
Canad. Math. Bull. Vol. 55 (4), 2012 pp. 799–814
http://dx.doi.org/10.4153/CMB-2011-119-7
c©Canadian Mathematical Society 2011

Manifolds Covered by Lines and
Extremal Rays

Carla Novelli and Gianluca Occhetta

Abstract. Let X be a smooth complex projective variety, and let H ∈ Pic(X) be an ample line bundle.

Assume that X is covered by rational curves with degree one with respect to H and with anticanonical

degree greater than or equal to (dim X − 1)/2. We prove that there is a covering family of such curves

whose numerical class spans an extremal ray in the cone of curves NE(X).

Introduction

Let X be a smooth complex projective variety that admits a morphism with connected

fibers ϕ : X → Z onto a normal variety Z such that the anticanonical bundle −KX is

ϕ-ample, dim X > dim Z, and ρX = ρZ + 1 (i.e., an elementary extremal contraction

of fiber type).

It is well known, by fundamental results of Mori theory, that through every point

of X there is a rational curve contracted by ϕ. The numerical classes of these curves

lie in an extremal ray of the cone NE(X). By taking a covering family of such curves

one obtains a quasi-unsplit family of rational curves, i.e., a family such that the irre-

ducible components of all the degenerations of curves in the family are numerically

proportional to a curve in the family. It is very natural to ask if the converse is also

true:

Given a covering quasi-unsplit family V of rational curves, is there an ex-

tremal elementary contraction that contracts all curves in the family or, in

other words, does the numerical class of a curve in the family span an extremal

ray of NE(X)?

As proved in [8] (see also [10] and [14]) there is always a rational fibration, defined

on an open set of X, whose general fibers are proper, which contracts a general curve

in V . More precisely, a general fiber is an equivalence class with respect to the relation

induced by the closure V of the family V in the Chow scheme of X in the following

way: two points x and y are equivalent if there exists a connected chain of cycles in V

that joins x and y.

By a careful study of this fibration and of its indeterminacy locus, a partial answer

to this question has been given in [6, Theorem 2]; namely, if the dimension of a gen-

eral equivalence class is greater than or equal to the dimension of the variety minus

three, then the numerical class of a general curve in the family spans an extremal ray

of NE(X).
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Before the results in [6] a special but very natural situation in which the question

arises was studied in [5]. In that paper manifolds covered by rational curves of degree

one with respect to an ample line bundle H were considered, and it was proved that

a covering family of such curves (we will call them lines, by abuse) of anticanonical

degree greater than or equal to dim X+2
2

spans an extremal ray (see also [4, Theorem

2.4]).

Recently, in [15, Theorem 7.3], the extremality of a covering family V of lines was

proved under the weaker assumption that the anticanonical degree of such curves,

denoted by abuse of notation by −KX ·V , is greater than or equal to dim X+1
2

.

The goal of this paper is to prove the following theorem.

Theorem Let (X,H) be a polarized manifold with a dominating family of rational

curves V such that H · V = 1. If −KX · V ≥ dim X−1
2

, then [V ] spans an extremal ray

of NE(X).

The main idea is, as in [15], to combine the ideas and techniques of [5], especially

taking into consideration a suitable adjoint divisor KX + mH and studying its nef-

ness, with those of [6], in particular regarding the existence of special curves in the

indeterminacy locus of the rational fibration associated with V .

1 Background Material

Let X be a smooth projective variety defined over the field of complex numbers. A

contraction ϕ : X → Z is a proper surjective map with connected fibers onto a normal

variety Z.

If the canonical bundle KX is not nef, then the negative part of the cone NE(X)

of effective 1-cycles is locally polyhedral by the Cone Theorem. By the Contraction

Theorem, it is possible to associate a contraction with each face in this part of the

cone.

Unless otherwise stated, we will reserve the name extremal face for a face contained

in NE(X) ∩ {a ∈ N1(X) | KX · a < 0}, and we will call extremal contraction the

contraction of such a face.

An extremal contraction associated with an extremal face of dimension one, i.e.,

with an extremal ray, is called an elementary contraction; an extremal ray τ is called

numerically effective, and the associated contraction is said to be of fiber type, if

dim Z < dim X; otherwise the ray is called non nef and the contraction is birational.

If the codimension of the exceptional locus of an elementary birational contrac-

tion is equal to one, the ray and the contraction are called divisorial, otherwise they

are called small.

A Cartier divisor which is the pullback of an ample divisor A on Z is called a

supporting divisor of the contraction ϕ.

If the anticanonical bundle of X is ample, X is called a Fano manifold. For a Fano

manifold, the index, denoted by rX , is defined as the largest natural number r such

that −KX = rH for some (ample) divisor H on X.

Throughout the paper, unless otherwise stated, we will use the word curve to de-

note an irreducible curve.
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Definition 1.1 A family of rational curves is an irreducible component V ⊂
Ratcurvesn(X) (see [14, Definition 2.11]). Given a rational curve we will call a family

of deformations of that curve any irreducible component of Ratcurvesn(X) containing

the point parametrizing that curve. We will say that V is unsplit if it is proper. We

define Locus(V ) to be the set of points of X through which there is a curve among

those parametrized by V ; we say that V is a covering family if Locus(V ) = X and that

V is a dominating family if Locus(V ) = X.

