and depends not only on
the signs of the parameters but also on how large the parameters are, and it is, for example,
possible to obtain rather similar realizations for different combinations of the parameters. See
Figures 5–8 in our research report [31]. As an illustration, Figure 3(d)–(f) show realizations of
the (A, L, Ncc)-interaction process with (θ1, θ2) = (0.6,−1) and different positive values of
θ3 = θ4. Here the effect of increasing θ3 = θ4 should be clear and, at least with respect to the
characteristic A, the process corresponding to Figure 3(e) seems to have some similarity to the
A-interaction process corresponding to Figure 3(c), although the sign of θ1 is different in the
two processes and the connected components in the two realizations look very different.
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a) The power tessellation of a realization of the reference Poisson process with Q the uniform
distribution on the interval [0, 2], ρ(u) = 0.2 on a rectangular region S = [0, 30]× [0, 30], and ρ(u) = 0
outside S; simulated realizations of the A-interaction process with (b) θ1 = 0.1 or (c) θ1 = −0.1; and
simulated realizations of the (A, L, Ncc)-interaction process with (θ1, θ2) = (0.6,−1) and (d) θ3 = θ4 =

1, (e) θ3 = θ4 = 2, or (f) θ3 = θ4 = 5.

4.3. Geometric characteristics and inclusion–exclusion formulae

Lemmas 2 and 3, below, concern various useful relations between certain geometric
characteristics of the union U = Ux and of its power tessellation B = Bx , assuming that
x ∈ N . Among other things, the results become useful in connection to the computation
of geometric characteristics in Section 4.4 and for the sequential constructions considered in
Sections 3.2 and 4.7 and Appendix A.

Define the following characteristics of B = Bx : the number of nonempty cells Nc = Nc(B),
the number of interior edges Nie = Nie(B), the number of edges Ne = Nbe +Nie, the number
of interior vertices Niv = Niv(B), and the number of vertices Nv = Nbv+Niv. These statistics
do not appear in the specification, (4), since they cannot be determined from U; they can be
determined only from B. Furthermore, let N = n(x) denote the number of discs.

Lemma 2. We have

Nic ≤ Ncc ≤ Nc ≤ N, Nbv = 2Nie − 3Niv, (12)

and
χ = Ncc −Nh = Nc −Nie +Niv. (13)

If Nc ≥ 2 and Ncc = 1 then

Nbe = Nbv ≤ 2Nie, 3Nv = 2Ne. (14)

If Nc ≥ 3 and Ncc = 1 then
Nie ≤ 3Nc − 6. (15)
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Figure 4: A configuration of five discs with exactly 2Nc − 5 holes.

Moreover,
Nbv ≤ 6N (16)

and
Nh = 0 if Nc ≤ 2, Nh ≤ 2Nc − 5 if Nc ≥ 3. (17)

Proof. The inequalities in (12) clearly hold, and the identity in (12) follows from a simple
counting argument, using the facts that each interior edge has two endpoints and that exactly
three interior edges emerge at each interior vertex.

The first identity in (13) is just the definition (3), and the second identity follows from Euler’s
formula.

Assuming that Nc ≥ 2 and Ncc = 1, (14) follows from simple counting arguments, using
firstly the fact that exactly two boundary edges emerge at each boundary vertex, secondly the
simple fact that Nbv ≤ Nv, and thirdly the fact that exactly three edges emerge at each vertex.

To verify (15), consider the dual graph D . Since we assume that Nc ≥ 3 and Ncc = 1, D
has Nie edges and Nc vertices, and so, by planar graph theory [46], since D is a connected
graph without multiple edges, the number of dual edges is bounded by 3Nc − 6.

To verify (16), note that Nbv ≤ 2Nie; cf. (12). Using (15) and considering a sum over all
components, we find that Nie is bounded above by the number of components with two cells
plus three times the number of components with three or more cells. Consequently, Nbv ≤ 6N .

Finally, to verify (17), note that Nh is given by the sum of the number of holes of all connected
components of U, and a connected component consisting of one or two power cells has no holes,
so it suffices to consider the case where Ncc = 1 and Nc ≥ 3. Then, by (13), Nh is bounded
above by 1− (Nc −Nie), which in turn, by (15), is bounded above by 2Nc − 5.

Equation (17) is a main result in [22]. Our proof of (17) is much simpler and shorter,
demonstrating the usefulness of the power tessellation and its dual graph. The upper bound
in (17) can be obtained for any three or more discs. If x consists of three discs b1, b2, and
b3 such that bi ∩ bj 	= ∅ for 1 ≤ i < j ≤ 3 and b1 ∩ b2 ∩ b3 = ∅, then Nh = 1 and
Nc = 3, so Nh = 2Nc−5. Furthermore, we may add a fourth, fifth, . . . disc, where each added
disc generates two new holes—as illustrated in Figure 4 in the case of five discs—whereby
Nc = 3, 4, . . . and Nh = 2Nc − 5 in each case.

Kendall et al. [22] noticed the following inclusion–exclusion formula for the functionals
W = A, L, χ :

W(Ux) =
n∑
1

W(bi)−
∑

1≤i<j≤n

W(bi ∩ bj )+ · · · + (−1)n−1W(b1 ∩ · · · ∩ bn), (18)

where the sums involve 2n − 1 terms. Using the power tessellation, inclusion–exclusion
formulae with much fewer terms are given by (12) and (13) for χ and Nbv and, by Lemma 3,
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below, for A and L. In Lemma 3, I1(x), I2(x), and I3(x) denote index sets corresponding
to nonempty cells, interior edges, and interior vertices of Bx , respectively. For later use in
Section 4.5, note that I1(x) and I2(x) correspond to the cliques in the dual graph Dx consisting
of 1 and 2 nodes, respectively, while I3(x) corresponds to the subset of 3-cliques {i, j, k} ∈ Dx

with bi ∩ bj ∩ bk 	= ∅ (i.e. bi ∪ bj ∪ bk has no hole). Note that if {i, j, k} ∈ Dx then
bi ∩ bj ∩ bk 	= ∅ if and only if Ei,j ∩ Ei,k 	= ∅, where the latter property is easily checked.

