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Abstract

First-generation heap profilers for lazy functional languages have proved to be effective tools
for locating some kinds of space faults, but in other cases they cannot provide sufficient
information to solve the problem. This paper describes the design, implementation and use of
a new profiler that goes beyond the two-dimensional 'who produces what' view of heap cells
to provide information about their more dynamic and structural attributes. Specifically, the
new profiler can distinguish between cells according to their eventual lifetime, or on the basis
of the closure retainers by virtue of which they remain part of the live heap. A bootstrapping
Haskell compiler (nhc) hosts the implementation: among examples of the profiler's use we
include self-application to nhc. Another example is the original heap-profiling case study
clausify, which now consumes even less memory and is much faster.

Capsule Review

This paper extends the famous Runciman-Wakeling heap profiler by measuring the lifetime
and the closure retainers of heap objects. This information is very expensive to measure
accurately, so the authors design and implement some efficient heuristics to measure an
approximation or a subset of the above information. Applying the new profiler to several
functional programs yields many interesting observations and insights on how to write space-
efficient functional programs (by the programmer) and how to generate space-efficient code
(by the compiler).

For all those who are interested in optimising the performance of functional programs,
this is another paper (after Runciman and Wakeling (1993a)) that should convince you of
the need to build a heap profiler for your own compiler.

1 Introduction

Purely functional languages are attractive for their concise uncluttered style - a
style made possible by freeing the programmer from many responsibilities such as
memory management and evaluation strategy. There is a drawback, however. Lazy
functional programs that look concise and elegant as collections of equations can
make surprisingly large demands on machine resources. The programmer sees only
recursion equations, but the machine performs normal order graph reduction using
those equations as rules. So it may be easy to reason about the results obtained, yet
hard to reason about the costs of obtaining them.
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1.1 Heap profiling

In science, observation plays a central role in the advancing of knowledge. Careful
study of accurate observations often precedes the formulation of valuable new
ideas. But observation usually requires instruments, and the availability or lack of
suitable instruments in some field of enquiry often proves critical. A heap profiler
(Runciman and Wakeling, 1993a; Runciman & Wakeling, 1993b) is an instrument
for observing lazy functional computation. The observations made possible by heap-
profiling help programmers to analyse and hence reduce the memory use of lazy
functional programs evaluated by graph reduction.

Here is how the original implementation of heap-profiling works. A modified
compiler generates additional code to label every graph node. The labels of a
node indicate its construction (what it represents, in terms of symbols occurring
in the source program) and its producer (which part of the program caused it to
be introduced). At specified regular intervals, a census of the live heap is taken:
the run-time system traverses the entire live graph structure collecting and storing
label data. Once the program has finished running, the collected data is processed
to generate charts such as those in Figure 14 of section 5.1. Shaded bands, in the
area beneath a 'curve' plotting live-heap size against time, represent partitions of
the heap population. There are two sorts of profile: in one, each band represents a
different producer; in the other, bands represent constructions. To focus on specific
aspects of memory consumption, the user can narrow the scope of profiling to a
specified set of constructions or producers.

Although the basic idea of heap-profiling is simple, it has often proved effective.
In many successful applications, iterative profiling and improvement has achieved
substantial gains in efficiency. The original case-study was a propositional simplifier
(Runciman and Wakeling, 1993a) for which the gains were better than two orders of
magnitude. (This example application is revisited in section 5.1.) With constructions
aggregated by type, and producers by module or source file, heap-profiling has also
been successfully applied to large and complex programs (Runciman & Wakeling,
1993b; Zhang et al., 1995).

1.2 New dimensions

A two-dimensional characterisation of a heap by such simple attributes of its cells
- producer and construction - clearly has its limitations, notably of two kinds:

• The heap cell attributes involved are static. Labels attached to a cell remain
fixed throughout the time it is part of the live graph. This has the advantage
that labels can be fully determined at compile-time for each static point in
the program at which a cell is allocated, but it denies the programmer any
information about dynamic attributes of cells.

• No structural information about the access relation of the graph is recorded.
For each heap census, graph traversal serves only to reach the full population
of live cells. Given such 'fiat' profile data for a particular program, it may
be possible for a programmer to infer some structural information: indeed
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this may be essential before space-saving modifications can be made. But the
information directly presented simply partitions a set of otherwise unrelated
cells.

These limitations in principle are reflected in practice. Heap-profiling of the 'who
produces what' kind cannot answer all the questions programmers want to ask. Here
are two examples:

• Suppose a profile shows a 'plateau' of sustained high demand for heap space at
some stage in a computation. Does this represent 'dragging' of an unchanging
subgraph (perhaps remote from the sites of reduction), or is it a phase of
substantial graph replacement in which there happens to be a fairly constant
turn-over of cells? The distinction could be important, as 'dragging' is a
common space-fault that can often be corrected. But to make this distinction
requires information derived from a run-time attribute of cells - their time of
creation.

• Suppose a profile includes a wide band representing 'cons' cells produced by
the append function. Such a band might be surprising to a programmer, and
give new insights into the workings of a program. But it might be a familiar
sight to a programmer working on text-based applications - who is never quite
sure whether this band could somehow be made smaller! It might help to have
a little more information about the production of these cells: for example,
which of the many static occurrences of append are responsible for most of
them? But what the programmer would really like to know is why these cells
are retained in the heap? Which part of the program is 'holding onto them'?
This is a structural question to do with access paths in the graph.

This paper describes an extension of heap-profiling for functional programs
evaluated by graph reduction. The extension provides information about dynamic
and structural aspects of a graph being reduced: lifetime profiling is described in
section 2; and retainer profiling in section 3. A profiler with these 'new dimensions' has
been implemented, and details of the implementation are given in section 4. Example
applications, illustrating what can be done with the new profiling information, are
presented in section 5. Some related work is discussed in section 6, and section 7
concludes.

2 Lifetime profiling

An easy first step towards supplying dynamic information about heap cells is to
label each heap cell with the time at which it is created. But is creation-time the
most helpful dynamic attribute to present in a profile? Knowing the time of each
heap census, it is easy to infer the age of cells labelled with creation times. With
only a little more ingenuity we could use a post-processor to work out eventual cell
lifetimes. Which of these is best, or doesn't it matter?

To answer this question, consider the functions reverse and traverse defined in
figure 1. Superficially, the two functions are very similar. Each recurses over a list
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reverse xs = rev [] xs
where
rev r [] = r
rev r (x:xs) = rev (x:r) xs

traverse xs = trav xs xs
where
trav t [] = t
trav t (x:xs) = trav t xs

Fig. 1. Two similar functions?

legion = [1..12000]

repeat f 0 x = x
repeat f n x = repeat f (n-1) (f x)

work f = repeat f 100 legion

Fig. 2. A definition of work.

argument and yields as its result a list of the same length. But the result of reverse
is a distinct new list structure, whereas the result of t raverse is the same old list.
We shall see how this difference would be reflected in three different profiles of the
heap cells representing the list structures; the computations assumed in each case are
work reverse and work traverse, where the higher-order driving function work
is defined as in figure 2.

Creation-time profiling ?

The creation-time profiles in figure 3 band the heap according to the creation-times
of cells. Creation-times are dynamic in the sense that they are known only at run-
time rather than compile time, and vary across cell allocations from the same static
program point. However, creation-time is a fixed attribute throughout the lifetime
of a cell so each cell is consistently shaded across the profile. All the list cells in
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Fig. 3. Profiling by cell creation-time.
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Fig. 4. Profiling by cell age.

the traverse computation are created early, hence the uniform picture. But the
reverse profile illustrates two problems with using creation-times.

• There is an in-built skew in the distribution of shadings, because early in the
computation there cannot be any cells with a late time of creation. So some
profiles are impossible, and the information capacity of the shaded charts is
under-used.

• Similar computations repeated at different stages may not be easily recognised,
since their appearance may vary in the profile.