We denote by Vx the subscheme of V parametrizing rational curves passing

through x ∈ Locus(V ) and by Locus(Vx) the set of points of X through which there

is a curve among those parametrized by Vx.

By abuse of notation, given a line bundle L ∈ Pic(X), we will denote by L · V the

intersection number L · CV , with CV being any curve among those parametrized by

V .

Proposition 1.2 ([14, IV.2.6]) Let V be an unsplit family of rational curves on X.

Then

(i) dim Locus(V ) + dim Locus(Vx) ≥ dim X − KX ·V − 1;

(ii) every irreducible component of Locus(Vx) has dimension ≥ −KX ·V − 1.

This last proposition, in case V is the unsplit family of deformations of a rational

curve of minimal anticanonical degree in an extremal face of NE(X), gives the fiber

locus inequality:

Proposition 1.3 ([12, Theorem 0.4], [19, Theorem 1.1]) Let ϕ be a Fano–Mori con-

traction of X. Denote by E the exceptional locus of ϕ and by F an irreducible component

of a non-trivial fiber of ϕ. Then

dim E + dim F ≥ dim X + ℓ− 1,

where ℓ := min{−KX · C | C is a rational curve in F}. If ϕ is the contraction of an

extremal ray τ , then ℓ(τ ) := ℓ is called the length of the ray.

Definition 1.4 We define a Chow family of rational curves W to be an irreducible

component of Chow(X) parametrizing rational and connected 1-cycles.

We define Locus(W) to be the set of points of X through which there is a cycle

among those parametrized by W; notice that Locus(W) is a closed subset of X ([14,

II.2.3]). We say that W is a covering family if Locus(W) = X.

Definition 1.5 If V is a family of rational curves, the closure of the image of V in

Chow(X), denoted by V, is called the Chow family associated with V .

Remark 1.6 If V is proper, i.e., if the family is unsplit, then V corresponds to the

normalization of the associated Chow family V.

Definition 1.7 Let V be the Chow family associated with a family of rational curves

V . We say that V (and also V) is quasi-unsplit if every component of any reducible

cycle in V is numerically proportional to V .
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Definition 1.8 Let W be a Chow family of rational curves on X and Z ⊂ X. We

define Locus(W)Z to be the set of points x ∈ X such that there exists a cycle Γ among

those parametrized by W with Γ ∩ Z 6= ∅ and x ∈ Γ.

We define ChLocus(W)Z to be the set of points x ∈ X such that there exists a chain

of cycles among those parametrized by W connecting x and Z. Notice that, a priori,

ChLocus(W)Z is a countable union of closed subsets of X.

Notation If T ⊂ X, we will denote by N1(T,X) ⊂ N1(X) the vector subspace gen-

erated by numerical classes of curves in T; we will denote by NE (T,X) ⊂ NE(X) the

subcone generated by numerical classes of curves in T.

The notation 〈 · · · 〉 will denote a linear subspace, while the notation 〈 · · · 〉c will

denote a subcone.

Lemma 1.9 ([14, Proposition IV.3.13.3], [1, Lemma 4.1]) Let T ⊂ X be a closed

subset, and let W be a Chow family of rational curves. Then every curve contained

in ChLocus(W)T is numerically equivalent to a linear combination with rational co-

efficients of a curve contained in T and irreducible components of cycles among those

parametrized by W which intersect T.

Lemma 1.10 (Cf. [5, Proof of Lemma 1.4.5], [17, Lemma 1]) Let T ⊂ X be a

closed subset, and let V be a quasi-unsplit family of rational curves. Then every curve

contained in ChLocus(V)T is numerically equivalent to a linear combination with ra-

tional coefficients λCT + µCV , where CT is a curve in T, CV is a curve among those

parametrized by V and λ ≥ 0.

Corollary 1.11 (Cf. [9, Corollary 2.2 and Remark 2.4]) Let Σ be an extremal face

of NE(X) and denote by F a fiber of the contraction associated with Σ. Let V be a

quasi-unsplit family numerically independent from curves whose numerical class is in

Σ. Then

NE (ChLocus(V)F,X) = 〈Σ, [V ]〉c,

i.e., the numerical class in X of a curve in ChLocus(V)F is in the subcone of NE(X)

generated by Σ and [V ].

Lemma 1.12 Let D be an effective divisor on X, and let L be a nef divisor. If (L + D)|D
is nef, then L + D is nef.

Proof Assume that γ is an effective curve on X such that (L + D) · γ < 0. By the

nefness of L we have D·γ < 0, hence γ ⊂ D. But L+D is nef on D, a contradiction.

2 Rationally Connected Fibrations

Let X be a smooth complex projective variety, and let W be a covering Chow family

of rational curves.

Definition 2.1 The family W defines a relation of rational connectedness with re-

spect to W, which we shall call rc(W)-relation for short, in the following way: x and

y are in rc(W)-relation if there exists a chain of cycles among those parametrized by

W that joins x and y.
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We can associate a fibration with the rc(W)-relation, at least on an open subset

([7], [14, IV.4.16]); we will call it rc(W)-fibration.