Lemma 3. The following inclusion–exclusion formulae hold for the area and perimeter of the
union of discs:

A(Ux) =
∑

i∈I1(x)

A(bi)−
∑

{i,j}∈I2(x)

A(bi ∩ bj )+
∑

{i,j,k}∈I3(x)

A(bi ∩ bj ∩ bk) (19)

=
∑

i∈I1(x)

A(Bi) (20)

and

L(Ux) =
∑

i∈I1(x)

L(bi)−
∑

{i,j}∈I2(x)

L(bi ∩ bj )+
∑

{i,j,k}∈I3(x)

L(bi ∩ bj ∩ bk) (21)

=
∑

e boundary edge of Bx

L(e). (22)

Proof. Equations (19) and (21) are due to Theorem 6.2 of [10], while (20) and (22) follow
immediately.

Edelsbrunner [10] established extensions to R
d of the inclusion–exclusion formulae given

by the second identities in (12), (19), and (21). Note that we cannot replace the sums in (19)
by sums over all discs, pairs of discs, and triplets of discs from x.

4.4. Local calculations

For calculating the area and perimeter, the inclusion–exclusion formulae (20) and (22) appear
to be more suited than (19) and (21) when the computations are done in combination with the
sequential constructions considered in Sections 3.2 and 4.7 and Appendix A. Note that we need
only do ‘local computations’.

For example, suppose that we are given the power tessellation Bold of Uold =⋃n−1
1 bi and

that we add a new disc bn. When constructing the new power tessellation Bnew of Unew =⋃n
1 bi , we need only consider the new set Bn and the old cells in Bold which are neighbors

to Bn with respect to the dual graph of Bnew (see Section A.1). Similarly, when a disc is deleted
and the new tessellation is constructed, we need only do local computations with respect to the
discs intersecting the disc which is deleted (see Section A.2); we study this neighbor relation
given by overlapping discs in Section 4.5. Moreover, local computations are only needed when
calculating Nic and Nbv.

In order to calculate (χ, Nh) or, equivalently, (Ncc, Nh), we could keep track on the inner
and outer boundary curves in our sequential constructions, using a clockwise and anticlockwise
orientation for the two different types of boundary curves. However, in our MCMC simulation
codes, we found it easier to keep track on Nc, Nie, Niv, and Ncc, and thereby obtain χ by the
second equality in (13) and, hence, obtain Nh by the first inequality in (13). In either case
this is another kind of local computation, where the relevant neighbor relation is the connected
component relation studied in Section 4.5.
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Finally, let us explain in more detail how we can find the area A. We can easily determine
the total area of all isolated cells of B. Suppose that Bi is a nonempty, nonisolated cell of B.
Let ci denote the arithmetic average of the vertices of Bi . Then ci ∈ Bi , since Bi is convex.
For any three points c, u, v ∈ R

2, let �(c, u, v) denote the triangle with vertices c, u, and v.
If �u, v� is a boundary edge of Bi , let 
(u, v) denote the cap of bi bounded by the arc �u, v�
and the line segment [u, v]. Then the area of Bi is the sum of areas of all triangles �(ci, u, v),
where u and v are defining an (interior or boundary) edge of Bi , plus the sum of areas of all
caps 
(u, v), where u and v are defining a boundary edge of Bi .

4.5. Markov properties

The various Markov point process models considered in this subsection are either specified
by a local Markov property in terms of the Papangelou conditional intensity or by a particular
form of the density given by a Hammersley–Clifford-type theorem [2], [38]. In particular, we
show that it is useful to view the T -interaction process (6) as a connected component Markov
point process, where we show how a spatial Markov property becomes useful for handling edge
effects. Throughout Sections 4.5.1–4.5.5, we let x ∈ N .

4.5.1. Local Markov property in terms of the overlap relation. Consider the overlap relation
‘∼’ defined on S× (0,∞) by u ∼ v if and only if b(u)∩ b(v) 	= ∅. The T -interaction process
is said to be Markov with respect to the overlap relation if λθ (x, v) depends only on x through
{u ∈ x : u ∼ v}, i.e. the neighbors in x to v [2], [38], [42]. Kendall et al. [22] observed that
the quermass-interaction process is Markov with respect to the overlap relation. The following
proposition generalizes this result.

Proposition 3. The T -interaction process with density (6) is Markov with respect to the overlap
relation if and only if θ4 = θ5 = 0.

Proof. In other words, with respect to the overlap relation, we have to verify that the
A-interaction, L-interaction, χ -interaction, and Nbv-interaction processes are Markov, while
the Nh-interaction and Nic-interaction processes are not Markov. It follows immediately from
(8) and (11) that the A-interaction, L-interaction, and χ -interaction processes are Markov, and
Figures 5 and 6 respectively show that the Nh-interaction and Nic-interaction processes are not
Markov. If w is a boundary vertex of Ux but not of Ux∪{v} then w is contained in the disc v.
If instead w is a boundary vertex of Ux∪{v} but not of Ux then w is given by the intersection
of the boundaries of v and an x-disc. Consequently, Nbv(x, v) = Nbv(Ux∪{v}) − Nbv(Ux)

depends on x only through {u ∈ x : u ∼ v}, so the Nbv-interaction process is Markov. This
completes the proof.

x1

x2

x3

x1

x2

x3

v v

Figure 5: An example showing that the Nh-interaction process is not Markov with respect to the overlap
relation: both Nh(x, v) = 0 (left) and Nh(x, v) = 1 (right) depend on the disc x3, which is not overlapping

the disc v.
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x1 x1x2 x2v v

Figure 6: An example showing that the Nic-interaction process is not Markov with respect to the overlap
relation: both Nic(x, v) = −1 (left) and Nic(x, v) = 0 (right) depend on the disc x2, which is not

overlapping the disc v.

