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Well-posedness of Third Order Differential
Equations in Hölder Continuous Function
Spaces

Shangquan Bu and Gang Cai

Abstract. In this paper, by using operator-valued Ċα -Fourier multiplier results on vector-valued
Hölder continuous function spaces, we give a characterization of the Cα -well-posedness for the third
order diòerential equations au′′′(t)+ u′′(t) = Au(t)+ Bu′(t)+ f (t), (t ∈ R), where A, B are closed
linear operators on a Banach space X such that D(A) ⊂ D(B), a ∈ C and 0 < α < 1.

1 Introduction

hewell-posednessof thirdorderdiòerential equationshasbeen investigated bymany
researchers, since these diòerential equations describe a large number ofmodels aris-
ing from natural phenomena, such as �exible space structureswith internal damping;
see [3, 4, 7, 11, 12] for more information and references therein. For example, Poblete
and Pozo studied the existence and uniqueness of strong solutions for the abstract
third order equation

(1.1)
⎧⎪⎪⎨⎪⎪⎩

αu′′′(t) + u′′(t) = βAu(t) + γBu′(t) + f (t), (t ∈ [0, 2π]),
u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π),

where A and B are closed linear operators deûned on a Banach space X with D(A) ∩
D(B) ≠ {0}, the constants α, β, γ ∈ R+, and f belongs to either Lebesgue–Bochner
spaces Lp(T;X), periodic Besov spaces Bs

p ,q(T;X), or periodic Triebel–Lizorkin
spaces F s

p ,q(T;X) [12]. hey gave necessary and suõcient conditions for (1.1) to be
Lp-well-posed (respectively Bs

p ,q-well-posed and F
s
p ,q-well-posed) by using operator-

valued Fourier multipliers.
On the other hand, the well-posedness of diòerential equations in Hölder con-

tinuous function spaces have been extensively studied. See [5, 6, 10, 13, 14] for more
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information and references therein. he purpose of this paper is to study the well-
posedness of the following third order diòerential equations on the real line:

au
′′′(t) + u

′′(t) = Au(t) + Bu′(t) + f (t), t ∈ R(P)

on Hölder continuous function spaces Cα(R;X), where A and B are closed linear
operators on a complex Banach space X such that D(A) ⊂ D(B), a ∈ C and 0 < α < 1
are ûxed scalars.

We say that (P) is Cα-well-posed if, for every f ∈ Cα(R;X), there exists a unique
u ∈ Cα(R;D(A)) ∩ C3+α(R;X), such that u′ ∈ Cα(R;D(B)) and (P) is satisûed
for all t ∈ R. Here we consider D(A) and D(B) as Banach spaces equipped with
the graph norms, while C3+α(R;X) is the space of all C3-functions u∶R → X sat-
isfying u′ , u′′ , u′′′ ∈ Cα(R;X). Using known operator-valued Ċα-Fourier multiplier
results obtained byArendt, Batty and Bu [1], we completely characterize the Cα-well-
posedness of (P): when 0 < α < 1, then (P) is Cα-well-posed if and only if iR ⊂ ρ(P)
and

sup
s∈R

∥s3[ias3 + s
2 + A+ isB]−1∥ <∞,

sup
s∈R

∥sB[ias3 + s
2 + A+ isB]−1∥ <∞

(seeheorem 3.1 below), where ρ(P) is the resolvent set deûned by the problem (P)
(see the precise deûnition in the third section). Since the above estimations do not
depend on the space parameter 0 < α < 1, we deduce that when (P) is Cα-well-posed
for some 0 < α < 1, then it is Cα-well-posed for all 0 < α < 1.

It is remarkable that our characterization of the Cα-well-posedness of (P) does not
depend on the geometry of the underlying Banach space X and the involved closed
operatorAdoesnotneed to generate a semigroup on X. Our resultmay be regarded as
generalizations of the previous known results in the simpler cases when a = 0 and/or
B = 0 [1].

his paper is organized as follows: in the second section, we give some prelimi-
naries concerning Ċα-Fourier multipliers and Carleman transform for functions of
subexponential growth. In Section 3, we present our main result which gives a nec-
essary and suõcient condition for the problem (P) to be Cα-well-posed. In the last
section, we give a concrete example to which our abstract result may be applied.