Age profiling?

The age profiles in figure 4 band the heap according to the age of cells at each
census. This also suffers from an inherently skewed distribution of shadings: early
in the computation there cannot be any old cells. More seriously, when profiling by
age:

• long-lived cells may change bands several times.

This makes it tricky for the programmer to maintain a correct intuition when
reasoning about a particular class of cells.

Lifetime profiling?

Lastly, consider the lifetime profiles in figure 5. Here heap cells are banded accord-
ing to their eventual full lifetime as part of the live graph. The distinction between
the reverse and traverse computations is shown with black-and-white clarity.
Whereas the data for creation-time and age profiles can be generated as a compu-
tation proceeds, lifetime profiling requires retrospective calculation to determine cell
counts at each stage in the computation. However, lifetime profiling has significant
advantages: there is no inherent skew in the distribution of shadings; cells are
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Fig. 5. Profiling by cell lifetime.

assigned a consistent shading throughout a computation; and any repeated similar
computations are similarly shaded.

So although there may be cases where a direct creation-time or age profile
would suffice, it seems that lifetime profiles are more attractive in principle for the
programmer (though also the most demanding for the implementor). Identifying
any sizable population of either very long-lived or very short-lived cells may help
to improve programs. For example, short-lived cells may be intermediate structures
to which deforestation (Wadler, 1990) is applicable; long-lived cells might represent
large unevaluated closures that can be reduced to small results before they are
actually needed.

2.1 Post-processing for lifetimes

Let time in a profiled computation be measured as the number of heap censuses
taken so far. We shall refer to all cells with the same time of creation as belonging to
the same generation. At each heap census, population counts for each generation can
be recorded in a log-file. A post-processor is needed to derive lifetime information
from this file.

The problem is to take an input matrix, containing population counts for each
generation at each census, and to compute from it an output matrix, containing
counts for each lifetime at each census. Figure 6 shows an example of such input
and output. In this example, just one cell created as part of the first generation
survives to the final census: it is represented by the bottom-right element 1 in the
creation-time matrix, and by the top row of l's in the derived matrix of lifetime
data.

Suppose the matrix of information from heap censuses is read into a two dimen-
sional array A: [0. .N,0. .N], so that the value of A[x,y] contains the number of
yth generation cells recorded in the heap census at time x. Figure 7 gives a basic
algorithm for deriving an array B (of the same size) that contains cell-population
counts by lifetime, instead of by generation. With every element of array B initially
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Fig. 6. An example of lifetime data derived from creation-time data.

assert : Vx,y in 0. .N: B[x,y] = 0

for x in N .
for g in

P = =
t : =
for

. 0
x .
A[x
x -

. 0
>g]
g

x' in g .
B[x'
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,t] :
• g] :

. X

= B[x'
= A[x'

, t ]

. g ]
+ P
" P

Fig. 7. A straightforward algorithm for deriving a matrix B of population counts by lifetime
from a matrix A of population counts by creation-time (or 'generation').

zero, the algorithm works backwards through the census data in array A, increasing
counts in B and correspondingly decreasing those in A. The basis of calculation is
that a cell created as part of generation g, not surviving to a census beyond g+t,
has lifetime t. No cells survive to a census beyond the last one, for which the results
are stored in column N of array A. Each population count in that column is for
some generation g, and represents cells with lifetime N-g. Population counts in B
are increased accordingly for columns g to N; and at the same time we decrease
the counts in A so that they no longer include this last surviving group of cells.
The same process is repeated for each preceding census, working back through the
columns of A. Eventually, all the counts in A are reduced to zero. The final values in
B are just as if population counts for each eventual cell lifetime had been recorded
in it at each census

An efficient in-place transformation

Though correct, the algorithm of figure 7 is not very efficient. The same derivation
can be achieved by an in place transformation in linear time (in the number of array
elements). Figures 8-10 give a three-phase algorithm for transforming A so that
afterwards the value at A [x, y] is the number of cells alive at time y with lifetime
x. (That is, the algorithm computes the transpose of lifetime matrices such as in
figure 6.) Figures 8-10 also show the intermediate values of A after each phase,
assuming the initial census data of figure 6.
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for y in 0..N-l
for x in y..N-l

A[x,y] := A[x,y] - A[x+l,y]

Fig. 8. Lifetime transformation: Phase I. Afterwards A[x,y] is the number of yth generation
cells with lifetime x-y.

for y in 1..N
for x in y..N

A[x-y,y] := A[x,y]
for x in (N-y)+l..N

A[x,y] := 0
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Fig. 9. Lifetime transformation: Phase II. A simple shear transforms A so that afterwards
A [x , y] represents the number of yth generation cells with lifetime x.

v: [0..N]
V0(i) = if i<0 then 0 else v[i]

for x in 1..N
s := v[0] := A[x,0]
for y in 1..N

v[y] := A[x,y]
s := s + v[y] - V0(y-(x+D)
A[x,y] := s

Fig. 10. Lifetime transformation: Phase III. Afterwards A[x,y] is the number of cells alive at
the yth census whose eventual lifetime was x. The assignment to s in the inner loop updates
a running total of the last x entries in the vector.
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2.2 Lifetimes as selectors

Experience with the original heap-profiler has shown the value of being able to
examine particular sections of the heap, specified by cell characteristics. This principle
should extend also to lifetimes so that, for example, the programmer can look at
the constructions of long-lived cells. In fact, to make effective diagnostic use of
lifetime profiling it will almost always be necessary to connect it with other forms
of profiling (e.g. by specifying a restriction in one direction or the other). This is
because, unlike the bands in other profiles, lifetime bands are not labelled with the
names of program components.

When lifetime information is used to specify a selected population of cells, recorded
census data must include cell counts/or each generation for each separate construction
(or producer, etc.). Similarly, the postprocessor must build and transform an array
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for each separate construction. As this may involve a large amount of data, the
efforts to devise an efficient transformation algorithm are well spent.

3 Retainer profiling

An earlier paper (Runciman and Wakeling, 1991) argued in principle that pro-
grammers may need to know not only about the producers of heap cells, but also
about consumers. If we think of producers as cell writers then a cell's consumers
are its readers - all functions that examine the cell as part of their computational
work. Alternatively, if we regard producers as cell allocators then a cell's (unique)
consumer is its disposer - the function whose computational work causes the cell to
become detached from the live graph. Information about either one of these kinds
of consumer could be useful to a programmer, but both are expensive to identify
with accuracy.

There is a third view of production and consumption: producers build cells to
represent new pieces of graph; consumers hold edges or paths with these cells as
targets. Such consumers we also call retainers. Retainer profiling should answer the
questions 'Why are these cells still in the heap? What's holding onto them?'. But
to form the basis of useful profiling information the specification of retainers needs
refining. For example, what retains a live 'cons' cell? At one extreme, the answer
could be a preceding 'cons' in the spine of a list, if that is where the sole reference
to the cell is held. Not very informative! Going to the other extreme is no better:
we do not wish to identify the set of retainers with the root set of the live graph.
There is a useful intermediate position:

1. Do not consider as a candidate retainer any cell representing a weak-head-
normal form; rather, consider only function closures.

2. But consider these closures as candidates whether they are in the heap or
(currently being evaluated) on the stack.

3. Also consider constant applications, i.e. functions with zero arity (CAF), as
candidate retainers.

4. Now define the retainers of a cell, at any given point in the computation, to
be those candidate retainers from which there is a path to the cell not passing
through any other candidate.

Prohibiting constructors as retainers removes the problem with 'cons' cells being
retained by other 'cons' cells. Instead all the 'cons' cells in a list spine inherit the
retainers of the initial 'cons'. Take the expression:

f i l t e r (/="hello") ["world"]

as a simple example. Here f i l t e r retains both the list ["world"] and the closure
for the partial application of /=. But the string "hello" is retained by /=, as the
only path to it from the f i l t e r closure passes through the /= closure.