As noted in [22], using the inclusion–exclusion formula (18), the Hammersley–Clifford
representation [38] of the quermass-interaction process is

f(θ1,θ2,θ3)(x) =
∏
y⊆x

φ(θ1,θ2,θ3)(y), (23)

where the interaction function is given by

φ(θ1,θ2,θ3)(x) = exp

(
(−1)n

(
θ1A

( n⋂
1

bi

)
+ θ2L

( n⋂
1

bi

)
+ θ3χ

( n⋂
1

bi

)))
(24)

for nonempty x = {(z1, r1), . . . , (zn, rn)} and φ(θ1,θ2,θ3)(∅) = 1/c(θ1,θ2,θ3). However, for
at least two reasons, it is the density in (6) of the quermass-interaction process rather than
the Hammersley–Clifford representation (23) which seems appealing. First, the process has
interactions of all orders, since log φ(θ1,θ2,θ3)(x) can be nonzero no matter how many discs
x are specified by X, so the calculation of the interaction function (24) can be very time
consuming. Second, (23) does not seem to be of much relevance if we can observe UX but not
X. This indicates that another kind of neighbor relation is needed when describing the Markov
properties. Two other relations are therefore discussed below.

4.5.2. Local Markov property in terms of the dual graph. It is natural to ask whether
T -interaction processes in the sense of [2] are nearest-neighbor Markov point processes with
respect to the neighbor relation defined by the dual graph. Below we show that this is not the
case in general.

First consider the case of the quermass-interaction process. Applying the inclusion–
exclusion formulae given by the last identity in (13), (19), and (21), we obtain another represen-
tation of the quermass-interaction process density, namely as a product of terms corresponding
to the cliques in the dual graph, excluding the following case of 3-cliques {i, j, k} ∈ Dx with
bi ∩ bj ∩ bk = ∅:

f(θ1,θ2,θ3)(x) = 1

c(θ1,θ2,θ3)

∏
i∈I1(x)

φ(θ1,θ2,θ3)(xi)
∏

{i,j}∈I2(x)

φ(θ1,θ2,θ3)({xi, xj })

×
∏

{i,j,k}∈I3(x)

φ(θ1,θ2,θ3)({xi, xj , xk}), (25)

where now
φ(θ1,θ2,θ3)(xi) = exp(θ1A(bi)+ θ2L(bi)+ θ3),

φ(θ1,θ2,θ3)({xi, xj }) = exp(−θ1A(bi ∩ bj )− θ2L(bi ∩ bj )− θ3),

φ(θ1,θ2,θ3)({xi, xj , xk}) = exp(θ1A(bi ∩ bj ∩ bk)+ θ2L(bi ∩ bj ∩ bk)+ θ3).
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This is of a somewhat similar form to the Hammersley–Clifford representation for a nearest-
neighbor Markov point process with respect to the neighbor relation defined by the dual graph;
however, it is not exactly of the required form, since in (25) we do not have a product over
all u ∈ x but a product only over those u generating nonempty cells in Bx . More precisely,
since it can be verified that this neighbor relation satisfies certain consistency conditions, the
quermass-interaction process is not a nearest-neighbor Markov point process with respect to
the dual graph (Theorem 4.13 of [2]).

Next, we do not expect the Nh-interaction and Nic-interaction processes to be nearest-
neighbor Markov point processes with respect to the dual graph, since we have again been
unable to obtain a Hammersley–Clifford representation.

In contrast, the Nbv-interaction process is a nearest-neighbor Markov point process with
respect to the dual graph, since the identity in (12) implies the Hammersley–Clifford represen-
tation,

fθ6(x) = 1

cθ6

∏
{i,j}∈I2(x)

exp(2θ6)
∏

{i,j,k}∈I3(x)

exp(−3θ6). (26)

Note that (25) and (26) do not seem to be of much relevance if we can observe UX but not X.

4.5.3. Local Markov property in terms of the connected components. In our opinion, the most
relevant results are Propositions 4 and 5, below, where the first proposition states that X is
a connected component Markov point process [2], [4], [7], [30] and the second proposition
specifies a spatial Markov property. As explained in further detail in [2], for a connected
component Markov point process, the Papangelou conditional intensity depends only on local
information with respect to the connected component relation ‘∼x’ defined as follows: for
u, v ∈ x, u ∼x v if and only if b(u) and b(v) are contained in the same connected component
K of Ux . Thereby MCMC computations become ‘local’, as discussed further in Section 4.7.
The spatial Markov property is discussed in Sections 4.5.4 and 4.5.5.

Proposition 4. The T -interaction process with density (6) is a connected component Markov
point process.

Proof. The density is of the form

1

cθ

∏
K∈K(Ux)

exp(θ1A(K)+ θ2L(K)+ θ3χ(K)+ θ4Nh(K)+ θ5Nic(K)+ θ6Nbv(K)), (27)

where K(Ux) is the set of connected components of Ux . Thus, by Lemma 1 of [4], it is a
connected component Markov point process.

In the discrete case (discs replaced by pixels) a Markov connected component field [33],
which is also assumed to be a second-order Markov random field, has a density of a similar
form as (27).

4.5.4. Spatial Markov property in terms of the overlap relation. Consider again the quermass-
interaction process and, for the moment, assume that R = supp(Q) < ∞. Let W�2R = {u ∈
W : b(u, 2R) ⊆ W } be the 2R-clipped window of points in W so that almost surely no disc of
X with center in W�2R intersects another disc of X with center in Wc, where Wc = S \W .
Split X into X(1), X(2), and X(3) corresponding to discs with centers in W�2R , W \W�2R , and
Wc, respectively. The spatial Markov property [38] states that X(1) and X(3) are conditionally
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W

S

Figure 7: Illustrating possible realizations of X(a) (full circles), X(b) (dashed circles), and X(c) (dotted
circles).

independent given X(2), and the conditional distribution X(1) | X(2) = x(2) has density

fθ1,θ2,θ3(x
(1) | x(2))

= 1

cθ1,θ2,θ3(x
(2))

exp(θ1A(Ux(1)∪x(2) )+ θ2L(Ux(1)∪x(2) )+ θ3χ(Ux(1)∪x(2) )) (28)

with respect to the reference Poisson process � restricted to discs with centers in the 2R-clipped
window. This is also a Markov point process with respect to the overlap relation restricted to
W�2R , since the Papangelou conditional intensity λθ (x

(1), v | x(2)) corresponding to (28) is
related to that in (8) by

λθ (x
(1), v | x(2)) = λθ (x

(1) ∪ x(2), v). (29)

However, it is problematic to use this conditional process in practice, since both (28) and (29)
depend on Ux(2) \W , which is not observable.