In the notation of [6], by [10, Theorem 5.9] there exists a closed irreducible sub-

set of Chow(X) such that, denoting by Y its normalization and by Z ⊂ Y × X the

restriction of the universal family, we have a commutative diagram

(2.1) Z
e

//

p

��

X

q
���
�

�

�

�

Y,

where p is the projection onto the first factor and e is a birational morphism whose

exceptional locus E does not dominate Y . Moreover, a general fiber of q is irreducible

and is an rc(W)-equivalence class.

Let B be the image of E in X; note that dim B ≤ dim X − 2, as X is smooth.

If we consider a (covering) Chow family V, associated with a quasi-unsplit domi-

nating family V , then by [6, Proposition 1, (ii)] B is the union of all rc(V)-equivalence

classes of dimension greater than dim X − dim Y .

Moreover, we have the following lemma.

Lemma 2.2 Let V be a quasi-unsplit dominating family of rational curves on a smooth

complex projective variety X. Let B be the indeterminacy locus of the rc(V)-fibration

q : X 99K Y ; let D be a very ample divisor on q(X \ B), and let D̂ := q−1D. Then

(i) D̂ ·V = 0;

(ii) if C 6⊂ B is a curve not numerically proportional to [V ], then D̂ ·C > 0;

(iii) if D̂ ·C > 0 for every curve C ⊂ B not numerically proportional to [V ], then [V ]

spans an extremal ray of NE(X).

Proof See [6, Proof of Proposition 1].

Corollary 2.3 ([6, Proposition 3]) Let V be a quasi-unsplit dominating family of

rational curves on a smooth complex projective variety X; denote by B the indeterminacy

locus of the rc(V)-fibration and by fV the dimension of the general rc(V)-equivalence

class.

If [V ] does not span an extremal ray of NE(X), then B is not empty. In particular,

there exist rc(V)-equivalence classes of dimension at least fV + 1.

We now give a lower bound on the dimension of ChLocus(V)S, depending on the

position of the subvariety S with respect to the indeterminacy locus of the rc(V)-fi-

bration.

Lemma 2.4 Let V be a quasi-unsplit dominating family of rational curves on a smooth

complex projective variety X; denote by B the indeterminacy locus of the rc(V)-fibration

and by fV the dimension of the general rc(V)-equivalence class. Let S ⊂ X be an ir-

reducible subvariety such that [V ] 6∈ NE (S,X). Then there exists an irreducible XS

contained in ChLocus(V)S such that
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(i) if S 6⊂ B, then dim XS ≥ dim S + fV ;

(ii) if S ⊂ B, then dim XS ≥ dim S + fV + 1.

Moreover, XS is not rc(V)-connected.

Proof We refer to diagram (2.1). Given any T ⊂ Z we will set ZT := p−1(p(T)). Let

S ′ ⊂ Z be an irreducible component of e−1(S) that dominates S via e.

By our assumptions on NE (S,X) we have that S ′ meets any fiber of p|ZS ′
in points

so, up to replace ZS ′ with S ′ ×p(S ′) ZS ′ , we can assume that S ′ is a section of p|ZS ′
.

Let Z ′ be an irreducible component of ZS ′ that contains S ′. We have

(2.2) dim Z ′ ≥ dim p(S ′) + fV = dim S ′ + fV ≥ dim S + fV .

Moreover, notice that S = e(S ′) ⊂ e(Z ′) ⊂ e(ZS ′) ⊂ ChLocus(V)S.

Assume that S 6⊂ B. Then Z ′ 6⊂ E, hence the map e|Z ′ : Z ′ → X is generically

finite. Therefore, in view of (2.2), dim e(Z ′) = dim Z ′ ≥ dim S + fV ; moreover, since

S ⊂ e(Z ′), we have that e(Z ′) is not rc(V)-connected.

Assume now that S ⊂ B. Assertion (ii) will follow once we prove that the general

fiber G of e|Z has dimension strictly smaller than the general fiber of e|S ′ for at least

one irreducible component Z of ZS ′ that dominates p(S ′). In fact, recalling also (2.2),

in this case we will have

dim e(Z) = dim Z − dim G > (dim S ′ + fV ) − (dim S ′ − dim S) = fV + dim S.

Claim Let G be an irreducible component of a fiber of e|ZS ′
; let z ∈ G be any point,

and let z ′ := p−1(p(z))∩ S ′ be the intersection of the fiber of p containing z with S ′;

then there exists an irreducible component F of the fiber F ′ of e|S ′ containing z ′ such

that p(G) ⊆ p(F).

To prove the claim, recall that since e(ZG) ⊂ ChLocus(V)e(z), the image via e

of any curve in ZG ∩ S ′, which is irreducible, being a section over p(G), must be

a point, otherwise it would be a curve contained in S ∩ ChLocus(V)e(z), which is a

contradiction, since curves in S are numerically independent from [V ].

Therefore, ZG ∩ S ′ is contained in a fiber F ′ of e|S ′ . To prove the claim we take as

F the irreducible component of F ′ containing ZG ∩ S ′.