In general a cell has a set of retainers, not just one. Since the powerset of all named
definitions in a program may be huge, it might seem that profile charts banded by
retainer sets pose nasty display problems - fragmentation into many bands, each
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assert: c.retainers is empty for every cell c

for every root cell r

retain(r,r)

retain(c,r) =

if r e c.retainers then return;

c.retainers := c .retainers U {r};

if isretainer(c) then r' := c else r' := r;

for every successor c' of c

retain(c',r*)

Fig. 11. A simple method for computing retainer sets.

with a rather large label! In practice, however, this powerset is sparsely populated
because many combinations of retainers are impossible. Also, for initial profiling
of large programs, modules rather than individual functions could be treated as
retainers - an idea we know works well for producers. Approximation is another way
to avoid costly and complex retainer charts, as we shall see shortly.

3.1 Census traversal for retainer profiling

All the work involved in collecting information about retainers can be confined to
the census traversals. The only overhead required during evaluation is an extra word
in each heap cell to represent a set of functions found to retain the cell during a
census traversal.

If every live cell had a unique retainer, all the (single element) retainer sets could
be computed in a single traversal of the whole graph. It would suffice to keep a
note of which was the last candidate retainer from which pointers were followed
to reach the present cell. In practice, however, graph reduction is only interesting
because there are shared references, and shared references mean that multi-element
retainer sets are possible. (There may be sharing without multiple retainers - for
example, a closure with the same structure in two different argument positions, or
many closures for the same function with an argument common to each.)

Ignoring representation details for the moment, assume there is some represen-
tation of the empty set. Assume also operations to test for set membership and
to add an element to a set. Figure 11 sketches a simple algorithm for computing
retainer sets. Prior to every recursive call of retain an element is added to the
retainer set of some cell c. No element is ever removed. It follows that the algorithm
terminates correctly, because there are only finitely many cells, and finitely many
possible elements of retainer sets.

However, the algorithm of figure 11 is unsatisfactory on at least two counts.

1. It is space-consuming, implicitly assuming a (large) stack to maintain the
contexts of recursive calls.

2. It is time-consuming, possibly requiring many traversals of some parts of the
graph.
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assert: c.retainers is empty for every cell c

for every root cell r
s := emptystack;
retain(r.r);
while nonempty(s)

sharetain(pop(s))

retain(c.r) =
if r G c.retainers then return;

if c.retainers = -Q then

c.retainers := {r};

if isretainer(c) then r' := c else r' := r;

for every successor c' of c

retain(c',r')

else

push(s,(c,r))

sharetain(c.r) =

if r € c.retainers then return;
c.retainers := c.retainers U {r};
if isretainer(c) then return;
for every successor c' of c

sharetain(c',r)

Fig. 12. Computing retainer sets using a stack of requests.

Sharing traversal with garbage collection

The garbage collector also has to traverse the heap, so a natural way to improve
efficiency is to combine garbage collection with census taking (Runciman and
Wakeling, 1993a). If the implementor is concerned about space-efficiency the garbage
collector may use pointer reversal to avoid the need for a large stack of ancestral
cells (Schorr and Waite, 1967). But if pointers are reversed, it is not possible to
re-traverse parts of the graph! The solution is to introduce a comparatively small
stack of traversal requests. Instead of revisiting a shared subgraph as soon as it is
encountered, a traversal request for it is pushed onto this stack. Each request is just
a pair (c,r) where c is the root cell of a subgraph and r is an additional retainer.
At the end of the main traversal, the stack of subgraph traversal requests must also
be fulfilled. The revised algorithm is sketched in figure 12 - pointer reversal is not
shown explicitly, but assumed at the points of recursive call and return.

Though the algorithm of figure 12 avoids the space-consumption of a large stack,
it is just as time-consuming as the previous algorithm of figure 11. Profiling retainers
for a program with many functions and a lot of sharing could still be very expensive.
So we next consider two ways of reducing the cost of multiple traversals.
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Approximating retainer sets

Suppose we aim to compute only those retainer sets with fewer than N elements, for
some small N specified by the user, approximating all larger retainer sets by a single
value meaning 'many retainers'. Then no cell in the graph need be visited more than
N+l times.

The programmer is often most interested in knowing when closures of one
particular function (or group of functions in one module) uniquely retain a large
number of cells, since this identifies a particular part of the program to be looked
at. For this purpose, even the coarsest approximation, with N=l, is good enough.
Moreover, having distinct bands in a profile chart for multi-element retainer sets with
all but one element in common could be unhelpful, giving an unduly fragmented
view of the heap. For this reason, there may be little call for the precision of retainer
profiles with N>3, say. (However, see the remarks about the parser example in
section 5.3.)

Combining traversal requests

Even in cases where an Nth approximation is good enough, we should prefer, if
possible, to avoiding visiting cells N+l times. Also, there may still be occasions when
exact retainer sets, or approximations including larger sets, are needed.

In the algorithms of figures 11 and 12 retainer sets are extended one element at
a time. If a cell is going to end up with a set of several retainers, another way to
improve efficiency is to insert more than one of these retainers in a single visit to
the cell.

For this purpose we now generalise traversal requests to specify a set of additional
retainers rather than just one. To make use of this capacity, as each new request
(c,{r}), is created on the stack, a pointer to it is placed in cell c. When a retain
traversal revisits a cell, if it is already the subject of a traversal request, no further
request is needed: any new retainer is added to the set in the existing request.
Similarly, sharetain traversals need not extend beyond any cells found to have
further requests pending: the retainer set in the pending request is replaced by its
union with sharetain's set argument.

Figure 13 sketches the revised algorithm. The operations to set and clear pointers
from cells to requests are subsumed under push and pop operations respectively.
This algorithm clearly performs far less traversal than that of figure 12 for some
graphs. However, the set operations required are more complex: subset testing rather
than membership testing, and set union rather than addition of a single element, so
the net gain is uncertain.

How many passes?

An ideal algorithm would need only a small fixed number of passes over the heap
to compute exact retainer sets (or any desired approximation to them). As yet we
have neither devised such an algorithm nor convinced ourselves that it cannot be
done!
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assert: c.request is null and

c.retainers is empty for every cell c

for every root cell r

s := emptystack;

retain(r,r);

while nonempty(s)

sharetain(pop(s))

retain(c.r) =

if r 6 c.retainers then return;

if c.retainers = O then

c.retainers := {r};

if isretainer(c) then r' := c else r' := r;

for every successor c' of c

retainCc',r')

else if c.request = null then

push(s,(c,{r}))

else

c. request .set := c. request .set U -(r)-

sharetain(c,rs) =

if rs <= c.retainers then return;
if c.request = null then

c.retainers := c.retainers U rs;
if isretainer(c) then return;
for every successor c' of c

sharetain(c',rs)
else if rs £ c. request .set then

c.request.set := c. request .set U rs

Fig. 13. Computing retainers using request combination.

Whether the request-combining algorithm of figure 13 completes in no more than
two passes depends on the order in which traversal requests are executed. The critical
cells are those reachable from the root of two or more separate requests along a
retainer-free path. If all paths to such cells from the root of the earlier request also
pass through the root of the later request, the algorithm works perfectly: sharetain
visits no part of the graph more than once. This advantageous property does not
hold in general. There may be suitable heuristics for re-ordering the stack to make
it more likely, but we have not investigated any.

3.2 Retainers as selectors

Each kind of cell classification should be available to the programmer not only as
the basis of banding itself, but also as a way to specify a restricted population of
the heap to be banded in some other way. Extending this principle to retainers, we
should like the profiler to be able to chart the producers, constructions or lifetimes
of all cells held by a specified set of retainers. However, because a cell's retainers
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set can vary during its lifetime, denning a lifetime profile restricted by retainer is
problematic. So we exclude this combination. We also exclude the converse, retainer
profiles restricted by lifetime: though easier to define in principle, they are tricky
to implement and to interpret in practice. For any restriction by retainers, profiling
only the cells whose retainer set r exactly equals a specified set s might seldom be
useful: alternative more relaxed conditions include r ^ s , or s£r , or rfis^= 0.