4.5.5. Spatial Markov property in terms of the connected component relation. The following
spatial Markov property is more useful and applies for the general case of the T -interaction
process (6), using the fact that it is a connected component Markov point process (see also [18]
and [30]). We split X into X(a), X(b), and X(c) corresponding to discs belonging to connected
components of UX which are respectively (a) contained in W , (b) intersecting both W and Wc,
and (c) contained in Wc; see Figure 7. Furthermore, let x(b) denote any feasible realization of
X(b), i.e. x(b) is a finite configuration of discs such that K intersects both W and Wc for all
K ∈K(Ux(b) ).

Proposition 5. Conditional on X(b) = x(b), we have X(a) and X(c) are independent, and the
conditional distribution of X(a) depends only on x(b) through V = W ∩Ux(b) and has density

fθ (x
(a) | V ) = 1

cθ (V )
1[Ux(a) ⊆ W \ V ] exp(θ · T (x(a))) (30)

with respect to the reference Poisson process of discs.
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Proof. Let � denote the distribution of � restricted to those finite configurations of discs
with centers in S, and let hθ denote the unnormalized density given by the exponential term
in (27). Recall the ‘Poisson expansion’ (see, for example, [34])

P(X ∈ F) = 1

cθ

∫
F

hθ (x) �(dx)

= 1

cθ

exp

(
−

∫
S

ρ(u) du

)

×
∞∑

n=0

1

n!
∫

S

∫
· · ·

∫
S

∫
hθ (x) 1[x ∈ F ]ρ(u1) du1Q(dr1) · · · ρ(un) dunQ(drn)

(where the term with n = 0 is read as 1 if the empty configuration is in the event F and
0 otherwise). From this and (27), we find that (X(a), X(b), X(c)) has joint density

f (x(a), x(b), x(c)) = 1

cθ

1[Ux(a) ⊆ W \Ux(b) ]hθ (x
(a)) 1[Ux(c) ⊆ Wc \Ux(b) ]hθ (x

(c))

× 1[for all K ∈K(Ux(b) ) : K ∩W 	= ∅, K ∩Wc 	= ∅]hθ (x
(b))

with respect to the product measure exp(2
∫
S

ρ(u) du)�×�×�. Thereby the proposition
follows.

The density (30) may be useful for statistical applications, since it accounts for edge effects
and depends only on the union of discs intersected by the observation window W . It is a
hereditary density of a connected component Markov point process with discs contained in
W \ V . Its Papangelou conditional intensity λθ (x

(a), v | V ) is simply given by

λθ (x
(a), v | V ) = λθ (x

(a), v) 1[Ux(a)∪{v} ⊆ W \ V ]. (31)

4.6. Stability

Consider the ‘unnormalized density’ hθ (x) = exp(θ · T (x)) corresponding to the
T -interaction process with density fθ given in (6), and recall the definition of the parameter
space 	, (5). In fact, we have not yet verified that cθ ≡ E hθ (� ∩ (S × (0,∞))) is finite for
θ ∈ 	 and, hence, that fθ = hθ/cθ is a well-defined density with respect to the reference
Poisson process � if θ ∈ 	. In this subsection we discuss two stability properties which imply
integrability of hθ as well as other desirable properties.

4.6.1. Ruelle stability. This means that there exist positive constants α and β such that hθ (x) ≤
αβn(x) for all x ∈ N (in fact, this and other stability properties mentioned in this paper need
only hold almost surely with respect to �; however, for ease of presentation, we shall ignore
such nullsets). Ruelle stability implies that cθ ≤ α exp((β − 1)

∫
S

ρ(z) dz) <∞, and we say
that fθ = hθ/cθ is a Ruelle stable density. Other implications of Ruelle stability are discussed
in Section 2.1 of [22] and the references therein.

The main question addressed in [22] was how to establish Ruelle stability of the quermass-
interaction process, and the following proposition provides a very easy proof of this issue in
connection to the general case of the T -interaction process (6) (since the proof is based on
Lemma 2, the usefulness of the power tessellation is once again demonstrated).

Proposition 6. For all θ ∈ 	, cθ <∞ and fθ in (6) is a Ruelle stable density. If θ ∈ R
6 \	

then cθ = ∞.
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Proof. Note that a finite product of Ruelle stable functions is a Ruelle stable function. Let θ0
denote a real parameter. From Lemma 2, it follows that χ , Nh, Nic, and Nbv are bounded above
by 6N , so the functions exp(θ0W), W = χ, Nh, Nic, Nbv, are Ruelle stable for all θ0 ∈ R.
Moreover, exp(θ1A+ θ2L) is Ruelle stable if a ≡ ∫

exp(πθ1r
2 + 2πθ2r) Q(dr) is finite, since

exp(θ1A+ θ2L) ≤ exp((a − 1)
∫
S

ρ(z) dz). On the other hand, the first term in the infinite
sum in (2) is a exp(θ3 + θ5)

∫
S

ρ(z) dz, where
∫
S

ρ(z) dz > 0; cf. Section 2.1. Consequently,
cθ = ∞ if a = ∞.

4.6.2. Local stability. This means that there exists a constant β such that, for all x ∈ N and all
v ∈ � \ x,

λθ (x, v) ≤ β. (32)

This property is clearly implying Ruelle stability. Local stability is useful when establishing
geometric ergodicity of MCMC algorithms (see [13], [34], and also Section 4.7), and it is needed
in order to apply the dominating coupling from the past algorithm in [20] and [21] for making
perfect simulations. Note that a finite product of locally stable functions is a locally stable
function, since its Papangelou conditional intensity is given by a product of uniformly bounded
Papangelou conditional intensities. The Papangelou conditional intensity (6) is a product of
Papangelou conditional intensities corresponding to functions hθ0(x) = exp(θ0W(Ux)) with
W = A, L, . . . and θ0 = θ1, θ2, . . . .

