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A MAPPING PROBLEM AND J,-INDEX. I
MASAMI WAKAE anp OMA HAMARA

1. Introduction. Indices of normal spaces with countable basis for
equivariant mappings have been investigated by Bourgin [4; 6] and by Wu
[11; 12] in the case where the transformation groups are of prime order p.
One of us has extended the concept to the case where the transformation
group is a cyclic group of order p! and discussed its applications to the
Kakutani Theorem (see [10]). In this paper we will define the J,-index of a
normal space with countable basis in the case where the transformation group
is a cyclic group of order #, where % is divisible by p. We will decide, by
means of the spectral sequence technique of Borel [1; 2], the J,-index of
SO (n) where % is an odd integer divisible by p. The method used in this paper
can be applied to find the J,-index of a classical group G whose cohomology
ring over J, has a system of universally transgressive generators of odd
degrees.

2. Preliminaries.

2.1. Throughout this paper, # is a positive integer divisible by a prime
number p, that is, n = p'n’’, where (p,n”’) = 1, and let S = {1,s,...,s"Y
be a cyclic transformation group of order n acting properly discontinuously
on a simplicial complex K. That is, for any simplex ¢ in K, s¢(¢) % o for
1=1,2,...,n — 1.

Let II: K — K’ = K/S be a natural projection of K onto its orbit space
K’. We define II: C"(K, G) — C"(K', G) by

n

@ (ols) = X f(s'0)

i=1
for each f" in C"(K, G), where G is an abelian group. It is clear that 1I is
onto since .S acts properly discontinuously on K.

2.2. Definition.
r=1+s+...+ s

y=1-—s5,
s(27) = 7,
s(22 4 1) = ~.

We use 7 for 7*, 74, 7#, and 7, and the same holds for v, and s(z). It is easy
to show that Ker vy = Im 7 and Ker 7 = Im «.
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3. The J,-Smith classes of a simplicial complex.

3.1. Let J, be the ring of integers modulo p. Let f° be the unit 0-cocycle
in C°(K’, J,). Since II is onto, we can find f° in C°(X, J,) such that ITf° = f'°.

3.2. LEMMA. We can find a system of cochains f* in C*(K,J,) such that
oft = s(e 4+ 1)ft*+! for 2 = 0.

Proof. Notice that §f° is in Ker 7. Hence there exists f! such that §f° = f*.
Suppose that it is true for ¢ = k — 1, that is, §f*2 = s(k — 1) f*~1. Since
sk — 1)8f*t = 8s(k — 1) f*1 = §6f*~! = 0, there exists f* such that §f*! =
s(k) f*.

3.3. LEMMA. f'¢ = TIf? is a cocycle.

Proof. Let ¢ be an even integer; then

n

o ([eipls) = D 8 (s'cipn) = é\_; v (5% i4a) = 0.

=1
Let 2 be an odd integer; then

n n n

o (capls) = X of (%) = 2_1 ;lf”“(s”"‘cm) =0 (modp).

J=1

3.4. LEMMA. Let 7, (K, s) be the class of f'* defined as above in H'(K', J,).
Then (K, s) is independent of the choice of f'.

Proof. Let IIf;® = f,9 = IIf’°. Then
0 = [@f° — T0f,°) ([cols) = 7(f° — £2°) (co)-

Hence, there exists ¢ in C°(K, J) such that fi® — f,® = y¢% Let §fi° = ~fi!
and §f2® = vfs!, then v(fi! — fol) = 6(f1°® — f2*) = v8c®. Hence, there exists
¢! in CY(K, J,) such that fi! — fy! — 6¢® = 7¢'. By an inductive argument,
we can show that fi* — fy! = 6c™! 4 s(i + 1)c’. Notice that IIr = 0 (mod p)
and that Iy = 0. Thus we have fi’® — fy’* = II(fi! — fo') = ollc*L.

3.5. Defination. &, (K, s) is called the ith J,-Smith class of the system (K, S).

3.6. Given two systems (K, .S) and (L, .S), a simplicial map g of K into L
is called an equivariant map of the systems if gs = sg. An equivariant map
g induces a cell map g’ of K’ into L’ with the following commutative diagrams,

#
K -4, ey £ )
I l l II and o j l it
4

K-, can L
It is clear that g'*( 27,*(L, 5)) = (K, s).
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4. The J,-index and the total index of a simplicial complex.