2 Preliminaries

Let X be a complex Banach space and 0 < α < 1. We denote by Cα(R;X) the space of
all X-valued functions u on R satisfying

∥u∥α ∶= sup
s/=t

∥u(s) − u(t)∥
∣s − t∣α <∞.

Deûne
∥u∥Cα(R;X) ∶= ∥u(0)∥ + ∥u∥α .

It is easy to see that the space Cα(R;X) equipped with norm ∥ ⋅ ∥Cα(R;X) becomes a
Banach space. he kernel of the seminorm ∥ ⋅ ∥α on Cα(R;X) is the space of all con-
stant functions. he corresponding quotient space Ċα(R;X) is also a Banach space
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under the quotient norm. Wewill identify a function u ∈ Cα(R;X)with its equivalent
class in Ċα(R;X), that is, u̇ ∶= {v ∈ Cα(R;X) ∶ u − v ≡ constant}.

Let X, Y be Banach spaces. We denote byL(X ,Y) the space of all bounded linear
operators from X to Y . We will simply denote it by L(X) if X = Y .

We need the notion of operator-valued Ċα-multipliers which has been studied
in [1].

Deûnition 2.1 Let X ,Y be complexBanach spaces,m∶R∖{0}→ L(X ,Y) be contin-
uous. m is said to be a Ċα-Fourier multiplier if there exists amapping L∶ Ċα(R;X)→
Ċα(R;Y) such that

(2.1) ∫
R
Fφ(s)(L f )(s) ds = ∫

R
F(φm)(s) f (s) ds

for all f ∈ Cα(R;X) and all φ ∈ D(R ∖ {0}), where D(R ∖ {0}) is the space of all
C∞-functions onR∖{0}with compact support contained inR∖{0},F is the Fourier
transform given by

(Fh)(s) ∶= h̃(s) ∶= ∫
R
h(t)e−i st

dt, s ∈ R

when h ∈ L1(R;X).

Remark 2.1 By [1, Lemma 5.1], the right-hand side of (2.1) does not depend on the
representative of ḟ as

∫
R
F(φm)(s) ds = 2π(φm)(0) = 0.

Moreover, the identity (2.1)deûnes L f ∈ Cα(R;X)uniquelyup to an additive constant
by [1, Lemma 5.1].

he following result gives a suõcient condition for a C2-function to be a Ċα-
Fourier multiplier.

heorem 2.1 (Arendt, Batty and Bu [1]) Let X ,Y be Banach spaces andm∶R∖{0}→
L(X ,Y) be a C2-function satisfying

sup
s/=0

(∥m(s)∥ + ∥sm′(s)∥ + ∥s2m′′(s)∥) <∞.

hen m is a Ċα-Fourier multiplier whenever 0 < α < 1.

Let 0 < α < 1. henwe denote by C1+α(R;X) the space of all X-valued functions u
deûned on R, such that u ∈ C1(R;X) and u′ ∈ Cα(R;X). he space C1+α(R;X) is
equipped with the following norm

∥u∥C 1+α(R;X) ∶= ∥u(0)∥ + ∥u′∥Cα(R;X) ,

and it is a Banach space. It follows from [1, Lemma 6.2] that if u, v ∈ Cα(R;X), then
u ∈ C1+α(R;X) and u′ = v + x for some x ∈ X if and only if

∫
R
F(id ⋅φ)(s)u(s) ds = ∫

R
(Fφ)(s)v(s) ds

whenever φ ∈D(R ∖ {0}), where id(s) ∶= is when s ∈ R.
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In a similar way, C2+α(R;X) is the space of all X-valued functions u deûned
on R such that u ∈ C2(R;X) and u′ , u′′ ∈ Cα(R;X). C3+α(R;X) is the space of
all X-valued functions u deûned on R such that u ∈ C3(R;X) and u′, u′′, u′′′ ∈
Cα(R;X). C3+α(R;X) is also a Banach space equipped with the norm

∥u∥C3+α(R;X) ∶= ∥u(0)∥ + ∥u′(0)∥ + ∥u′′(0)∥ + ∥u′′′∥Cα(R;X) .