As shown below, the picture of whether local stability is satisfied or not depends much on the
particular type of model. In the following proposition, when we write ‘in general’, the proof
of the proposition will show examples where local stability is not satisfied, depending on how
S and supp(Q) are specified, and it should be obvious to the reader that local stability will not
be satisfied in many other cases as well. We let ε = inf supp(Q) and R = sup supp(Q).

Proposition 7. Local stability is satisfied for

(a) the A-interaction process if and only if θ1 ≤ 0 or R <∞;

(b) the L-interaction process if θ2 = 0, or R <∞ if θ2 > 0, or ε > 0 and R <∞ if θ2 < 0;
otherwise in general it is not locally stable;

(c) the χ -interaction process if θ3 ≥ 0, while in general it is not locally stable if θ3 < 0;

(d) the Ncc-interaction process if θ3 = θ4 ≥ 0 or both θ3 = θ4 < 0 and ε > 0, while it is
not locally stable if θ3 = θ4 < 0 and ε = 0;

(e) the Nic-interaction process if θ5 ≥ 0 or ε > 0, while it is not locally stable if θ5 < 0 and
ε = 0.

Moreover, local stability is in general not satisfied for

(f) the Nh-interaction process unless θ4 = 0;

(g) the Nbv-interaction process unless θ6 = 0.

Proof. Let x ∈ N and v ∈ � \ x.
It follows from (11) that λθ1(∅, v) = exp(πθ1r

2), λθ1(x, v) ≤ exp(πθ1r
2) if θ1 ≥ 0, and

λθ1(x, v) ≤ 1 if θ1 ≤ 0. Thereby part (a) follows, and in a similar way we verify part (b) in the
case in which θ2 ≥ 0. It also follows from (11) that the χ -interaction process is locally stable
if θ3 ≥ 0.

https://doi.org/10.1239/aap/1214950206 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950206


340 •SGSA J. MØLLER AND K. HELISOVÁ

Figure 8: A configuration x of n = 6 discs intersected by another disc bv such that #holes(bv ∩Ux) =
n− 1 = 5.

To verify part (b) in the case in which θ2 < 0, we first suppose that ε > 0 and R <∞, and use
an argument which Wilfrid Kendall kindly pointed out to us. A boundary edge corresponding
to an angle 0 < ϕ < 2π and a disc of radius r has length ϕr , and it defines a sector of area
ϕr2/2. Since such sectors have disjoint interiors,

A(Ux) ≥
∑
j

ϕj r
2
j

2
≥ ε2

2

∑
j

ϕj ,

where the sum is over all boundary edges. Hence,

L(Ux) =
∑
j

ϕj rj ≤ R
∑
j

ϕj ≤ 2R

ε2 A(Ux) < c,

where c is a finite constant (since the discs specified by x have centers in the bounded region
S and their radii are bounded by R, A(Ux) has an upper bound). Consequently,

L(x, v) = L(bv)− L(bv ∩Ux) ≥ 2πε − c,

and so local stability is established when θ2 < 0, ε > 0, and R <∞.
On the other hand, suppose that ε = 0 or R = ∞. Let r denote the radius of bv , let

0 < δ < r , and consider the infinite configuration of discs of radii δ and centers at the sites
of an equilateral triangular lattice of side length 2δ. The proportion of R

2 covered by these
discs is the so-called maximal packing degree p = π/

√
12 (a number independent on how δ

is chosen). Now, suppose that x is the subconfiguration of all such discs contained in bv . As
either δ decreases to 0 or r increases to∞, n(x)δ2/r2 converges to p, and so

L(x, v) = L(bv)− L(bv ∩Ux) = 2πr − 2πδn(x)

is converging to−∞. Hence, if θ2 < 0, the local stability condition is violated, and so part (b)
is verified.

To show an example where the χ -interaction process is not locally stable if θ3 < 0, consider
Figure 8. Suppose that x = {x1, . . . , xn} corresponds to the pairwise overlapping small discs
in Figure 8 and that bv corresponds to the large disc. Then each pair xi, xi+1 together with
bv form one hole, and Nh(bv ∩ Ux) = n − 1. Since n may be arbitrarily large, using (11)
again, we obtain part (c). Note that bv does not need to be so large compared to the other discs
in Figure 8; it is only chosen in this way for illustrative purposes. For example, all the discs
may be of a very similar size so that Nh(bv ∩Ux) = n − 1 still (then the discs in x will be
much more overlapping than indicated in Figure 8). More precisely, whether this holds or not
depends on how large S is compared to supp(Q). For instance, if S is a disc with radius R and

https://doi.org/10.1239/aap/1214950206 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950206


Power diagrams and interaction processes for unions of discs SGSA • 341

� = S×{2R} then χ(Ux) = 1 for all x ∈ N , and so the χ -interaction process is locally stable
for all θ3 ∈ R.

For part (d), we use the fact that

Ncc(x, v) = 1− #{connected components in Ux which are intersected by bv}. (33)

Hence, we immediately obtain local stability if θ3 = θ4 ≥ 0. Suppose instead that θ3 = θ4 < 0.
By (33), Ncc(x, v) has no lower bound if ε = 0, since the discs in x can be disjoint and still all
intersect bv . On the other hand, if ε > 0 then 1 − Ncc(x, v) is at most equal to the maximal
number of disjoint discs with radius ε and centers in S. Thereby part (d) is verified. The proof
of part (e) is similar, using instead the fact that

Nic(x, v) = 1ic(x, v)− #{isolated cells in Ux which are contained in bv},
where 1ic(x, v) is the indicator function which is 1 if Bv is an isolated cell in Bx∪{v} and
0 otherwise.