Let S1 ⊂ S ′ be the proper closed subset on which e|S ′ is not equidimensional, and

let S2 ⊂ S ′ be the proper closed subset of points in which the fiber of e|S ′ is not locally

irreducible. Recalling that p|S ′ is a finite map we see that p (S1∪S2) is a proper closed

subset of p(S ′).

Let y ∈ p(S ′) \ p (S1 ∪ S2) be a general point. In particular, there is only one

irreducible component F of the fiber F ′ of e|S ′ passing through z ′ = p−1(y)∩ S ′ and

dim F = dim S ′ − dim S.

Notice that dim e(ZF) > fV , otherwise a one parameter family of fibers of p meet-

ing F would have the same image in X (Cf. [6, End of proof of Proposition 1], where

e(ZF) = Locus(Ve(F))).

This implies that for an irreducible component ZF of ZF we have dim e(ZF) > fV .

Taking as Z an irreducible component of ZS ′ containing ZF we have that, for every

https://doi.org/10.4153/CMB-2011-119-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-119-7


Manifolds Covered by Lines and Extremal Rays 805

point z ∈ p−1(y) ∩ Z and any irreducible component G of the fiber of e|Z passing

through z we have p(G) ⊆ p(F), hence dim G < dim F = dim S ′ − dim S. The same

inequality then holds for the general fiber by semicontinuity of the local dimension.

Noticing that S is contained in ChLocuse(Z)(V), the last assertion follows.

Remark 2.5 Both the bounds in Lemma 2.4 are sharp. An example for the second

one is given in [6, Example 2]. In that example B ≃ P2 ×P1; taking as S a fiber of the

projection onto P2, we have equality in (ii).

3 Blowing-down

In this section we consider the following situation, which will show up in the proof

of Theorem 4.3.

Lemma 3.1 Let (X,H) be a polarized manifold with a dominating family of rational

curves V such that H · V = 1. Denote by fV the dimension of the general rc(V)-

equivalence class and assume that there exists an extremal face Σ in NE(X) whose asso-

ciated contraction σ : X → X ′ is a smooth blow-up along a disjoint union of subvarieties

Ti of dimension ≤ fV such that Ei ·V = 0 for every exceptional divisor Ei and H · li = 1

if li is a line in a fiber of σ. Finally denote by V ′ a family of deformation of σ(C), with

C a general curve parametrized by V . Then

(i) −KX ′ ·V ′
= −KX ·V ;

(ii) there exists an ample line bundle H ′ on X ′ such that H ′ ·V ′
= 1;

(iii) if C ′ is a curve parametrized by V ′ such that Ti ∩C ′ 6= ∅, then C ′ ⊂ Ti ;

(iv) ρX ′ > 1;

(v) if [V ′] spans an extremal ray of NE(X ′), then [V ] spans an extremal ray of NE(X).

Proof It is enough to prove the statement in the case where dimΣ = 1, i.e., σ : X →
X ′ is the blow-up of X ′ along a smooth subvariety T associated with the extremal ray

Σ. In fact, if dimΣ > 1, the contraction of Σ factors through elementary contrac-

tions, each one satisfying the assumptions in the statement.

Denote by E the exceptional locus of σ. Since E · V = 0, the first assertion in the

statement follows from the canonical bundle formula for blow-ups.

Moreover, the fact that E · V = 0 also implies that any rc(V)-equivalence class

meeting E is actually contained in E. Therefore, if F is a non-trivial fiber of σ, then

ChLocus(V)F ⊆ E. By Lemma 2.4

dim ChLocus(V)F ≥ fV + dim F ≥ dim X − 1,

hence E = ChLocus(V)F and dim T = fV . In particular, applying Corollary 1.11 we

get that NE (E,X) = 〈[V ],Σ〉c.

The line bundle (H + E)|E is nef, and it is trivial only on Σ, since (H + E) · Σ = 0

and (H +E) ·V = 1. Then H +E is nef by Lemma 1.12. Notice also that H +E is trivial

only on Σ. Indeed, let γ be an effective curve on X such that (H + E) · γ = 0. Due

to the ampleness of H we have E · γ < 0, hence γ ⊂ E. This implies that [γ] ∈ Σ.

Therefore H + E = σ∗H ′, with H ′ an ample line bundle on X ′. By the projection

formula H ′ ·V ′
= 1, hence part (ii) in the statement is proved.
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Now, let C ′ be a curve parametrized by V ′ meeting T and assume by contradiction

that C ′ is not contained in T; denote by C̃ ′ its strict transform. Then

1 = H ′ ·C ′
= σ∗H ′ · C̃ ′

= (H + E) · C̃ ′ ≥ 2,

which is a contradiction. It follows that every curve parametrized by V ′ that meets T

is contained in it, so we get part (iii) in the statement.

As to part (iv), assume by contradiction that ρX ′ = 1. This implies that X ′ is

rc(V ′)-connected, but this is impossible as, in view of part (iii), we cannot join points

of T and points outside of T with curves parametrized by V ′.

Finally, to prove part (v) assume that [V ′] spans an extremal ray of X ′, and let B

be the indeterminacy locus of the rc(V)-fibration. We claim that E ∩ B = ∅.