Let u ∈ L1
loc(R;X). We say that u is of subexponential growth if for all є > 0

∫
∞

−∞
e
−є∣t∣∥u(t)∥ dt <∞.

For such function u, we deûne its Carleman transform on C ∖ iR by

û(λ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
∞

0
e
−λt

u(t) dt, Re λ > 0,

−∫
∞

0
e
λt
u(−t) dt, Re λ < 0

[2, (4.25), p. 292]. A point η ∈ R is called a regular point of u if itsCarleman transform
has a holomorphic extension to a neighborhood of iη. he Carleman spectrum of u
is given by sp

C
(u) ∶= {η ∈ R ∶ η is not regular}. It iswell known that u = 0 if and only

if the sp
C
(u) = ϕ.

3 The Cα-Well-Posedness of (P)

Let X be a complex Banach space, let A∶D(A)→ X and B∶D(B)→ X be closed linear
operators on X satisfying D(A) ⊂ D(B) and let a ∈ C, 0 < α < 1. We consider the
Cα-well-posedness of the third order diòerential equations:

(P) au
′′′(t) + u

′′(t) = Au(t) + Bu′(t) + f (t), t ∈ R,

on Hölder continuous function spaces Cα(R;X).

Deûnition 3.1 We say that (P) is Cα-well-posed, if for all f ∈ Cα(R;X), there exists
a unique u ∈ Cα(R;D(A)) ∩ C3+α(R;X), such that u′ ∈ Cα(R;D(B)) and (P) is
satisûed for all t ∈ R, here D(A) and D(B) are equipped with the graph norms, so
that they become Banach spaces.

We deûne the resolvent set for the problem (P) by

ρ(P) ∶= {z ∈ C ∶ az3 + z
2 − A− zB ∶ D(A)→ X is a bijection and

[az3 + z
2 − A− zB]−1 ∈ L(X)}.

Let z ∈ ρ(P). hen [az3 + z2 − A− zB]−1 ∈ L(X) is a bijection from X onto D(A) by
deûnition. his implies that A[az3 + z2 − A − zB]−1 and B[az3 + z2 − A − zB]−1 ∈
L(X) by the closed graph theorem and the closedness of A and B. In particular,
[az3 + z2 − A− zB]−1 ∈ L(X ,D(A)) ∩L(X ,D(B)) . Here again we consider D(A)
and D(B) as Banach spaces equipped with the graph norms.

he following results give a necessary and suõcient condition for (P) to be
Cα-well-posed.
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heorem 3.1 Let X be a complex Banach space, a ∈ C, 0 < α < 1 and let A, B be
closed linear operators on X satisfying D(A) ⊂ D(B). hen (P) is Cα-well-posed if and

only if iR ⊂ ρ(P) and

sup
s∈R

∥s3[ias3 + s
2 + A+ isB]−1∥ <∞,

sup
s∈R

∥sB[ias3 + s
2 + A+ isB]−1∥ <∞.

Proof Assume that iR ⊂ ρ(P) and sup
s∈R∥s3[ias3 + s2 + A + isB]−1∥ < ∞, sup

s∈R
∥sB[ias3 + s2 + A + isB]−1∥ < ∞. hen A∶D(A) → X is invertible and its inverse
A−1 ∈ L(X) as 0 ∈ ρ(P), by assumption. Let

m(s) ∶= [ias3 + s
2 + A+ isB]−1 , p(s) ∶= s

3
m(s), q(s) ∶= sBm(s)

when s ∈ R. It is easy to verify that m, p and q are L(X)-valued C∞-functions on R.
We have

(3.1) sup
s∈R

∥p(s)∥ <∞, sup
s∈R

∥q(s)∥ <∞,

by assumption. he identity (ias3 + s2)m(s) + Am(s) + isBm(s) = IX and the fact
that the inverse of A∶D(A)→ X is in L(X) implies that

(3.2) sup
s∈R

∥Am(s)∥ <∞, sup
s∈R

∥m(s)∥ <∞.