4 Implementation in nhc

Heap profiling extended to lifetimes and retainers has been implemented as part
of nhc, a Haskell compiler* written in Haskell for a machine with small memory
(Rojemo, 1995a; Rojemo, 1995b).

4.1 A Haskell compiler for small machines

The main goal in nhc is to use as little memory as possible. Fancy algorithms that
increase the memory requirements of the compiler itself are ruled out; nhc provides
only what is essential in a G-machine implementation (Peyton Jones, 1987). The
source code for nhc is less than 11,000 lines of Haskell.

To reduce run-time code size, nhc generates byte code instead of machine code.
The gain in space is substantial as most byte code instructions fit in 2 bytes or
less whereas modern RISC processors use 4 byte instructions. Further, the byte
code instruction set can be optimised for graph reduction so that fewer byte code
instructions are needed than machine code instructions for a given Haskell function.

Heap space in nhc

The minimum feasible heap size depends on the peak amount of live data and on
the rate at which free heap space is used. Several design choices in nhc help to
reduce the amount of live data. For example, all three of the space faults attributed
to compilation in Runciman and Wakeling (1993a) are avoided:

Variables in a LHS pattern are updated simultaneously. When a variable in a left-
hand pattern is used, all variables in the pattern are set to point to their parts of
the expression, using a compilation scheme due to Jan Sparud (1993). This means
that the node representing the right hand expression can be released as soon as the
first variable in the pattern is used instead of waiting for the last one.

No updates are done by copying. If a function application reduces to the value of
an existing piece of graph, the reduced application node is overwritten with a pointer
to the root of this result. If a function creates its own result, then overwriting is used
unless the result is larger than the redex, in which case an indirection is used.

Tail calls are treated as updates. If the last expression in a function body is a
call to a function nhc tries to build the new application on top of the old one,
rearranging the stack, and then jumps to the function in the new application. If

* Or, to be strictly accurate, 'Nearly a Haskell Compiler'.
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the new application is larger than the old one then an indirection node is used to
overwrite the old application before jumping to the new function.

There are however still improvements possible in this area. One example (discussed
further in the final part of section 5.3) is removing references from the stack to nodes
that will not be needed further down in the code, before evaluating an expression.

The goal of space-efficiency

By cross-compiling nhc on a large machine using hbc, the original 2D heap-profiler
was applied, but did not yield sufficient information to resolve all space-problems
satisfactorily. A large part of the motivation for implementing a second generation
heap-profiler in nhc was the prospect of self-application: it should enable the
memory demands of the compiler itself to be further reduced. (Section 5.2 gives one
illustration of how this has been realised in practice.)

4.2 Implementation of lifetime profiling

For lifetime profiling nhc uses an additional word in every cell to store the time at
which the cell was allocated. Time is measured by the number of censuses that have
occurred. The basic format of log files is simple: for example, the census lines

3 124
4 256
7 134

record 124 cells from the 3rd generation, 256 from the 4th and 134 from the 7th.
When lifetime information is used to specify a selected population of cells, the
format of the log file is different. For example, the line

Prelude.: 3 24 4 12 7 96

records the cons cells found during one census: 24 from the 3rd generation; 12 from
the 4th and 96 from the 7th.

In section 2, the transformation of the census data deals throughout with 'numbers
of cells' of some kind. In practice the sizes of cells may vary, and the post-processor
works with 'amounts of memory' in bytes. Also phases I and II of the transformation
algorithm (Figures 8 and 9) are combined into a single pass.

4.3 Implementation of retainer profiling

Retainer profiling in nhc uses a variation of the algorithm sketched in figure 12.
Instead of interleaving calls to re ta in and sharetain, all calls to re ta in are made
before any call to sharetain. The advantage is that the marking phase of the
garbage collector can be used to implement retain. A clear mark-bit indicates an
empty retainer set. This avoids the need to clear all retainer sets before taking each
census. One disadvantage is a deeper request stack.
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Nhc also maintains a count of how many cells are retained by each retainer set:
there is only one structure representing each distinct set, and the 'sets' assigned to
cells are in reality pointers to these shared structures. Each time a new retainer
is added to a set, a new set structure is created if necessary; the cell count is
incremented in the new set, and decremented in the old one.

After all the traversals corresponding to retain and sharetain have been com-
pleted, all the required census data is in the set structures. There is no need for any
further traversal of the graph to collect this information.

4.4 User options and profile charts

The default for nhc is to compile without any profiling code at all. The compiler
supports two levels of heap profiling:

1. Level 1 profiling: allows profiling of producers and constructions. It also gives
access to kind profiling — a limited form of retainer profiling that divides
cells into those reachable from the stack and those reachable only from code
(CAFs). Kind profiling is useful because space faults due to CAFs can often
be fixed by changing CAFs into functions.

2. Level 2 profiling: includes full retainer and lifetime profiling in addition to the
heap profiles available at level 1.

The advantage of using level one profiling is faster execution and lower demands
on memory. Any of the available heap profiles can also be used to restrict the
observed set of cells.

A program compiled for profiling does not by default produce a profile. The
program must be told which profile the user wants. This is done by some combination
of the run-time flags:

-m module-level producer
-p definition-level producer
-c construction
-k kind
-1 lifetime
- r retainer

It is the first occurrence of one of these flags that determines which kind of profile
to produce. A - r flag can be followed by a number specifying a maximum size for
exact sets of retainers (with - r l as default): larger sets are all treated as the same
set of 'many retainers'.

Subsequent occurrences of -m,-p,-c,-k,-l or - r restrict profiling to part of the
heap population. For example, -p -cPrelude. : profiles producers of 'cons' cells.
A cell is only included in a profile if it satisfies every restriction. All but lifetime
restrictions are specified by a list of names following the relevant flag. A retainer
restriction is satisfied if one of the functions in the retainer set is mentioned in
one of the retainer restrictions. Lifetime restrictions cannot be specified fully during
execution: a -1 restriction only prepares the way for a lifetime interval to be supplied
to the post-processing program.
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Table 1. Code size o/nhc by level of profiling.

Level Code size Options available

0 893 kb none
1 1344 kb -k,-m,-p,-c
2 1374 kb -k,-m,-p,-c,-l,-r

For all but lifetime profiles, bands are ordered in the way described in Runciman
and Wakeling (1993a), with smoother bands below rougher ones. In lifetime profiles,
bands for long-lived objects are placed lower than bands for short-lived ones. The
result is similar to the 'smoothness' ordering, as the populations of longer-lived cells
tend to be more stable. Often there are more different cell lifetimes than can be
distinguished in the bands of a profile; the solution is to group a range of lifetimes
together, so that the Nth band represents cells with lifetimes between 2N — 1 and
2N+1 — 2.' If there are no cells old enough to fill the lowest band then the upper
limit will be less then this formula suggests.

4.5 Performance overheads of profiling

The final goal of heap profiling is to reduce the amount of space (and perhaps time)
needed to run a program. But to find the space faults we need both extra space and
extra time.

The extra space is for additional code and larger cells. As Table 1 shows, the code
size of nhc increases by 50% if the compiler itself is being profiled, as a result of
the need to store names for all constructors and producers, in addition to the code
to insert this information in all created cells. If we are interested only in lifetimes,
or kinds, then the extra code size could be negligible, as no name information is
needed. But nhc does not currently offer the option of compiling for these types of
profiling alone.

Cells are larger when heap profiling is used, as we need to attach producer and
constructor information to them. The average cell size without profiling information
is between 5.7 and 6.5 words for most programs. Even the single extra word needed
for 2D profiling results in an 18% increase of the amount of live heap. With the
extension to dynamic and structural profiling, up to two further words must be
allocated in each cell, to record generations and retainer sets, so the overall increase
in live heap size rises to about 50%.