Assume by contradiction that this is not the case. Then E meets (and hence con-

tains) an rc(V)-equivalence class G of dimension dim G ≥ fV + 1. Take a fiber F of

σ meeting G. Then dim F + dim G > dim E. On the other hand, dim(F ∩ G) = 0 as

[V ] 6∈ Σ. So we get a contradiction.

Let A be a supporting divisor of the contraction associated with [V ′]. The pull-

back σ∗A defines a two-dimensional face Π of NE(X) containing Σ and [V ]. Let D̂

be as in Lemma 2.2; by the same lemma D̂ · Σ > 0 and D̂ ·V = 0.

Assume that Π is not spanned by Σ and [V ]; in this case there exists a class c ∈
NE(X) belonging to Π such that E · c > 0 and D̂ · c < 0.

Let {Cn} be a sequence of effective one cycles such that the limit of R+[Cn] is R+c.

By continuity, for some n0 we have E · Cn > 0 and D̂ · Cn < 0 for n ≥ n0, hence

Cn ⊂ B, and E ∩Cn 6= ∅ for n ≥ n0, contradicting E ∩ B = ∅.

4 Main Theorem

First of all we consider polarized manifolds (X,H) with a quasi-unsplit dominating

family of rational curves V proving that if, for m large enough, the adjoint divisor

KX + mH defines an extremal face containing [V ], then [V ] spans an extremal ray of

X.

Proposition 4.1 Let (X,H) be a polarized manifold that admits a quasi-unsplit dom-

inating family of rational curves V ; denote by fV the dimension of a general rc(V)-equi-

valence class.

If, for some integer m such that m + fV ≥ dim X − 3, the divisor KX + mH is nef and

it is trivial on [V ], then [V ] spans an extremal ray of NE(X).

Proof Assume by contradiction that [V ] does not span an extremal ray in NE(X).

This implies that KX + mH defines an extremal face Σ of dimension at least two,

containing [V ]. By [15, Lemma 7.2] there exists an extremal ray ϑ ∈ Σ whose excep-

tional locus is contained in the indeterminacy locus B of the rc(V)-fibration. Since

(KX + mH) · ϑ = 0, the length ℓ(ϑ) is greater than or equal to m.

Let F be a non-trivial fiber of the contraction associated with ϑ. Since this con-

traction is small, being dim B ≤ dim X − 2, then dim F ≥ m + 1 by Proposition

1.3.
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By Lemma 2.4(ii), the dimension of ChLocus(V)F is

dim ChLocus(V)F ≥ dim F + fV + 1.

As the rc(V)-equivalence classes are either contained in B or have empty intersection

with it, ChLocus(V)F ⊂ B. Therefore we get

dim X − 2 ≥ dim B ≥ dim ChLocus(V)F ≥ fV + m + 2 ≥ dim X − 1,

which is a contradiction.

As the last preparatory step, we consider the following special case.

Lemma 4.2 Let V be a quasi-unsplit dominating family of rational curves on a smooth

complex projective variety X. Denote by fV the dimension of a general rc(V)-equivalence

class. Assume that there exists an extremal ray ϑ, independent from [V ], whose associ-

ated contraction has a fiber F such that dim F + fV ≥ dim X. Then dim F + fV = dim X

and NE(X) = 〈[V ], ϑ〉c. In particular ρX = 2.

Proof By Lemma 2.4(i) we have

dim X ≥ dim ChLocus(V)F ≥ fV + dim F,

hence dim F + fV = dim X and ChLocus(V)F = X, so the assertion follows by Corol-

lary 1.11.

Theorem 4.3 Let (X,H) be a polarized manifold with a dominating family of rational

curves V such that H · V = 1. If −KX · V ≥ dim X−1
2

, then [V ] spans an extremal ray

of NE(X).

Proof Let B be the indeterminacy locus of the rc(V)-fibration q : X 99K Y ; let D be

a very ample divisor on q(X \ B), and let D̂ := q−1D. Denote by m the anticanonical

degree of V and by fV the dimension of a general rc(V)-equivalence class. Notice

that, since V is a dominating family, we have m ≥ 2.

By Proposition 1.2 dim Locus(Vx) ≥ −KX ·V − 1 = m − 1. Since a general fiber

of the rc(V)-fibration contains Locus(Vx) for every point x in it, we have fV ≥ m−1.

If KX + mH is nef, then the assertion follows by Proposition 4.1; therefore, we can

assume that KX + mH is not nef.

Let ϑ be an extremal ray such that (KX + mH) ·ϑ < 0, and let ϕϑ be the associated

contraction. Notice that ϑ has length ℓ(ϑ) ≥ m + 1, hence every non-trivial fiber of

ϕϑ has dimension ≥ m by Proposition 1.3. On the other hand, in view of Lemma 4.2

we can assume that all fibers of ϕϑ have dimension ≤ m + 1.

In particular this implies that we have H · Cϑ = 1, where Cϑ is a minimal degree

curve whose numerical class belongs to ϑ. Indeed, if this were not the case, we would

have ℓ(ϑ) ≥ 2m + 1, hence every non-trivial fiber of ϕϑ would have dimension ≥
2m > m + 1 by Proposition 1.3 and the fact that m ≥ 2.