We have

m
′(s) = −m(s)[3ias2 + 2s + iB]m(s),

and

m
′′(s) = 2m(s)[3ias2 + 2s + iB]m(s)[3ias2 + 2s + iB]m(s)

−m(s)[6ias + 2]m(s)

when s ∈ R. It follows that

sup
s∈R

∥sm′(s)∥ <∞, sup
s∈R

∥s2m′′(s)∥ <∞,

sup
s∈R

∥sAm′(s)∥ <∞, sup
s∈R

∥s2Am′′(s)∥ <∞,

sup
s∈R

∥sBm′(s)∥ <∞, sup
s∈R

∥s2Bm′′(s)∥ <∞

by (3.1) and (3.2). Here we have used the fact that

(3.3) sup
s∈R

∥Bm(s)∥ <∞, sup
s∈R

∥s2m(s)∥ <∞,

which are easy consequences of the uniform boundedness of p, q and the continu-
ity. herefore, considering m∶R → L(X ,D(A)) or m∶R → L(X ,D(B)) , m is a
Ċα-Fourier multiplier by heorem 2.1. On the other hand, we have

p
′(s) = 3s2m(s) − s

3
m(s)[3ias2 + 2s + iB]m(s),
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and

p
′′(s) = 6sm(s) − 6s2m(s)[3ias2 + 2s + iB]m(s) − s

3
m(s)[6ias + 2]m(s)

+ 2s3m(s)[3ias2 + 2s + iB]m(s)[3ias2 + 2s + iB]m(s)

by (3.1), (3.2) and (3.3). It follows that

sup
s∈R

∥sp′(s)∥ <∞, sup
s∈R

∥s2p′′(s)∥ <∞.

Consequently p is a Ċα-Fourier multiplier by heorem 2.1.
For h, we have

q
′(s) = Bm(s) − sBm(s)[3ias2 + 2s + iB]m(s),

and

q
′′(s) = −2Bm(s)[3ias2 + 2s + iB]m(s) − sBm(s)[6ias + 2]m(s)

+ 2sBm(s)[3ias2 + 2s + iB]m(s)[3ias2 + 2s + iB]m(s).

It follows that
sup
s∈R

∥sq′(s)∥ <∞, sup
s∈R

∥s2q′′(s)∥ <∞

by (3.1), (3.2) and (3.3). Hence q is also a Ċα-Fourier multiplier by heorem 2.1.
Let k(s) = sm(s) and l(s) = s2m(s). In a similarway,we show by using (3.1), (3.2)

and (3.3) that

sup
s∈R

∥sk′(s)∥ <∞, sup
s∈R

∥s2k′′(s)∥ <∞,

sup
s∈R

∥sBk′(s)∥ <∞, sup
s∈R

∥s2Bk′′(s)∥ <∞,

sup
s∈R

∥sl ′(s)∥ <∞, sup
s∈R

∥s2 l ′′(s)∥ <∞.

herefore l is a Ċα-Fourier multiplier, and considering k∶R → (X,D(B)) , k is also
a Ċα-Fourier multiplier by heorem 2.1.

Let f ∈ Cα(R;X) be ûxed. hen there exist u1 ∈ Cα(R;D(A)) ∩ Cα(R;D(B))
and u2 ∈ Cα(R;D(B)) , u3 , u4 , u5 ∈ Cα(R;X), such that

∫
R
(Fϕ1)(s)u1(s) ds = −∫

R
F(ϕ1m)(s) f (s) ds,(3.4)

∫
R
(Fϕ2)(s)u2(s) ds = −i ∫

R
F(ϕ2k)(s) f (s) ds,(3.5)