Execution time also increases when profiling as Table 2 shows. The figures for
nhc relate to the compilation of a 200 line module that imports 39 interface files.

There are few widely shared data structures in nhc: most cells have only one or
two retainers. One might suspect that this is why it is possible to increase the size of

' These somewhat peculiar limits are chosen so that the top band only represents cells that
did not survive any census.
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Table 2. Execution times for nhc and for parser, by level of profiling.

Level

0

1

2

Profile

none

none
-m

none
- 1
-m
- r l
- r 3
- r 5
- r 7
- r 9

nhc time

125 s

161s
209 s

260 s
310s
329 s
355 s
394 s
428 s
457 s
484 s

parser time

41s

64 s
82 s
97 s
97 s
98 s

Comment

153 censuses

In these level two profiles
there were:
225 censuses for nhc;
35 censuses for parser.

exact retainer sets without severely affecting execution times. But even for a program
in which most cells have several retainers, such as the parser program discussed in
section 5.3, detailed retainer profiling does not slow execution by much more than
a factor of two.

Costs of log files and post-processing.

A typical log file is less than 100 kb, though when profiling nhc itself log files can
run to 500 kb or more. Taking more frequent censuses results in larger files, but
it is rarely useful to have more than 30 censuses of a single computation. For the
moment log files are just ASCII texts; in a compact binary format they would be
less than a quarter of their present size.

The post-processor, hp2graph, uses very little time in comparison with the previous
recording of census information. One thing that can slow hp2graph down is the use
of a lifetime interval to specify a restricted profile. The post-processor avoids this
problem by 'thinning out' the data from the log file when the number of censuses
exceeds a fixed threshold. (The user is informed, and has the option to force
hp2graph to use all census data regardless of cost.) The maximum post-processing
time needed for any example in this paper is 7 seconds; most examples need less
than 2 seconds.

5 Example applications

5.7 Clausify revisited

The original paper on heap profiling (Runciman and Wakeling, 1993a) includes as an
extended example a program called clausify that puts logical formulae into clausal
form. After several iterations of profiling and improvement, the 1.3 Mb required by
Version 0 of the program for a benchmark computation is reduced to just 7 kb for
Version 5. The nhc producer profile for Version 5, transcribed from Lazy ML to

https://doi.org/10.1017/S095679680000188X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000188X


New dimensions in heap profiling 605
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Fig. 14. The original two dimensions of heap profiling, applied to Version 5 of clausif y.
Upper: d is in ' is the main producer of heap cells. Lower: Dis and Con are the main
constructions (produced by disin ') .

Haskell, is shown in the upper part of figure 14. A similar profile is exhibited in
the original paper with the remark that although it might be possible to reduce the
space cost of dis in ' , it is not obvious how. The construction profile in the lower
part of figure 14 reveals that the hump of cells produced by dis in ' is made up of
Dis and Con constructions of the Formula type representing propositions:
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data Formula =
Sym Char I
Not Formula I
Dis Formula Formula I
Con Formula Formula I
Imp Formula Formula I
Eqv Formula Formula

But given the denning equations for dis in '

d is in ' :: Formula -> Formula
dis in ' (Con p q) r = Con (disin' p r) (disin ' q r)
d is in ' p (Con q r) = Con (disin' p q) (disin ' p r)
d is in ' p q = Dis p q

its production of numerous Dis and Con cells is not surprising, and without further
information it is not clear how to reduce heap-size any further.

Using the lifetime and retainer profiling of nhc, however, we can now discover
something more about the residual hump of cells in clausif y computations. As
figure 15 shows, this population of Con and Dis cells produced by d i s in ' survives
throughout the plateau of memory demand in the closures of calls to d i s in ' itself.
Armed with this extra information, we seek first the explanation of it in terms of the
operation of the program, and then a remedy for it in revised definitions of d is in '
and related functions.

The explanation

The overall structure of the clausify program is a Formula-processing pipeline

. . . unicl . sp l i t . dis in . negin . elim . . .

in which the elim function eliminates equivalences and implications by translating
them to other connectives, negin pushes any negations to the innermost positions
(enclosed by a mixture of conjuncts and disjuncts), and disin translates its argument
to conjunctive normal form (CNF - with conjunctions outermost, then disjunctions,
then literals). The focus of our attention, disin ' , is used as an auxiliary by disin.

disin :: Formula -> Formula
disin (Con p q) = Con (disin p) (disin q)
disin (Dis p q) = d i s in ' (disin p) (disin q)
disin p = p

To complete the picture (to the extent we need here) sp l i t chops a CNF proposition
up into separate conjuncts, and unicl rearranges each conjunct into clausal form
discarding any tautologous or duplicate clauses.

So why do Formula constructions build up in d is in ' closures? Consider, for
example, what happens if d is in is applied to a purely disjunctive formula - one
whose structure is a tree of Dis constructions with literals at the leaves.
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Fig. 15. The new dimensions of heap profiling, applied to Version 5 of clausify. Upper:
dis in ' is the retainer of the problem cells. Lower: their lifetime is nearly the whole period of
peak memory demand.

By the 2nd d i s i n equation the result can be expressed as a similar tree but
with d i s i n ' in place of Dis.

By the 3rd d i s i n ' equation the result of this expression is once again the tree
with Dis in place of d i s i n ' !
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It might seem, then, that d is in acts just like the identity function in this case.
However, it is not a lazy identity. It is path strict in the disjunctive tree structure of
its argument. Because the 3rd d i s in ' equation can only be applied when the 1st
and 2nd have been found not to match, the full disjunctive tree must be evaluated
and reconstructed before the outermost Dis construction of the result can be made.

The remedy

There is no avoiding the need to traverse disjunctions looking for conjunctions: that
is in the nature of the CNF transformation. But for which subsequent process are
the disjunctive trees required? It is unicl , which reduces them to a partitioned set
of leaves - discarding duplicate leaves and discarding entire trees as tautologous if
both positive and negative forms of the same literal are found. So rather than disin
reconstructing disjunctive trees just as they are found in its argument, normalising
them into ordered chains of literals enables us to bring forward some of the work
from unicl so that heavy pruning can occur earlier in the pipeline. This sort of
program transformation is sometimes termed filter promotion (Darlington, 1978).

To implement the idea we define a normalising constructor dis to be used in place
of Dis in the final d i s in ' equation. To realise the full benefits we also need an
extra Formula constructor Taut to represent a tautology. Figure 16 shows how dis
is defined in Version 6 of the clausif y program. The auxiliary cmplit compares
literals, with four possible results: two literals involving a common symbol are either
the same or opposite (Same or Oppo); if the symbols differ, the first must either
precede or follow the second in character order (Prec or Foil).

As figure 17 shows, this reformulation is very successful for the benchmark
problem of Runciman and Wakeling (1993a). The peak memory demand is reduced
from 7 kb to 1 kb, and the time drops to a fraction of a second. Not only is the
heap far smaller, the program runs much faster. The improvement is not specific to
the benchmark proposition, though of course the benefits are greatest when most
conjuncts are tautologous and can be eliminated. With a single very large tautology
as input (derived by combining a number of different exercises from a textbook)
peak memory demand falls from 15 kb to a little over 2 kb and again there is a
dramatic speed-up. But even where the output is a large number of non-tautologous
clauses, there are savings in both space and time: for a typical example of this kind,
Version 6 needs only two-thirds as much memory-space as Version 5, and less than
half the run-time.