The Nh-interaction process with θ4 = 0 and the Nbv-interaction process with θ6 = 0 are
nothing but the Poisson process �, and so local stability is obviously satisfied. By similar
arguments as above in the proof of part (c), when θ3 < 0, there are in general no uniform upper
and lower bounds on either Nh(x, v) or Nbv(x, v). Thereby, parts (f) and (g) follow.

Proposition 7 immediately extends to the conditional quermass-interaction process with
density (28) and the conditional T -interaction process in (30). Note that if the indicator term
in (30) is 1, it implies that the radius of any disc in x(a) is less than a constant. Consequently,
(a) the conditional A-interaction process given by (30) is always locally stable, and (b) the
L-interaction process given by (30) is locally stable if either θ2 ≥ 0 or θ2 < 0 and ε > 0, and
in general it is not locally stable if θ2 < 0 and ε = 0.

4.7. MCMC algorithms

For simulation of the T -interaction process (6), the conditional quermass-interaction point
process with density (28), or the conditional T -interaction process with density (30), we use a
simple version of the birth–death type Metropolis–Hastings algorithm studied in [13], [14],
and [34]. For specificity, we first consider the T -interaction process X with Papangelou
conditional intensity λθ (x, v) given by (8).

In the Metropolis–Hastings algorithm if x is the state at iteration t , we generate a proposal
which is either a ‘birth’ x ∪ {v} of a new disc v = (z, r) or a ‘death’ x \ {xi} of an old disc
xi ∈ x. Each kind of proposal may happen with equal probability 1

2 . Define

rθ (x, v) = λθ (x, v)

∫
S

ρ(s) ds

ρ(z)(n(x)+ 1)
. (34)

In the case of a birth proposal, v follows the normalized intensity measure of �, i.e. z and r

are independent, z has a density on S proportional to ρ, and r follows the mark distribution Q.
This proposal is accepted as the state at iteration t+1 with probability min{1, Hθ (x, v)}, where
the Hastings ratio is given by Hθ (x, v) = rθ (x, v). In the case of a death proposal, xi is a
uniformly selected point from x, and the Hastings ratio in the acceptance probability of the
proposal is now given by Hθ (x, xi) = 1/rθ (x \ {xi}, xi) (in the special case where x = ∅, we
do nothing). Finally, if neither kind of proposal is accepted, we retain x at iteration t + 1.

As verified in [14], the generated Markov chain is aperiodic and positive Harris recurrent,
the chain converges towards the distribution of X, and Birkhoff’s ergodic theorem establishes
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convergence of Monte Carlo estimates of mean values with respect to (6). If local stability is
satisfied (see Proposition 7), the chain is geometrical ergodic and, hence, a central limit theorem
applies for Monte Carlo estimates [6], [34], [39]. Moreover, from a computational perspec-
tive, the important point of the algorithm is that it only involves calculating the Papangelou
conditional intensity, so only local computations of the statistics appearing in (8) are needed;
cf. Sections 4.3–4.5.

In theory we may use any state of N as the initial state of the algorithm, but we have mainly
used three kinds of initial states:

(i) the extreme case of the empty configuration ∅;

(ii) if local stability is satisfied, the other extreme case is given by a realization from a Poisson
process � with intensity measure βρ(z) dz Q(dr), where β is the upper bound in (32);

(iii) a realization of the reference Poisson process � (an intermediate case of (i) and (ii) if
β > 1).

In fact, local stability ensures that the Poisson process in (ii) can be coupled with X so that
X ⊆ �, and this kind of domination can be exploited to make perfect simulations of X, using
a dominating coupling from the past algorithm [19], [21].

The algorithm for simulating from the conditional processes with densities (28) and (30) is
the same except that we replace λθ (x, v) in (34) by the Papangelou conditional intensities in
(29)–(31), and that the state space has of course to be in accordance with (28) and (30). The
convergence properties and computations are therefore similar to those discussed above. The
initial states are of course slightly different, where we modify the Poisson process in (ii) or (iii)
above as follows. For (28), we restrict the Poisson process in (ii) or (iii) so that the centers are
in W�2R . For (30), we first restrict the Poisson process in (ii) or (iii) so that the centers are in
W , and second, when we make a simulation from this Poisson process, we finally omit those
discs which are not included in W \ V .

5. Extensions and open problems

We conclude with some remarks on possible extensions of this work and on some open
problems.

We demonstrated the usefulness of the power tessellation in connection to the T -interaction
process (4), and argued why this model is best viewed as a connected component Markov point
process. For the specification of the sufficient statistic T , other geometric characteristics than
those in (4) may be of interest to include, for example, the shape characteristic for the connected
components K such as A(K)/L(K)2. The power tessellation will also be a useful tool for such
extensions, not least since local calculations can be carried out as discussed in Section 4.4.

We confined ourselves to the case of discs in R
2, though many concepts and results can be

extended to the general case of balls in R
d . The planar case, d = 2, is already complicated

enough, and indeed the power tessellation in higher dimensions becomes more complicated;
cf. [10]. The planar case is of principal importance for applications in spatial statistics and
stochastic geometry (see, e.g. [8] and [41]), and the spatial case, d = 3, is of particular
importance in physics and computational biology (see, e.g. [11], [24], [25], and [26]).

The T -interaction processes obviously provide a large and flexible class of random models
for unions of discs. It would be interesting to get a better understanding of the importance of
the parameters θ1, . . . , θ6; cf. Section 4.2. For instance, how different are the models which
have been simulated in Section 4.2 and how different would a fitted L-interaction process be if
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the true model is an A-interaction process? Probably, to answer such questions, an extensive
simulation study will be required.

As noted in Section 4.6, the dominating coupling from the past algorithm [20], [21] for
making perfect simulations requires local stability. Moreover, to make this algorithm work
in practice, some monotonicity property like (9) or an antimonotonicity property like (10) is
useful, but apart from the A-interaction process, our models are in general neither attractive nor
repulsive; cf. Proposition 2. How difficult is it to make a perfect simulation of, for example,
the L-interaction process?