∫
R
(Fϕ3)(s)u3(s) ds = −i ∫

R
F(ϕ3q)(s) f (s) ds,

∫
R
(Fϕ4)(s)u4(s) ds = ∫

R
F(ϕ4 l)(s) f (s) ds,(3.6)

∫
R
(Fϕ5)(s)u5(s) ds = i ∫

R
F(ϕ5p)(s) f (s) ds(3.7)
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for all ϕ i ∈ D(R ∖ {0}). Since u1 ∈ Cα(R;D(A)) and u2 ∈ Cα(R;D(B)) , we have
Au1 , Bu2 ∈ Cα(R;X). It follows from (3.4) and (3.5) that

∫
R
(Fϕ1)(s)Au1(s) ds = −∫

R
F(ϕ1Am)(s) f (s) ds,(3.8)

∫
R
(Fϕ2)(s)Bu2(s) ds = −i ∫

R
F(ϕ2q)(s) f (s) ds(3.9)

when ϕ1 , ϕ2 ∈D(R∖{0}) by the closedness of A and B. Choosing ϕ1 = id ⋅ϕ2 in (3.4),
where id(s) ∶= is when s ∈ R, we obtain from (3.5) that

∫
R
F(id ⋅ϕ2)(s)u1(s) ds = ∫

R
(Fϕ2)(s)u2(s) ds

whenever ϕ2 ∈ D(R ∖ {0}). hus u1 ∈ C1+α(R;D(B)) and u′1 = u2 + y1 for some
y1 ∈ D(B) by [1, Lemma 6.2]. Herewe have used the facts that u1 , u2 ∈ Cα(R;D(B)) .

Similarly choosing ϕ2 = id ⋅ϕ4 in (3.5), we deduce that u2 ∈ C1+α(R;X) and u′2 =
u4 + y2 for some y2 ∈ X by [1, Lemma 6.2] and (3.6). Taking ϕ4 = id ⋅ϕ5 in (3.6), we
deduce that u4 ∈ C1+α(R;X) and u′4 = u5 + y3 for some y3 ∈ X by [1, Lemma 6.2] and
(3.7). hus u1 ∈ C3+α(R;X) and u′′′1 = u5 + y3.

Now the identity

ias
3
m(s) + s

2
m(s) = −Am(s) − isBm(s) + IX , s ∈ R

implies that

∫
R
F(iap)(s) f (s) ds + ∫

R
(Fl)(s) f (s) ds

= −∫
R
F(Am)(s) f (s) ds − ∫

R
F(iq)(s) f (s) ds + ∫

R
f (s)(Fϕ)(s) ds.

Hence we have

∫
R
(au5 + u4 − Au1 − Bu2 − f )(s)F(ϕ)(s) ds = 0,

for all ϕ ∈D(R ∖ {0}) by (3.8) and (3.9), or equivalently,

au
′′′
1 + u

′′
1 = Au1 + Bu′1 + f + y

for some y ∈ X by [1, Lemma 5.1].
Let A−1 be the inverse of A∶D(A) → X and let x = A−1 y. hen x ∈ D(A) and

u = u1 + x solves (P). his shows the existence.
To show the uniqueness, we let u ∈ Cα(R;D(A)) ∩ C3+α(R;X) be such that u′ ∈

Cα(R;D(B)) and

au
′′′(t) + u

′′(t) = Au(t) + Bu′(t)
when t ∈ R. Taking the Carleman transform û of u, we have û(λ) ∈ D(A) ∩ D(B)
and

Âu(λ) = Aû(λ), B̂u′(λ) = λBû(λ) − Bu(0),
û′′(λ) = λ

2
û(λ) − λu(0) − u

′(0),
û′′′(λ) = λ

3
û(λ) − λ

2
u(0) − λu

′(0) − u
′′(0),
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for all λ ∈ C/iR by [2]. It follows that

[aλ3 + λ
2 − A− λB]û(λ)