4.1. p refers either to T or to v and then p refers either to v or to . We will
write *C(K, G) for Im p and **C(K, G) for Ker p. Since Ker p = Im 5, we
have *C(K, G) = *'C(K, G). Since s is simplicial, we have,

(A) PH*(K, G) = *'H*(K, G).

By [8, p. 70] the following sequence is exact,

B) —"HE, G LHE 6) S E G) L THYE,G) -,

where ,8[pf ] = [8f ]. Since there is no fixed point in K, we have,

<) H*(K/S) ='H*(K) =~ "H*(K).

N H*¥(K', G) —» "H*(K, G) is defined by (Af')(¢c) = f'([c]s) for each f’ in

H*(K', G), and A is an isomorphism onto. Notice that MI = 7.
w: "H*(K, G) — "H*(K, G,)

is defined by wyf = Prf, where Z: G — G, = G/pG is a natural surjection.

4.2. Definition. The Smith homomorphism s(m) is defined by

s@m) = A48 .. 0\ HY(K', G) —» H*(K', G),

and by s@2m + 1) = X, 6. .. 00 H(K', G) —» HH*™(K', G,).

4.3. In (4.1) and (4.2) let G = J,, then G, = J, and we have,
(D) s(m) A0 (K, s) =LK, s).

Hence, our Smith homomorphism is an extension of that of [5, p. 329].
Simple calculation will show that [5, 134.2 (a)—(c)] holds in our case. That is,
ALK, s) = (ALK, s))™,
ALK, s) =N (K, 5) (LK, 5))™

where powers are in the sense of cup products, if K is a finite complex.

(E)

4.4, Let X be a normal space with countable basisand let S = {1,s,...,s"1}
be a properly discontinuous group of X onto itself, thatis, s'(x) % x for each
xin X and for 0 < ¢ < n. Let T = {U,: @« € A} be an open cover of X such
that for each a, b € 4, (i) U, # U, if a # b, (i1) U, # 0, (iii) if U, isin T,
then sU, is in T, and (iv) either U,N Uy, =@ or U, N s'U, = @ for
1=1,2,...,2— 1. A covering of X satisfying the above condition is
called a P-covering of X. With the aid of [9, § 3] and the paracompactness
of X, the existence of such covering can easily be shown. S will induce a
properly discontinuous transformation group on the nerve complex of T.
Moreover, since the system of P-coverings of X is cofinal in the system of
all open coverings of X, we get the ith J,-Smith class.%/,*(X, s) in the Cech
cohomology group H (X/S, J,)s
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4.5. We define the J,-index of (X,S) as the least integer ¢ such that
,H(X,s) =0, if it exists. We write »,(X, S) = 4. If there is no such 7, we
define »,(X,S) = 0. Let n = py21ps**. .. p% be the prime decomposition
of a positive integer 7 such that 0 < p; < ... < p,. We can define the
Jpi-index of (X, .S) for each <. The m-tuple v(X,S) = (v, (X,S), ..., v (X,S))
is called the total index of the system (X,.5).

4.6. We may define the J(p)-index of X by using the coefficient group J,
the ring of integers, for even dimensions in (3.1) and (3.2). That is, define
p(i): J — J(4) to be the natural map where J(2¢) = J and J(2¢ 4+ 1) = J,.
Thus Lemma 3.3 reads: “f’* = p(¢)IIf*”, Lemma 3.4 reads: “Let 7' (p) (K, s)
be the class of f'* defined as above in H'(K', J(i)). Then &/ (p)(K,s)...,”
and so on in the case of J(p)-indices. Therefore, the ®(k)-index of R¥ defined
in [10, § III] is equal to the J(p)-index of R¥* — F,, where & = p¢, S is of
period &, and F; is the set of fixed points. On the other hand, as noted in
[7], the indices considered in [10, § IV] are J,-indices. The justification for
this is that the proof in [10, § III, Lemma 3.4] implies that

AR~ Fys) = 0
forj = Nk — 1) as well as /7 (p) (R — F,,s) = 0 forj = N — 1).