If the Picard number of X is one, the theorem is clearly true, so we can assume

that ρX ≥ 2. Now we split up the proof into two cases, according to the value of ρX .

First we consider the case ρX = 2 and then the general one.
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Case (a) ρX = 2.

The proof is based on different arguments, depending on the dimension of the

fibers of the contraction associated with the extremal ray ϑ.

Case (a1) The contraction ϕϑ admits an (m + 1)-dimensional fiber F.

Consider XF := ChLocus(V)F . We have, by Corollary 1.11, that NE (XF,X) =

〈[V ], ϑ〉c and, by Lemma 2.4, that

dim XF ≥ dim F + fV ≥ (m + 1) + (m − 1) ≥ dim X − 1.

If XF = X, then the statement is proved. So we can assume that an irreducible

component XF of XF is a divisor and thus that fV = m − 1. Notice that XF · V = 0,

otherwise we would have XF = X.

Consider now the intersection number of XF with curves whose numerical class

belongs to ϑ. Since ρX = 2 and XF ·V = 0, we cannot also have XF · ϑ = 0.

Let us show that we cannot have XF · ϑ < 0 as well.

Assume by contradiction that this is the case. Then Exc(ϑ) ⊂ XF , so ϕϑ is diviso-

rial by Proposition 1.3. By the same proposition, recalling that we are assuming that

all the fibers of ϕϑ have dimension ≤ m + 1, every non-trivial fiber has dimension

m + 1.

Then ϕϑ is the blow-up of a smooth variety X ′ along a smooth center T by [2,

Theorem 4.1 (iii)]. The dimension of the center is

dim T = (n − 1) − (m + 1) ≤ m − 1 = fV .

We can thus apply Lemma 3.1(iv), and we get ρX = ρX ′ + 1 > 2, reaching a contra-

diction.

Therefore XF · ϑ > 0, hence (XF)|XF
is nef and thus, by Lemma 1.12, XF is nef. As

XF ·V = 0 and ρX = 2, XF is the supporting divisor of an elementary contraction of

X whose associated extremal ray is spanned by [V ].

Case (a2) The contraction ϕϑ is equidimensional with m-dimensional fibers.

By Proposition 1.3, ϕϑ is of fiber type and ℓ(ϑ) = m + 1. Hence, by [11, Lemma

2.12], X is a projective bundle over a smooth variety Y , i.e., X = PY (E), where

E = (ϕϑ)∗H.

Notice that Y has Picard number one and is covered by rational curves (the images

of the curves parametrized by V ), therefore Y is a Fano manifold.

By the canonical bundle formula for projective bundles we have

KX + (m + 1)H = ϕ∗

ϑ(KY + detE).

In particular, if CV is a curve among those parametrized by V , we can compute, by

the projection formula,

(KY + detE) · (ϕϑ)∗(CV ) = (KX + (m + 1)H) ·CV = 1.

It follows that (KY + detE) · ϕϑ(CV ) = 1 and that KY + detE is the ample genera-

tor of Pic(Y ). The ampleness of E implies that detE · ϕϑ(CV ) ≥ m + 1; therefore,

−KY · ϕϑ(CV ) ≥ m, hence the index rY of Y is greater than or equal to m.
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If rY = m and l denotes a rational curve of minimal degree in Y , then detE · l =

m+1; moreover, the splitting type of E, which is ample and of rank m+1, on rational

curves of minimal degree is uniform of type (1, . . . , 1).

We can thus apply [3, Proposition 1.2], so we obtain that X ≃ Pm × Y . It follows

that the curves of V are contained in the fibers of the first projection and that [V ]

spans an extremal ray.

Therefore we are left with rY ≥ m + 1. Recalling that dim Y = dim X − m ≤
m + 1, by the Kobayashi–Ochiai Theorem [13] we get that Y is a projective space or a

hyperquadric.

Assume by contradiction that [V ] does not span an extremal ray of X.

By Lemma 2.2(iii) there exists a curve C ⊂ B, whose numerical class is not pro-

portional to [V ], such that D̂ ·C ≤ 0. Actually, since ρX = 2 and D̂ ·V = 0, we have

D̂ ·C < 0.

By Lemma 2.4(ii), there exists XC ⊂ ChLocus(V)C , which is not rc(V)-connected

such that dim XC ≥ fV + dim C + 1 ≥ m + 1.

By Lemma 1.10 D̂ has non positive intersection number with every curve in XC

and it is trivial only on curves that are numerically proportional to [V ].

Since D̂ · ϑ > 0, we have that ϕϑ does not contract curves in XC , hence dim Y ≥
dim XC ≥ m + 1 and so dim Y = dim XC = m + 1.

Since XC is not rc(V)-connected, for every point c of XC , the intersection Xc of the

rc(V)-equivalence class containing c with XC has dimension equal to m. In particular,

XC is the union of a one parameter family of rc(V)-connected subvarieties Xc.

We claim that there exists a line l in Y that is not contained in ϕϑ(Xc) for any

c ∈ C . Notice that, since ϕϑ does not contract curves in XC , through a general point

y in Y there is a finite number of such subvarieties.