In retrospect

So why didn't we think of this improvement before? This question is hard to answer
accurately, but it seems appropriate to attempt some sort of answer in a practical
assessment of the use and limitations of profiling. There were at least four reasons
why the reformulation of d i s in ' sketched above was not prompted by the earlier
profiling exercise.
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dis Taut q = Taut

dis p Taut = Taut

dis pQ(Dis pi p2) qQ(Dis ql q2) =

case cmplit pi ql of

Same -> dis' pi (dis p2 q2)

Oppo -> Taut

Prec -> dis' pi (dis p2 q)

Foil -> dis' ql (dis p q2)

dis pQ(Dis pi p2) q =

case cmplit pi q of

Same -> p

Oppo -> Taut

Prec -> dis' pi (dis p2 q)

Foil -> Dis q p

dis p q@(Dis ql q2) =

case cmplit p ql of

Same -> q

Oppo -> Taut

Prec -> Dis p q

Foil -> dis' ql (dis p q2)

dis p q =

case cmplit p q of

Same -> p

Oppo -> Taut

Prec -> Dis p q

Foil -> Dis q p

dis' p Taut = Taut

dis' p q = Dis p q

Fig. 16. Normalising disjunctions in Version 6 of the clausif y program.

1. The assumption of diminishing returns. The peak live heap size had already
dropped from 1.3 Mb to 7 kb as a result of successive revisions of the program.
A maximum heap-size of 7 kb is very small by the usual standards of functional
language programmers and implementors. The space occupied by Dis and Con
cells in particular had been targeted at an earlier stage and substantially
reduced. The last revision of the program had saved just 1 kb, and no further
substantial gains were expected.

2. The nature of faults found in earlier versions of the program. The major fault in
Version 0 of clausif y was a 'pipeline blockage' in which cells produced by one
function in the main pipeline accumulated because of the over-strict workings
of a later pipeline function. It was therefore natural, though mistaken, to look
for a similar explanation for the accumulation of cells produced by dis in1 .

3. The prior classification of d i s i n ' as a desirable remedy. The overall problem
being addressed was the inefficiency of the original clausif y program. The
d i s in ' auxiliary was not part of this 'old inefficient' program. It was only
introduced in Version 4 as a 'new, more efficient' component to flatten peaks
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Fig. 17. A producer profile of clausify Version 6 with dis in ' improved by the use of a
normalising constructor function for disjunctions. The time-scale has been altered to avoid
showing a computation of negligible width, but the space-scale is the same as in figures 14
and 15.

of demand for heap space by the d i s i n function in Version 3 - a modification
that had proved very successful, reducing peak heap size by a factor of five.

4. The limited kinds of information provided by 2D profiles. The 'who produces
what' profile pointed only to a hump of Dis and Con cells produce by d i s in ' :
in view of the preceding points, and in the absence of further information, it
was a plausible assumption that the hump was either inevitable or else that
reducing it required some subtle change in an unidentified consumer of the
cells. It was only the evidence from lifetime and retainer profiling that forced
attention back to the workings of d is in ' as the long-term retainer of the
Formula constructions that disin ' itself produces.

5.2 Self-application to nhc

An important part of the motivation for implementing an extended heap profiler in
nlic was the potential application of the profiler to the compiler itself. Here is just
one illustrative example of a space fault in the compiler, analysed using the new
profiler, and subsequently fixed.

Figure 18 shows a heap profile of nlic compiling a small program (of about 20
lines), with cells banded according to the module that produced them. The two
'horns' are a prominent feature, and it seems natural to ask whether they could
somehow be removed. The cores of these horns represent cells produced by the two
lexical modules, Lexical and LexPre. A retainer profile restricted to these modules
is given in figure 19. Clearly the function parseit should be investigated. Examining
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Fig. 18. Heap production of nhc by module, when compiling a small program.
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j • (Lislutil.concatMap)
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• (Prelude.foldr)

H {ParseCore.parseit.ee 61

H (MkSyntax.mkParExp)

Fig. 19. What retains the heap cells produced by the lexical modules?

its definition, the source of the space fault is soon apparent:

parseit :: Parser a i a -> i -> Either ParseError a
parseit p input =

case (p initGood initBad input initError) of
(Left err) -> Left err
(Right (a,_,_)) -> Right a
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Main -r2 -mLexical - Main.hs
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Fig. 20. Compilation without lexical horns.

The problem is that the abstract machine in nhc holds on to all function arguments
until the function returns, or does a tail call, even if the arguments are not used any
more. In this case parse i t holds on to the input until it can return either an error
message Left e r r or the syntax tree Right a. This means that no memory used for
input can be garbage collected until the whole syntax tree is checked. The remedy
is to replace the case expression by a function application, as follows.

parsei t p input =
parse i t ' (p initGood initBad input initError)
where
pa r se i t ' (Left e r r ) = Left err
pa r se i t ' (Right (a ,_,_)) = Right a

The new parse i t does a tail call before evaluating the application of p. The
argument pointer to input is removed from the stack before the parsing begins. The
garbage collector can therefore reclaim the memory used by input as soon as the
parser has consumed it. Figure 20 shows a retainer profile for heap cells produced
by the lexical modules of the modified compiler.

The two 'horns' were observed early in the development of nhc, but their cause
was unknown. With only the view given by 2D profiling, it was easy to blame either
the lexical analyser or the parser. After fruitless investigations of these parts the
problem was considered unsolvable with the available tools. The retainer profile on
the other hand blames the badly written wrapper function for the parser, and this
was where the real fault lay. Retainer profiling is very good for locating space faults
due to functions holding on to unneeded data.

2D profiling has however been used to verify that changes in nhc really did
decrease space usage. This is not always obvious. At one time, for example, nhc

https://doi.org/10.1017/S095679680000188X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000188X


New dimensions in heap profiling 613

included a function to strip the symbol table of information no longer needed.
But the stripped symbol table took up more space than the original due to lazy
evaluation: large parts of the old table were not released when the new table was
built.

5.5 Examples from the 'nofib' benchmark suite

By applying nhc to some programs from the 'nofib' Benchmark Suite (Partain, 1993),
we hoped to gain knowledge about 'normal' lazy programs. Compilation succeeded
for 42 of the 45 programs available* - not counting clausif y. We were able to
locate space faults in several of these programs. In some cases 2D profiling was
sufficient, but we shall concentrate here on programs for which 2D profiling was
inadequate but results from the new profiler led us to the problem.

Some of the space faults we observed initially were due to nhc unnecessarily
holding on to function arguments until the function returns. The programs were
first amended to avoid space faults of this kind, and the following paragraphs discuss
only remaining space faults that are due to the programs themselves. The changes
needed to remedy these faults are often small, at most introducing a few auxiliary
functions. Such remedial changes are possible in all cases but one: the exception is
parser and we discuss it first.

parser: a small parser built with parser combinators. The producer profile is
'triangular', representing a steadily growing heap; it does not suggest the location of
an error as production is almost evenly distributed among six functions. Retainer
profiling reveals an unusual amount of sharing: even using the 5th approximation,
the catch-all 'many retainers' band dominates the profile chart. However, the 6th
approximation reveals that most retainer sets with substantial holdings include
at least one parser combinator. On investigation, it turns out that all the parser
combinators hold onto their input stream until the last component parser is called.

A partial solution, involving a compiler modification, prunes arguments from the
stack after their last possible use. However, this does not help for the backtracking
combinator defined in parser as it must hold on to the input until one parser
has succeeded to be able to restart with another parser in the case of failure. It is
possible to write a backtracking parser combinator without space leaks - indeed, nhc
contains such a parser (Rojemo, 1995a) - but this would entail wholesale rewriting
of the parser benchmark program.

primetest: tests the Mersenne Prime 2607 — 1 for primality. A producer profile
shows that most heap cells are created by a function called powerMod, a function
that calculates ab mod m, and the cells are retained by mod. Inspection of the code
reveals that there are only two occurrences of mod that can hold on to cells created

' Recall that nhc stands for Nearly a Haskell Compiler! A number of the programs needed
extra type signatures or minor changes to eliminate n+k patterns.
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by powerMod. Strictifying one of them, the occurrence of mod in powerMod, reduces
the overall cost to one eighth of the original cost.