5. The J,-index of SO(#n).

5.1. In this section we calculate the J,-index of SO(n), where n = 2m + 1
is an odd integer. Hence, throughout this section, the coefficient group is J,.
Let n = p'n’ such that (p, ') = 1. We also denote n/p by »'. Let

S={l,s...,sY
be the transformation group acting on SO(n) as follows:
s(wy, woy ..., wWy) = (Wo, ..., W, W1),

where (wi,...,w,) = ®@ is an arbitrary point of SO(n); that is, @ is an
orthonormal #-tuple. Let Q = {[SO(n) X Egls, Bs, I}, where Eg is the
N-universal space of S for a sufficiently large NV and Bg = Eg/S. We may
assume that Eg is compact [3, Chapter IV]. The bracket notation indicates
cosets with respect to S. II: [SO(n) X Eg]s — By is the projection. Then Q
is a principal bundle. We also have the projection

II;: [SO(n) — Egls — SO((n)/S.
By the Vietoris-Begle theorem we have:
(F) H*(SO(n)/S) = H*([SO(n) X Esls).

Moreover, there is a spectral sequence of II such that
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E, = H*(SO(n)/S),
and that,
E," =~ HY(Bg, H (SO (n)))
= H'(Bs) @ H/(SO(n)),
where the coefficient group is J,. For the sake of convenience we write

H*(By,J,) as B.*. Let T be the maximal torus in SO(n) [1] and let G be
the subgroup of elements of order # in T. The following results are known

(®)

[1; 2]:
H*(SO(’”), Jﬂ) = /\(ug, Uty o v oy u4m—1)y dlm U; = iy
B:o(n) %".&(1}4, Ugy -« . yv4m), dim Ui = i,
BT*ng(tly t2,.. .,tm), dim ti = 2,

Bg* = N(ay, as, ..., an) @ Jp(by, by, ..., by),
dima; = 1,dimb; = 2,

Bs* = A(a) ® J,(b), dima = 1,dimb = 2,
where J,( ) and /A ( ) refer to the polynomial and to the exterior algebra,
respectively. Also, {#s;—1:72 =1,2,...,m} is the set of universally trans-
gressive generators of H*(SO(n), J,) and v4; is the image of u4;_; by the

transgression. Let M be a compact connected group and let L be a subgroup
of M.

The projection p(L, M) of By onto B, induces p*(L, M): By* — B*.
By [1, p. 200] we have:

(2, 50) Bhorw) = 1 [T (1 +1).

The passage from Bz* to Bg* is a monomorphism which replaces ¢; by b,.
The passage from Bg* to Bg* is obtained by replacing b; by < [6; 7; 10].
Let A be the constant number in [6, Lemma 1]. Let 2 = p‘and let &’ = k/p.
Also let p = 2k + 1.

5.2. Lemma. II7_; (1 + (5b)?) = [1 + Ap?]*" (mod p).

Proof. Notice that there are #’h numbers of integers which are not divisible
by p between 1 and m. Also notice that (b — 7)2 = (A + 7 + 1)? (mod p).
Hence,

ﬁ a+ @) =11 a+ @9
[g R +fb“’>}"

= [1 4+ AP (mod p).
5.3. According to [2, Proposition 10.3] we have:

E, = H*(SO(n)/S) = N(a) ® J,()/F () @ P,

I
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where . (b2"*') is the ideal generated by b?** and
P = /\(ua, Uty o ooy Bangrm1, Uane' 43y - + +  Udm—1),
since p*(S, SO(n))vy; = 0 for i < bk’ = n'’ Ab*™ for ¢ = hk'.

54.Sincer=v(14+2s+ ...+ (n — 1)s"2) (mod p), the inclusion map
of 'C(X,J,) to "C(X, J,) induces the map 9: "H™(X, J,) = "H"(X, J,). In
fact, we have the following commutative diagram (cf. [5, p. 328]):

HMX, T,) L HTX, T,) < H™X, T,)

HYX, T,) =2 HMX, 7,) < HX, 7))
Assume that

A1 (S0(n), s) = N\ Z,°(SO(n), s) = 0.
Then u,6A,°(SO(n),s) =0 since A~! is an isomorphism. By the
commutativity of the above diagram, we have 0 = ,d9\.27,°(SO (%), s). Let
p=+vand s = 0in (4.1) (B); we then have

0 -
—"Z"(S0(n)) 5 " H (SO (n)) — H' (SO (n)) = 0.