= (aλ2 + λ)u(0) + (aλ + 1)u′(0) + au′′(0) − Bu(0),

when λ ∈ C/iR. his implies that the Carleman spectrum sp
C
(u) of u is empty as

iR ⊂ ρ(P) by assumption. herefore u = 0 by [2, heorem 4.8.2]. Hence (P) is
Cα-well-posed.
Conversely, assume that (P) is Cα-well-posed. Let L∶Cα(R;X) → S(R;X) be the

solution operator which associates for each f ∈ Cα(R;X), the unique solution L( f )
of (P),where S(R;X) is the solution space of (P) consisting of all u ∈ Cα(R;D(A)) ∩
C3+α(R;X), such that u′ ∈ Cα(R;D(B)) . S(R;X) equipped with the norm

∥u∥S(R;X) ∶= ∥u∥Cα(R;D(A)) + ∥u∥C3+α(R;X) + ∥Bu′∥Cα(R;X)

is a Banach space. It is easy to show that L is linear and bounded by the closed graph
theorem.

Let s ∈ R be ûxed; we are going to show that is, ∈ ρ(P). Let x ∈ D(A) be such that
(−ias3 − s2)x = Ax + isBx and let u = es ⊗ x, where (es ⊗ x)(t) ∶= e i stx when t ∈ R.
hen u ∈ Cα(R;D(A)) ∩ C3+α(R;X), u′ ∈ Cα(R;D(B)) and

au
′′′(t) + u

′′(t) = Au(t) + Bu′(t)
for all t ∈ R. his means that u ∈ S(R;X) and u solves (P) when taking f = 0. Hence
u = 0 by the uniqueness of the solution of (P). Consequently x = 0. We have shown
that ias3 + s2 + A+ isB is injective.

To show that ias3 + s2 + A+ isB is also surjective, we let y ∈ X and consider f =
es ⊗ y. hen f ∈ Cα(R;X). Let u ∈ S(R;X) be the unique solution of (P), i.e.,

au
′′′(t) + u

′′(t) = Au(t) + Bu′(t) + f (t)
for all t ∈ R. For ûxed ξ ∈ R, we consider the function uξ given by uξ(t) = u(t + ξ)
when t ∈ R. hen both functions uξ and e i ξsu are in S(R;X) and solve the problem

av
′′′(t) + v

′′(t) = Av(t) + Bv′(t) + e i ξs f (t).

We deduce from the uniqueness that uξ = e i ξsu, that is, u(t+ξ) = e i ξsu(t) for t, ξ ∈ R.
Let x = u(0). hen x ∈ D(A) and u = es ⊗ x. Since u solves

au
′′′(t) + u

′′(t) = Au(t) + Bu′(t) + f (t),
we have (−ias3 − s2)es ⊗ x = es ⊗ Ax + ises ⊗ Bx + es ⊗ y. Letting t = 0, we obtain
(−ias3 − s2 − A − isB)x = y. his shows that ias3 + s2 + A + isB is surjective. hus
ias3 + s2 +A+ isB is a bijection from D(A) onto X and x = −(ias3 + s2 +A+ isB)−1 y.
We have shown that

u = −es ⊗ (ias3 + s
2 + A+ isB)−1

y.

Consequently

∥(ias3 + s
2 + A+ isB)−1

y∥ = ∥u(0)∥
≤ ∥L∥ ∥ f ∥

Cα(R;X) = ∥L∥ (1 + γα ∣s∣α) ∥y∥

722

https://doi.org/10.4153/S0008439518000048 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000048


Well-posedness of Degenerate Equations

for some constant γα > 0 depending only on α [1, (3.1)]. hus (ias3 + s2 + A+ isB)−1

is a bounded linear operator for every s /= 0. hat is, is ∈ ρ(P) for all s ∈ R ∖ {0}.
On the other hand, we note that

γα∥s∥α ∥s3(ias3 + s
2 + A+ isB)−1

y∥
= ∥s3es ⊗ (ias3 + s

2 + A+ isB)−1
y∥α

= ∥u′′′∥α ≤ ∥L∥ ∥ f ∥Cα == ∥L∥(1 + γα∥s∥α)∥y∥,

by [1, (3.1)]. It follows that when s /= 0,

∥s3(ias3 + s
2 + A+ isB)−1∥ ≤ ∥L∥(1 + γ

−1
α ∥s∥−α).