The problem is with the accumulator used in powerMod. The lack of strictness
analysis in nhc could (falsely) be held responsible for the delayed evaluation of this
accumulator. However, the accumulator is not always needed for the final result,
which means that strictness analysis cannot solve the problem.

queens: solves the 10x10 queens problem. The original version of queens has yet
another triangular heap profile. There is more than one major producer, but the
dominant retainer is f oldl. The queens programs does not mention f oldl explicitly,
but nhc's prelude defines length just as in the Haskell report:

length = foldl (\n _->n+l) 0

The problem is a build-up of closures for the lambda term; these closures also retain
the entire list argument to length. By redefining the length function the overall
cost can be reduced from 3.87 Mbs to 115 kbs, and the maximum live memory from
70 kb to less than 2 kb.

r e p t i l e : a graphical design program based on tiling. The producer profile shows
that nearly all of the heap is produced by append - a low-level auxiliary that is
heavily used in many parts of the program. However, kind profiling points to a
large number of CAFs representing command-streams for the display of a complex
screen. These CAFs are evaluated to strings and then kept in case they are needed
again. The garbage collector cannot remove them as their future use depends on the
input. Translating them into functions reduces the maximum heap size from 110 kb
to 30 kb. Further savings by evaluating under constructors lowers this to 17 kb and
also reduces execution time by 25%. (However, execution time would increase for a
different input requiring a re-evaluation of the ex-CAFs.)

exp3_8: raises 3 to the 8th power using Peanno arithmetic. This example is a little
different. No space fault was found, but the original version of the program did
seem needlessly time-consuming. A one-line modification* reduces a run-time of 43 s
to a mere 0.2 s! The critical alteration was not prompted by information gleaned
from heap profiles - heap profiling does not solve all problems.

Gains from improved compilation rules

The version of nhc first applied to the 'nofib' benchmark suite did not garbage
collect CAFs. The reason was simple: CAFs in nhc itself occupy a negligible amount
of memory! But this omission results in space leaks in at least four more programs
from the 'nofib' suite.

* The line to change is x * S y = (x * y) + x. Writing it x * S y = x + (x * y) is
much more efficient. This is related to the difference in efficiency between a++(b++c) and

)
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Another problem with earlier versions of nhc was that the compiler tried to
remove values from the evaluation stack as late as possible. By doing so, many
separate removes could be combined with the removal of the stack frame at the
end of the function. This was done to gain speed. It did however result in some
unexpected space faults and was therefore removed. One example of program with
such a space fault is mandel2.

mandel2: computes Mandelbrot sets. Under the original stack scheme, mandel2 has
a triangular heap profile with two main producers. Although there might be space
leaks in both producers, it seems more likely that the culprit is a retainer holding
on to unnecessary data. A retainer profile confirms this: main, defined as follows, is
the major retainer.

main = if f in i te ( . . . ) then print "Success" else print "Failure"

The . . . is a complicated expression, which the compiler cannot build in one step.
The compiler therefore builds the necessary subparts first, and pushes pointers to
them on the stack, before the final expression is built. The fault was that those
'temporary' pointers were not removed until main finished, and one of the subparts
is lazily created as it is consumed by f ini te . Nothing in that subpart could be
reclaimed during garbage collection due to the 'temporary' pointer on the stack.
Redefining main as follows:

main = main' (finite (...))

where

main' True = print "Success"

main' False = print "Failure"

reduces the overall cost by 80%! The reason is that all temporary pointers are
removed from the stack together with the stack frame of main before f i n i t e ( . .)
is evaluated. With an improved stack scheme, this kind of redefinition is no longer
necessary.

Future implementation of nhc will be even more aggressive in pruning arguments
and values on the stack. The intention is to stub all references that will not be used
further in the evaluation, before starting any reductions. The code will grow but we
hope the reduction in heap usage will compensate for that.

All the example 'nofib' programs we have discussed were also compiled and
profiled with hbc. For half the programs the hbc profiles look almost the same as
the nhc profiles - the parser profiles are virtually identical, for example. But other
programs need much more memory when compiled by hbc: for these programs the
hbc profiles have the triangular shape typical of a space-fault, whereas the the nhc
profiles have a flatter, more rectangular shape.

Table 3 summarises the performance gains for the sample of programs from the
'nofib' suite.
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Table 3. Some performance gains for 'nofib' programs.

Program
name

primetest

queens

rep t i l e

exp3_8

mandel2

Version

before
after

before
after

before
after

before
after

before
after

Overall cost
(bytes x seconds)

5 420 k
1510k

3 870 k
115k

1830 k
30 k

1700 k
4k

1530 k
38 k

Max space
(bytes)

90 k
20 k

70 k
<2k

110k
17k

65 k
65 k

90 k
<2k

Time
(seconds)

99
97

103
99

8
6

43
<1

31
31

6 Related work

This paper extends the original 2D heap-profiling scheme for lazy functional pro-
grams developed by Runciman and Wakeling (1993a, 1993b) and now distributed
as part of the hbc Haskell compiler. An outline of that work was given in section 1.

Our attention has only recently been drawn to an implementation of memory
profiling some years ago in a SNOBOL4 interpreter (Ripley et al, 1978). This system
labels allocated memory blocks with creation histories comprising a source line-
number responsible for the allocation, an indication of the type of data stored
(one of a small number of fixed categories) and a time of allocation. Information
from all creation histories is output at each garbage collection, and a post-processor
derives summary tables of various statistics, including average lifetimes. Despite
primitives such as pattern-matching, the pragmatics of computation in SNOBOL4
are less subtle than in a functional language such as Haskell - no lazy evaluation
and no higher-order functions, for example. Accordingly, the improvements reported
for sample application programs are worthwhile, but comparatively modest: a 15%
saving is regarded as 'dramatic'. Ripley et al. stress rather the value of detailed
information about alternative memory management schemes at the implementation
level, especially to avoid wasting premature effort on clever tricks that may be hard
to get right and actually save very little in practice. In their concluding remarks, they
mention the potential value of a more sophisticated 'spectral analysis' of memory,
both at run-time and in subsequent post-processing. A more recent study with similar
aims, but for the Standard ML of New Jersey system, is described in Stefanovic and
Moss (1994).

Hartel and Veen (1988) used an instrumented SASL interpreter to study the char-
acteristics of intermediate combinator graphs during reduction. Their method too
was to 'analyse the graph at regular intervals'. This analysis involved measuring,
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among other things, the overall size of the graph (with separate totals for cells
representing data constructions and function applications), the distribution of list
lengths (lists being the sole data structure in typeless SASL), the distribution of cycle
lengths, and the degree of sharing (as measured by reference counts). Although they
focussed throughout on eight specific programs, their aim was not to improve these
programs. Rather they wished to gain insights into the nature of combinator graph
reduction that would be useful in the design of a special purpose machine. So, for
example, although they derived information about the distribution of cell lifetimes,
this was with a view to assessing the applicability of generational storage manage-
ment, rather than with a view to identifying parts of a program that create or retain
many long-lived cells. Simply accumulating all differences between creation times
and GC times enabled Hartel and Veen to obtain lifetime information aggregated
across all types of cell and all stages in the computation; they had no need for the
kind of scheme described in this paper for lifetime profiling of specific cell types at
distinct stages.