Since "Z°(SO(n)) = 'H(SO(n)) =2 J, and the exactness of the above
sequence, .8 is an isomorphism. Hence 7\ 27,°(SO(n),s) = 0, which is a
contradiction.
Assume that.27,2(SO(n), s) = \~1,8 .6 A Z,°(SO(n), s) = 0. Because of the
following exact sequence (4.1) (B),
— H'(S0(n)) —"H(SO(n)) 3 " H*(SO(n)) -,
8 is an isomorphism onto. Hence, .6\ 27,°(SO (%), s) = 0. Hence

(SO (n), s) = 0,

which is a contradiction. Hence we may consider %7,1(SO (%), s) = ¢ and
,2(SO(n), s) = b. Hence, according to (4.3) and (4.5) we have:

1, (SO(n), S) = 4hk’ = »,(SO(k), W),

where (SO(k), W) is a system of period k& = p* (cf. [7, Theorem 7]).
Therefore, we have the following theorem.

5.5. THEOREM. If n = p1ps22 . .. P22 is an odd integer and

pi=2h+ 1< p;=2h;+1
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for © < j, then,
v(SO(n), S) = (4hiky, 4hsky, . . ., 4h.k)),
where k! = p2i/p,.

6. A comment on »,((R")4").

6.1. Letk = ptandletS = {1,s,..., s*1} acton (R¥)4*asin [10, p. 411].
Then, as indicated in (4.6), I(k) (R¥)=y,((RV)x*), where (R")*=R¥*—F,.
In [10, Theorem 3.2] we have »,((R¥)s*) < N(k — 1). As a matter of fact,
we have a better upper bound.

6.2. THEOREM. 1,((R¥)s*) < N(p — 1)p*L.

Proof. Let S, = {1,s*, ..., s®D¥} where k' = p*~1. Let IV be the N-cube.
Then we may assume that (R¥)* = int I™* so that (R¥)«* C (I¥)s*. The
inclusion is equivariant. Hence we have »,((R¥)4*) < »,((I¥)4*). (Indeed
we have »,((R¥)4*) = »,((I¥)4*) since 7: (IM)s* C (R"V)4* is equivariant.)
(IM)4F = (I¥*)4? = I™* — (the set of the fixed points under S,). Let K be the
cell complex of I™* i.e., |[K| = I"¥. Let K» = K X ... X K (p factors) be
the p-fold product complex of K. Let K4? be the subcomplex of K? which
consists of all cells 1 X ... X 0, (¢; € K) with no vertex of K common to
all these o;. Then by [11, Theorem 1] or the method in [10, § II, Theorem 2.1]
we may show that |K4?| is a deformation retract of (I¥*')4?. Since K4? is of
a dimension Nk (p — 1), H(|K«?|) = 0 = H'((I**)s?) for ¢ = Nk (p — 1).
On the other hand, we have

N5 _ (DS _ (M)4"/S,)

S (8/8,) — (S/Sy)
Applying [3, p. 44, Theorem 5.2] twice to the above equation, we have
Hi((IM)4*/S) = 0 for i = Nk (p — 1). A fortiori, Z,}((IY)«*, s) = 0 for
i = NE' (p — 1). Hence »,((IM)s*) < NE'(p — 1).

Remark 1. The results in {10, § IV] can be strengthened accordingly. For
example, [10, § IV, Corollary 2.9] can be replaced by

“dim D = Lpti(pHt — 3p + 2)".

Remark 2. It may be shown that a deformation retraction in question can
be taken to be equivariant. However, this is not required for the proof of
Theorem 6.2 by virtue of [3, p. 44].

For applications to mapping problems of the above type, Theorem 6.2 is
sufficient. However, it may be of interest to find the exact value of the index
of (RM)«".

6.3. LEMMA. If S acts on S% a g-sphere, without fixed points, then
&, (S% s) # 0 for i < q.
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Proof. This is immediate from (4.1) (B) and the commutative diagram
in (5.4).
6.4. THEOREM. »,((RM)s*) = N(p — 1)p*-L.

Proof. Because of Theorem 6.2, it suffices to show that &,*((RV)«f, s) £ 0
for 1 < N(p — 1)p*~t — 1. Since R¥ can be considered as a vector space,

(R¥)4* is the space of ordered k vectors, (v1, . .., %) of R¥ with the set of all
the points of the type (v1,...,%,...,01,..., 0 ) deleted, where, of course,
B = p1 = k/p. In (RY)4" we define a subspace X by the following relations:
p—1
I Z Vipgr = 0 fort=1,2,...,F,
7=0
and
X 2
(In 2 fol* =1,
g

Since X is an (NE'(p — 1) — 1)-sphere invariant under .S, &7,*(X, s) # 0 for
1 £ NE'(p — 1) — 1. Since X C (R¥)4*, (X, s) # 0 induces

A (RY)4F, 5) #= 0
fori = Ne'(p — 1) — 1.
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