Similarly using the inequality ∥Bu′∥Cα ≤ ∥L∥ ∥ f ∥Cα , one obtains

(3.15) ∥sB(ias3 + s
2 + A+ isB)−1∥ ≤ ∥L∥(1 + γ

−1
α ∥s∥−α)

when s /= 0.
When s = 0, f is the constant function y and the corresponding solution u is the

constant function −A−1 y. hen the inequality ∥u∥Cα ≤ ∥L∥ ∥ f ∥Cα implies that

∥A−1
y∥ ≤ ∥L∥ ∥y∥,

that is, 0 ∈ ρ(P). Hence we have iR ⊂ ρ(P). It is not hard to verify that ρ(P) is an
open subset of C and the functions deûned on R by

s → ∥s3(ias3 + s
2 + A+ isB)−1∥, s → ∥sB(ias3 + s

2 + A+ isB)−1∥
are continuous. It follows that

∥s3(ias3 + s
2 + A+ isB)−1∥ <∞, ∥sB(ias3 + s

2 + A+ isB)−1∥ <∞
by continuity, (3.14) and (3.15). his completes the proof. ∎

Since the necessary and suõcient condition for the problem (P) to be Cα-well-
posed obtained in heorem 3.1 does not depend on the space parameter 0 < α < 1, we
have the following immediate corollary.

Corollary 3.1 If the problem (P) is Cα-well-posed for some 0 < α < 1, then it is

Cα-well-posed for all 0 < α < 1.

4 Applications

In this section, we give an example where our abstract results may be applied. We
recall that a closed densely deûned operator A on a Banach space X is sectorial of
angle β ∈ (0, π) if σ(A) ⊂ Σβ and for every β′ ∈ (β, π),

sup
z∈C∖Σβ′

∥z(z − A)−1∥ <∞,

where Σβ ∶= {z ∈ C ∶ ∣ arg(z)∣ < β}. For a sectorial operator A, we deûne the sectorial
angle ω(A) by

ω(A) ∶= inf{β ∈ (0, π) ∶ A is sectorial of angle β}.
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For every β ∈ (0, π), we put

H
∞(Σβ) ∶= { f ∶ Σβ → C holomorphic ∶ ∥ f ∥∞ ∶= sup

z∈Σβ
∥ f (z)∥ <∞} ,

H
∞
0 (Σβ) ∶= { f ∈ H

∞(Σβ) ∶ there exists є > 0,

such that sup
z∈Σβ

∣ f (z)∥∣ 1 + z2

z
∣
є

<∞} .

If A is sectorial operator of angle β ∈ (0, π), then

f (A) ∶= 1
2πi
∫

∂Σβ′
f (z)(z − A)−1

dz

deûnes a functional calculus from H∞
0 (Σ′

β
) into L(X) for all β′ > β. his functional

calculus may be extended in a natural way in order to deûne the fractional powers Aє

for all є > 0. It is known that Aє is still a sectorial operator and D(A) ⊂ D(Aє) when
0 < є < 1 [8].

We say that a sectorial operator A admits a bounded H∞-functional calculus of
angle β ∈ [ω(A), π) , if the functional calculus on H∞

0 (Σβ′) deûned above extends
to a bounded linear operator on H∞(Σβ′) for all β′ ∈ (β, π). he inûmum of all such
β is denoted by ωH(A). When A admits a bounded H∞-functional calculus of angle
β, then there exists a constant Cβ ≥ 0, such that for all f ∈ H∞(Σβ), one has
(4.1) ∥ f (A)∥ ≤ Cβ∥ f ∥∞ .

We refer to [8,9] for the concepts of H∞-functional calculus for sectorial operators.