If Y ≃ Pm+1, a line joining y with a point outside the union of these subvarieties

has the required property.

Assume now that Y ≃ Qm+1. For any y ∈ Qm+1 the locus of the lines through y

is a quadric cone Qm
y with vertex y. Therefore, if every line through y is contained

in ϕϑ(Xc) for some c ∈ C , then Qm
y is an irreducible component of ϕϑ(Xc). Since Xc

moves in a one-dimensional family, for the general point y ∈ Qm+1, the general line

through y has the required property.

The splitting type of E on this line is one of the following: (2, 1, . . . , 1) if Y ≃
Qm+1 and either (3, 1, . . . , 1) or (2, 2, 1, . . . , 1) if Y ≃ Pm+1. Recalling that m ≥ 2 we

have that, among the summands of El there is at least one OP1 (1).

Consider Pl(E|l) whose cone of curves is generated by the class of a line in a fiber

of the projection onto l and the class of a minimal section C0. By the discussion above

we have that H · C0 = 1. Moreover, ϕ∗

ϑ(KY + detE) · C0 = 1, hence [C0] = [V ]. In

particular D̂ is nef on Pl(E|l).

Consider an irreducible curve in Pl(E|l) ∩ XC . By our choice of l, this curve is not

contained in a rc(V)-equivalence class contained in XC , so it is negative with respect

to D̂, a contradiction. The case ρX = 2 is thus completed.

Case (b) ρX > 2.

Notice that, in view of Corollary 2.3, we can restrict to the case B 6= ∅; moreover,

by Lemma 2.2(iii), we can also assume the existence of a curve C ⊂ B such that [C]
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is not proportional to [V ] and D̂ ·C ≤ 0.

We claim that KX + (m + 1)H is nef.

Assume by contradiction that KX + (m + 1)H is not nef. Let τ be a ray such that

(KX + (m + 1)H) · τ < 0; denote by Cτ a rational curve of minimal anticanonical

degree in τ and by ϕτ the contraction associated with τ .

Notice that τ has length ℓ(τ ) ≥ m + 2, hence every non-trivial fiber of ϕτ has

dimension ≥ m + 1 by Proposition 1.3.

On the other hand ϕτ cannot have fibers of dimension > m + 1, otherwise, by

Lemma 4.2, we would have ρX = 2. Therefore every non-trivial fiber of ϕτ has

dimension m + 1.

In view of Proposition 1.3, we thus get that ϕτ is of fiber type and that the length

of τ is ℓ(τ ) = m+2; this last fact gives H ·Cτ = 1. Let us consider Wτ to be a minimal

degree covering family of curves whose numerical class belongs to τ .

Since B is not empty, there are rc(V)-equivalence classes of dimension ≥ fV + 1 ≥
m; let G be one of these classes. Notice that since ϕτ is equidimensional with (m + 1)-

dimensional fibers, we have fW = m + 1. By Lemma 2.4(i) we have

dim ChLocus(Wτ )G ≥ dim G + fW = 2m + 1 ≥ dim X,

so by Lemma 1.9 we deduce ρX = 2, a contradiction that proves the nefness of

KX + (m + 1)H.

Recall now that the extremal ray ϑ that we fixed at the beginning of the proof has

length ℓ(ϑ) ≥ m + 1 and is generated by a curve Cϑ such that H · ϑ = 1, therefore

(KX + (m + 1)H) · ϑ = 0 and KX + (m + 1)H is not ample.

Let Σ be the extremal face contracted by KX + (m + 1)H. We now consider two

cases separately, depending on the existence in Σ of a fiber type extremal ray.

Case (b1) There exists a fiber type extremal ray ̺ in Σ.

Let ϕ̺ be the contraction associated with ̺, and denote by W̺ a minimal degree

covering family of curves whose numerical class belongs to ̺. By Lemma 2.4(ii), there

exists an irreducible XC ⊂ ChLocus(V)C such that dim XC ≥ fV + 2.

According to Lemma 1.10, every curve in XC can be written as α[C] + β[V ] with

α ≥ 0; in particular, since D̂ ·V = 0 by Lemma 2.2, it follows that D̂ is not positive on

any curve contained in XC . By the same lemma D̂·W̺ > 0, hence [W̺] 6∈ NE (XC ,X).

Therefore, Lemma 2.4(i) gives

dim ChLocus(W̺)XC
≥ dim XC + fW̺

≥ fV + 2 + m ≥ dim X,

where fW̺
is the dimension of the general rc(W̺)-equivalence class.

Therefore, by applying Lemma 1.10 twice, we get that the class of every curve in X

can be written as

(4.1) λ(α[C] + β[V ]) + µ[W̺]

with α, λ ≥ 0 and α[C] + β[V ] ∈ NE (XC ,X).

This has some very important consequences. First of all, since we are assuming

ρX > 2, this implies that ρX = 3; in particular, [C] is not contained in the plane Π
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in N1(X) spanned by [W̺] and [V ]. Moreover, the intersection of Π with NE(X) is a

face of NE(X).

We have to prove that Π∩NE(X) = 〈[V ], [W̺]〉c. If this is not the case, then there

exists a class a such that Π ∩ NE(X) = 〈a, [W̺]〉c and D̂ · a < 0.