Also, extensions of our T -interaction models to infinite configurations of discs would be
of interest, particularly for applications in statistical physics. Such extensions are possible
for quermass-interaction models, at least if Q has bounded support (see [22]), but how do we
extend the other kind of T -interaction models? The usual approach is to use a local specification
in the sense of [37] or, equivalently, to specify the Papangelou conditional intensity for the
infinite process [12], [35], but this would require that the connected components are almost
surely bounded. See the somewhat related discussion in [33] concerning infinite extensions of
Markov connected component fields.

A problem related to infinite extensions of T -interaction models is the issue of phase
transition. The A-interaction model exhibits phase transition, at least if the radii are all fixed at
a constant value [15], [40], but what about other T -interaction models?

Finally, we are currently exploiting the results in this paper to study the statistical aspects,
in particular likelihood-based inference, in a follow up paper [32].

Appendix A. Successive construction of power tessellations

In this appendix we explain how to construct a new power tessellation of a union of discs
by adding a new disc (Section A.1) or deleting an old disc (Section A.2), assuming that the
old power tessellation is known. The constructions can easily be extended to keep track on the
connected components of the union of discs, but to save space we omit these details.

A.1. The case where a new disc is added

Suppose that we want to construct a new power tessellation Bnew of a union Unew =⋃n
1 bi of

n ≥ 1 discs in general position, where we are adding the disc bn and we have already constructed
the power tessellation Bold of Uold =⋃n−1

1 bi based on the n − 1 other discs (if n = 1 then
Bold and Uold are empty). More precisely, with respect to Bold, we assume that we know all
the old edges. We denote the old interior edges by [uold

i,j , vold
i,j ] and the old boundary edges by

�uold
i , vold

i � or ∂bold
i . We want to construct the new tessellation Bnew of Unew = Uold ∪ bn by

finding its interior edges [unew
i,n , vnew

i,n ] and boundary edges �unew
n , vnew

n � associated to the new
cell Bnew

n . This is done in steps (ii) and (iv), below. Moreover, to obtain the remaining new
edges, we modify old interior edges [uold

i,j , vold
i,j ] and old boundary edges �uold

i , vold
i � or ∂bold

i ,
noting that a ‘modified old edge’ can be unchanged, reduced, or disappearing. This is done in
steps (iii) and (v), below. Note that steps (i), (ii), and (iv) determine the new cells, i.e. which
of the sets Bnew

1 , . . . , Bnew
n are empty or not.

(i) Considering old discs intersecting the new disc. If bn is contained in some disc bj with
j < n then Bnew

n is empty and so Bnew = Bold is unchanged. Assume that bn is not contained
in any disc bj with j < n and, without loss of generality, that bn intersects Bold

1 , . . . , Bold
i but

not Bold
i+1, . . . , B

old
n−1, where 0 ≤ i ≤ n − 1 (setting i = 0 if bn has no intersection). Then
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Bnew
j = Bold

j is unchanged for j = i + 1, . . . , n − 1, so it suffices below to find the edges of
Bnew

1 , . . . , Bnew
i and Bnew

n .
If i = 0 then Bnew

n = bn is an isolated cell with boundary edge ∂bn. In steps (ii)–(v) we
assume that i ≥ 1.

(ii) Finding the interior edges of Bnew
n . To obtain the interior edges of Bnew

n , for j = 1, . . . , i,
we start by assigning enew

j,n ← [unew
j,n , vnew

j,n ], considering unew
j,n and vnew

j,n as (potential) boundary
vertices given by the endpoints of the chord Ej,n. Furthermore, for k = 1, . . . , i with k 	= j ,
if enew

j,n ∩Hn,k = ∅ (or, equivalently, unew
j,n 	∈ Hn,k and vnew

j,n 	∈ Hn,k , since Hn,k is convex), we
obtain enew

j,n ← ∅ and we can stop the k-loop, else enew
j,n ← enew

j,n ∩Hn,k . In the latter case either
both vertices are contained in Hn,k and so the edge remains unchanged, or exactly one vertex
is not contained in Hn,k , e.g. unew

j,n 	∈ Hn,k but vnew
j,n ∈ Hn,k , in which case unew

j,n becomes an
interior vertex given by the point enew

j,n ∩ ∂Hn,k while vnew
j,n is unchanged. In this way we find

all the interior edges of Bnew
n , and all the interior and boundary vertices of Bnew

n .
Since we have assumed that i > 0, Bnew

n is empty if and only if it has no interior edges.

(iii) Modifying the old interior edges. At the same time as we do step (ii) above, we also check
whether each interior edge eold

j,k = [uold
j,k, v

old
j,k ] of Bold with j < k ≤ i should be kept, reduced,

or omitted when we consider Bnew (recalling that enew
j,k = eold

j,k is unchanged if j > i or k > i).
We have

enew
j,k = eold

j,k ∩Hj,n = eold
j,k ∩Hk,n.

Thus, enew
j,k is empty if uold

j,k 	∈ Hk,n and vold
j,k 	∈ Hk,n, while enew

j,k = eold
j,k if uold

j,k ∈ Hk,n and
vold
j,k ∈ Hk,n. Furthermore, if uold

j,k ∈ Hk,n and vold
j,k 	∈ Hk,n then enew

j,k = [uold
j,k, v

new
j,k ], where

vnew
j,k is the point given by eold

j,k ∩ ∂Hk,n. Similarly, if uold
j,k 	∈ Hk,n and vold

j,k ∈ Hk,n then enew
j,k =[unew

j,k , vold
j,k ], where unew

j,k is the point given by eold
j,k ∩ ∂Hk,n.

Note that, for each j ≤ i, Bnew
j is empty if and only if it has no interior edge.