Example 4.1 Let a > 0, 0 < α < 1 be ûxed and X be a Banach space. We consider the
following second order diòerential equation:

(P′) au
′′′(t) + u

′′(t) = Au(t) + γA
m/n

u
′(t) + f (t), t ∈ R,

where A is a sectorial operator on X admitting a bounded H∞-functional calculus of
angle β for some β ∈ (0, π),m, n are given positive integers satisfying 0 < m/n < 2/3,
iR ⊂ ρ(P′), and γ is a ûxed scalar number. hen (P′) is Cα-well-posed.

Proof It is clear that (P′) is a special case of (P) when B = γAm/n . Let s ∈ R, we
consider the polynomial gs(z) ∶= zn + isγzm + s2 + as3. Let zs be one of the roots of
gk(z) = 0, that is,

(4.1) z
n
s + isγz

m
s + s

2 + as3 = 0.

It follows from (4.1) that there exists no real sequence (sk)k∈Z converging to∞ such
that (zsk)k∈Z is bounded. his implies that lims→∞ ∣zs ∣ = +∞. Let ys ∶= z

n
s
s3
. hen

by (4.1) there exists no real sequence (sk)k∈Z converging to ∞ such that (∣ysk ∣)k∈Z
converges to +∞ as 0 < m/n < 2/3 by assumption. herefore there exists a constant
C ≥ 0, such that ∣ys ∣ ≤ C for all s ∈ R. We deduce from (4.1) and the assumption
0 < m/n < 2/3 that

(4.2) lim
s→∞

ys = −a.
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Let z1,s , z2,s , . . . , zn ,s be the roots of gs(z) = 0. hen gs(z) = ∏n

j=1(z − z j ,s). Con-
sider the function hs(z) = z + isγzm/n + s2 + as3, where zm/n ∶= e m

n l og(z) by using the
main branch of the logarithm. We have hs(z) =∏n

j=1(z j ,s − z1/n). hen

sup
z∈Σβ

∣ s3

hs(z)
∣ = sup

z∈Σβ
∣ 1

∏n

j=1(
z j,s
∣s∣3/n −

z1/n
∣s∣3/n )

∣ <∞,(4.3)

sup
z∈Σβ

∣ z

hs(z)
∣ = sup

z∈Σβ
∣ 1
∏n

j=1(
z j,k
z1/n − 1)

∣ <∞

when ∣s∣ is big enough, by (4.2). an immediate consequence of (4.3) is

sup
z∈Σβ

∣ s2

hs(z)
∣ <∞

when ∣s∣ is big enough. his implies that

sup
z∈Σβ

∣ sz
m/n

hs(z)
∣ <∞

when ∣s∣ is big enough, by the deûnition of hs . Consequently the functions f1,s and
f2,s deûned by

f1,s(z) =
s2

z + isγzm/n + s2 + as3 , f2,s(z) =
szm/n

z + isγzm/n + s2 + as3

belong to H∞(Σβ) when ∣s∣ is big enough.
For all s ∈ R, the operator as3 + s2 + A+ isγAm/n is a bijection from D(A) onto X

and (as3 + s2 +A+ isγAm/n)−1 ∈ L(X) as iR ⊂ ρ(P′) by assumption. One can verify,
using for example [8, Chapter 1], that

f1,s(A) = s
2(as3 + s

2 + A+ isγA
m/n)−1 ,

f2,s(A) = sA
m/n(as3 + s

2 + A+ isγA
m/n)−1

when ∣s∣ is big enough. he assumption that A admits a bounded H∞-functional
calculus of angle β implies that the sets

{s2(as3 + s
2 + A+ isγA

m/n)−1 ∶ s ∈ R},
{sAm/n(as3 + s

2 + A+ isγA
m/n)−1 ∶ s ∈ R}

are bounded by (4) and the assumption that iR ⊂ ρ(P′). Consequently, (P′) is
Cα-well-posed by heorem 3.1. ∎

We do not knowwhether the result remains true ifwe replace the component m/n
in (P′) by arbitrary 0 < є < 2/3.

Similar argument shows that when a = 0, then the result remains true when the
assumption 0 < m/n < 2/3 is replaced by 0 < m/n < 1/2.
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