Sansom and Peyton Jones describe a profiling scheme implemented in ghc, the
optimising Haskell compiler developed at Glasgow (Sansom and Peyton Jones, 1995).
Their profiler attributes both space and time costs of a lazy functional program to
'cost centres' assigned either implicitly (e.g. by identifying a cost centre with each
module) or by explicit sec ('set cost centre') expression formers. The costs attributed
to c in connection with an expression sec c e are the entire costs of evaluating
the expression e as far as the context demands it, but excluding (a) the cost of
evaluating any free variables in e, and (b) the costs of any inner sec expressions.
Special rules for shared CAFs avoid unfairly attributing their costs to the first of
several uses. The technique for profiling space essentially follows Runciman and
Wakeling, with cost centres as producers. Experiments with profiling based on the
age of cells were abandoned because the profiles were found awkward to interpret,
but a straightforward creation-time scheme remains (cf. section 2). In his thesis,
Sansom (1994) discusses the clausify example (cf. section 5.1): a time profile
reveals that unicl is doing the most work, sorting and sifting character literals;
unboxing these characters yields a 25% speed-up. As we have seen in section 5.1,
retainer profiling points to the source of unicl's heavy workload, and a revision
there leads to a more dramatic improvement.

Clack, dayman and Parrott (Clack et al., 1995) advocate lexical profiling, which
they claim reflects the programmer's view of a program, as opposed to the evaluator's
or implementor's view supported by other profilers. Costs are assigned to lexical
units as i/programs were executed using a 'call by value' rule, but the values reported
faithfully reflect savings due to the actual use of 'call by need'. So the scheme shares
with the Glasgow profiler the ideal of attributing costs to lexical units aggregated
over all their subexpressions. CAFs do not need special treatment, but for the scheme
to give accurate results all components with shared uses are forced to be regarded as
independent units for profiling purposes. The host implementation for the prototype
is an interpreter for a core functional language only, so to date the profiler has only
been applied to modest examples.
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7 Conclusions and future work

To develop memory-efficient functional programs, some means of observing the use
of heap memory seems essential. Two common kinds of space faults are dragging
(something remains attached to the live graph beyond the point at which it is
last needed) and closure accumulation (large graphs build up in closure chains that
would be much smaller if evaluated). Sometimes such faults can be found by careful
scrutiny of source code in the light of static heap profiles showing cell producers and
constructions. But heap profiling by retainer so often points directly to an offending
function that it seems well-worth the extra implementation effort required.

It may not be helpful to identify a low-level auxiliary used in many places as
a major retainer. An extreme example: in our first implementation of retainer
profiling 'apply' cells were acceptable retainers! Excluding them made the retainer
profile far more informative. More generally, the option to exclude a specified
group of functions as candidate retainers is an important enhancement of retainer
profiling. It provides a form of aggregation, or inheritance, so that memory costs
can be associated with high-level components of an application, rather than with
the low-level auxiliaries they use. As with producer profiling, another useful form
of aggregation in retainer profiling would be to treat each module as one unit,
representing in the same band all the memory retained by functions defined in the
same module.

Because the band labels in a lifetime profile are not names of components that
can be located in the source program, the usefulness of this form of profiling is
not so much to locate space faults as to provide auxiliary information about them.
For example, lifetime profiling can reveal possible dragging (or confirm that no
significant dragging remains). The lifetime values of major bands can then be used
to specify further profiling of a restricted cell population. Lifetime profiles would
be enhanced by the addition of usage information for long-lived cells: how are the
points at which cells are actually used distributed across their lifetime? For example,
one facet of this information might be dragging time, the time between the last use
of a cell and its eventual removal from the graph, which could be determined by
post-processing in much the same way as lifetime. Another dynamic cell attribute
relating to usage is the longest interval between successive uses: where this is large,
it might be better to recompute than to store a result.

Since the first heap profiler was introduced, there have been advances in com-
pilation methods for lazy functional languages to remedy some of the space faults
that heap profiling revealed. Eventually, improved methods of functional language
implementors and programmers may mean that instruments for measuring memory
costs 'after the fact' are rarely needed. For the time being, however, even expert
functional programmers using the best available compilers are not immune to space
faults. There is still much to learn about lazy functional computations; and more
powerful heap-profilers are tools for discovery.

https://doi.org/10.1017/S095679680000188X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000188X


New dimensions in heap profiling 619

Acknowledgements

We are grateful to John Hughes, Thomas Johnsson and other users of the original
2D heap-profiler for complaints and wishful remarks that prompted us to explore
the use of further dimensions. We are also indebted to Simon Peyton Jones, Patrick
Sansom, David Wakeling and an anonymous referee for their helpful comments and
suggestions on earlier versions of this paper.

Our work on the paper began at Chalmers University of Technology, Sweden,
where the Swedish Research Council for Engineering Sciences (TFR) partly funded
CR as a visiting researcher. It was concluded at York where NR is a post-doctoral
visitor, supported by a TFR scholarship.

References

Clack, C , dayman, S. and Parrott, D. (1995) Lexical profiling: theory and practice. J.
Functional Programming, 5(2), 225-277.

Darlington, J. (1978) A synthesis of several sorting algorithms. Ada Informatica, 11, 1-30.

Hartel, P. H. and Veen, A. H. (1988) Statistics on graph reduction of SASL programs.

Software - Practice and Experience, 18(3), 239-253.

Partain, W. (1993) The nofib benchmark suite of Haskell programs. In Launchbury, J. and
Sansom, P., editors, Proc. 1992 Glasgow Workshop on Functional Programming, pp. 195-202.
Berlin: Springer-Verlag.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice-
Hall.

Ripley, G. D., Griswold, R. E. and Hanson, D. R. (1978) Performance of storage management
in an implementation of SNOBOL4. IEEE Trans. Software Engineering, SE-4(2), 130-137.

Runciman, C. and Wakeling, D. (1991) Problems and proposals for time and space profiling
of functional programs. In Peyton Jones, S. L., Hutton, G. and Hoist, C. K., editors, Proc.
1990 Glasgow Workshop on Functional Programming, pp. 237-245. Berlin: Springer-Yerlag.

Runciman, C. and Wakeling, D. (1993a) Heap profiling of lazy functional programs. J.

Functional Programming, 3(2), 217-245.

Runciman, C. and Wakeling, D. (1993b) Heap profiling of a lazy functional compiler.
In Launchbury, J. and Sansom, P., editors, Proc. 1992 Glasgow Workshop on Functional

Programming, pp. 203-214. Berlin: Springer-Verlag.

Rpjemo, N. (1995a) Garbage collection, and memory efficiency, in lazy functional languages.

PhD thesis, Department of Computer Sciences, Chalmers University of Technology, Sweden.

Rqjemo, N. (1995b) Highlights from nhc: a space-efficient Haskell compiler. In Proc. 7th
Intl. Conf. on Functional Programming Languages and Computer Architecture, pp. 282—292.
New York: ACM Press.

Sansom, P. M. 1994 (September). Execution profiling for non-strict functional languages. PhD
thesis, Department of Computing Science, University of Glasgow.

Sansom, P. M. and Peyton Jones, S. L. (1995) Time and space profiling for non-strict higher-
order functional languages. In Proc. ACM Conf. on Principles of Programming Languages

(POPL'95), pp. 355-366.

Schorr, H. and Waite, W. (1967) An efficient machine-independent procedure for garbage

collection. Comm. ACM, 10(8), 501-506.

Sparud, J. (1993) Fixing some space leaks without a garbage collector. In Proc. 6th Int. Conf.
on Functional Programming Languages and Computer Architecture (FPCA'93), pp. 117—122.
New York: ACM Press.

https://doi.org/10.1017/S095679680000188X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000188X


620 C. Runciman and N. Rojemo

Stefanovic, D. and Moss, J. E. B. (1994) Characterisation of object behaviour in Standard
ML of New Jersey. In Proc. ACM Conf. on Lisp and Functional Programming, pp. 43-54.
New York: ACM Press.

Wadler, P. (1990) Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 231-248.

Zhang, X., Webster, M. E, Sharp, J. A. and Grant, P. W. (1995) Computational fluid dynamics.
In Runciman, C. and Wakeling, D., editors, Applications of Functional Programming, pp.
128-158. London: UCL Press.

https://doi.org/10.1017/S095679680000188X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000188X