(iv) Finding the boundary edges of Bnew
n . Suppose that Bnew

n has m > 0 boundary vertices
wnew

1 , . . . , wnew
m . Note that m is an even number, and we can organize the boundary vertices

such that wnew
1 = zn + rn(cos ϕnew

1 , sin ϕnew
1 ), . . . , wnew

m = zn + rn(cos ϕnew
m , sin ϕnew

m ), where
0 ≤ ϕnew

1 < · · · < ϕnew
m < 2π . Then Bnew

n has m/2 boundary edges, namely

�wnew
2 , wnew

3 �, �wnew
4 , wnew

5 �, . . . , �wnew
m , wnew

1 � if zn + (rn, 0) ∈ Hn,j for all j = 1, . . . , i

and
�wnew

1 , wnew
2 �, �wnew

3 , wnew
4 �, . . . , �wnew

m−1, w
new
m � otherwise.

(v) Modifying the old boundary edges. Finally, we modify the boundary edges �uold
j , vold

j � of
Bold considering Bnew and j ≤ i (noting that �uold

j , vold
j � is a boundary edge of Bnew too if

j > i). This is done in a similar way as in step (iv). Suppose that Bnew
j has mj > 0 boundary

vertices wnew
1 , . . . , wnew

mj
, which we organize as in step (iv). Then Bnew

j has boundary edges

�wnew
2 , wnew

3 �, �wnew
4 , wnew

5 �, . . . , �wnew
mj

, wnew
1 �

if zj + (rj , 0) ∈ Hj,k for all k ≤ n with k 	= j and bj ∩ bk 	= ∅

and
�wnew

1 , wnew
2 �, �wnew

3 , wnew
4 �, . . . , �wnew

mj−1
, wnew

mj
� otherwise.
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A.2. The case where a disc is deleted

Suppose that we are deleting the disc bn from a configuration {b1, . . . , bn} of n ≥ 1 discs,
which are assumed to be in general position. We also assume that we know the power tessellation
Bold of Uold =⋃n

1 bi . Below we explain how to construct the new power tessellation Bnew of
Unew =⋃n−1

1 bi . More precisely, with respect to Bold, we assume that we know all the interior
edges [uold

i,j , vold
i,j ] and all the boundary edges �uold

i , vold
i �. We want to construct the tessellation

Bnew of Unew = Uold \ bn by finding the interior edges [unew
i,j , vnew

i,j ] and the boundary edges
�unew

i , vnew
i � associated to each new cell Bnew

i , noting that Bnew
i either agrees with Bold

i or is
an enlargement of Bold

i or is a completely new cell. One possibility could be to ‘reverse’ the
construction in Section A.1, where a new disc is added; however, we realized that it is easier to
create the new edges without reversing the construction in Section A.1 but using a construction
as described below. This is partly explained by the fact that an old empty set Bold

i may possibly
be replaced by a nonempty set Bnew

i .

(i) Considering the discs intersecting the disc which is deleted. Clearly, if Bold
n is empty then

Bnew = Bold is unchanged. Assume that Bold
n is a nonempty cell and, without loss of generality,

that bn intersects b1, . . . , bi but not bi+1, . . . , bn−1, where 0 ≤ i ≤ n− 1 (setting i = 0 if bn

has no intersection). Then it suffices to find the edges of Bnew
1 , . . . , Bnew

i , since Bnew
j = Bold

j

is unchanged for j = i + 1, . . . , n − 1. If i = 0 then Bold
n = bn is an isolated cell, and so

Bnew
1 = Bold

1 , . . . , Bnew
n−1 = Bold

n−1 are unchanged. In the following steps (ii)–(iv), suppose that
i > 0.

(ii) Finding the new interior edges. If i = 1, no new interior edge appears. Suppose that
i ≥ 2. We want to determine each set enew

j,k with j < k ≤ i. We start by assigning all cells
Bnew

1 , . . . , Bnew
i to be nonempty and by assigning enew

j,k ← [unew
j,k , vnew

j,k ], considering unew
j,k and

vnew
j,k as (potential) boundary vertices given by the endpoints of the chord Ej,k . Consider a

loop with l = 1, . . . , i and l 	= j, k. If enew
j,k ∩Hk,l = ∅ (or, equivalently, unew

j,k 	∈ Hk,l and
vnew
j,k 	∈ Hk,l , since Hk,l is convex), we find that enew

j,k is empty and we can stop the l-loop.
Otherwise, assign enew

j,k ← enew
j,k ∩Hk,l , where we note that only the following two cases can

occur. First, if both vertices of enew
j,k are contained in Hk,l , the edge remains unchanged.

Second, if exactly one vertex is not contained in Hk,l , e.g. unew
j,k 	∈ Hk,l but vnew

j,k ∈ Hk,l , then
unew

j,k becomes an interior vertex given by the point enew
j,k ∩ ∂Hk,l while vnew

j,k is unchanged. When
the loop is finished, we have determined all the new interior edges, including the information
whether their endpoints are interior or boundary vertices.

(iii) Determining the new cells. For each j ≤ i, we determine if Bnew
j is a new cell by checking

if it has an edge. Suppose that Bnew
j has no interior edge, i.e. it is either an empty set or a new

isolated cell. If an arbitrary fixed point of bj is included in Hj,l for all l = 1, . . . , n − 1 with
l 	= j then Bj has exactly one boundary edge and it is an isolated cell. Otherwise, Bnew

j is
empty. In this way we determine whether each Bnew

j is empty or a new cell, including whether
it is an isolated cell.

(iv) Finding the new boundary edges. We have already determined the new isolated boundary
edges in step (iii). Consider a nonisolated cell Bnew

j with j ≤ i with boundary vertices
wnew

k = zj + rj (cos ϕnew
k , sin ϕnew

k ), k = 1, . . . , mj . Recall that mj > 0 is an even number
and we organize the vertices so that 0 ≤ ϕnew

1 < · · · < ϕnew
mj

< 2π ; cf. step (iv) in Section A.1.
Then Bnew

j has mj/2 boundary edges, namely

�wnew
2 , wnew

3 �, �wnew
4 , wnew

5 �, . . . , �wnew
mj

, wnew
1 � if zj + (rj , 0) ∈ Hj,l for all l = 1, . . . , i
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and
�wnew

1 , wnew
2 �, �wnew

3 , wnew
4 �, . . . , �wnew

mj−1, w
new
mj
� otherwise.
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