Denote by b ∈ N1(X) a class, not proportional to [V ], lying in the intersection

of ∂NE(X) with the plane Π
′
= N1(XC ,X) and by Π

′ ′ the plane spanned by [W̺]

and b.

Formula (4.1), traslated in geometric terms, says that NE(X) is contained in the

intersection of half-spaces determined by Π and by Π
′ ′ as in the figure below, which

shows a cross-section of NE(X).

Let {Cn} be a sequence of effective one cycles such that the limit of R+[Cn] is R+a.

By continuity, for some n0 we have D̂ ·Cn < 0 for n ≥ n0, hence Cn ⊂ B for n ≥ n0,

and all the above arguments apply to Cn, for n ≥ n0. In particular, defining bn and

Π
′ ′

n as above, we get that, for n ≥ n0, NE(X) is contained in the intersection of half-

spaces determined by Π and by Π
′ ′

n . Since Π ′ ′

n → Π as R+[Cn] → R+a, and ρX = 3,

we get a contradiction.

Case (b2) Every ray in Σ is birational.

Let η be any ray in Σ. By Proposition 1.3, for every non-trivial fiber of its associ-

ated contraction ϕη we have dim F ≥ ℓ(η) ≥ m + 1. Recalling that, by Lemma 4.2,

we can assume dim F ≤ m + 1, we have dim F = m + 1 = ℓ(η). This also implies

that if Cη is a minimal degree curve whose numerical class is contained in η, we have

H ·Cη = 1.

By Proposition 1.3, ϕη is a divisorial contraction, and hence, by [2, Theorem 4.1

(iii)], is the blow-up of a smooth variety along a smooth center T of dimension (n −
1) − (m + 1) ≤ m − 1.

Let E be the exceptional divisor of ϕη . By Lemma 2.4(ii), there exists an irreducible

XC ⊂ ChLocus(V)C with dim XC ≥ fV + 2.

By Lemma 1.10 D̂ has non positive intersection number with every curve in XC .
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If E ∩XC 6= ∅, then there is a fiber F of ϕη meeting XC . Counting dimensions, we

find that dim(F ∩ XC ) ≥ 1, which is a contradiction as D̂ · η > 0. So E ∩ XC = ∅,

whence E ·V = 0.

Therefore E contains rc(V)-equivalence classes and dim T ≥ fV , since ϕη is finite-

to-one on rc(V)-equivalence classes. Recalling that fV ≥ m − 1 we derive dim T =

fV = m − 1.

Assume that dimΣ ≥ 2, and let E1, E2 be the exceptional loci of two different

extremal rays η1, η2 in Σ. Since the fibers of the contractions ϕη1
and ϕη2

have di-

mension m + 1 and 2(m + 1) > dim X, we have that E1 ∩ E2 = ∅.

Therefore the contraction σ : X → X ′ of the face Σ verifies the assumptions of

Lemma 3.1, hence there exists an ample line bundle H ′ on X ′ and an unsplit domi-

nating family V ′ on X ′ such that H ′ ·V ′
= 1 and −KX ′ ·V ′

= −KX ·V ≥ dim X ′
−1

2
.

Denote by fV ′ the dimension of the general rc(V ′)-equivalence class. Since a gen-

eral fiber of the rc(V ′)-fibration contains Locus(V ′

x ′), we have

fV ′ ≥ dim Locus(V ′

x ′) − 1 ≥ m − 1.

Consider the adjoint divisor KX ′ + mH ′. If it is nef, or an extremal ray ϑ ′ such

that (KX ′ + mH ′) · ϑ ′ < 0 has a fiber of dimension greater than or equal to m + 2,

then [V ′] spans an extremal ray by Proposition 4.1 or by Lemma 4.2, so [V ] spans

an extremal ray by Lemma 3.1.

Let us show that the remaining case does not happen.

Assume that there is an extremal ray ϑ ′ such that (KX ′ + mH ′) · ϑ ′ < 0 and every

fiber of the associated contraction has dimension less than or equal to m + 1. In

particular we have H ′ ·ϑ ′
= 1, otherwise we would have ℓ(ϑ ′) ≥ 2m + 1, hence every

non-trivial fiber of the associated contraction would have dimension ≥ 2m > m + 1

by Proposition 1.3. Moreover, we have (KX ′ +(m+1)H ′)·ϑ ′ ≤ 0, since ℓ(ϑ ′) ≥ m+1.

On the other hand, recalling that σ∗H ′
= H +

∑
Ei and that σ∗KX ′ = KX −∑

(m + 1)Ei , we have

σ∗(KX ′ + (m + 1)H ′) = KX + (m + 1)H,

so, by the projection formula, KX ′ + (m + 1)H ′ is ample on X ′, a contradiction.

Corollary 4.4 Let (X,H) be a polarized manifold of dimension at most five, with a

dominating family of rational curves V such that H·V = 1. Then [V ] spans an extremal

ray of NE(X).

5 An Example

In the paper [5], an application of the results about extremality of families of lines

was a relative version of a theorem proved in [18], which was the first step towards a

conjecture of Mukai for Fano manifolds.

This conjecture states that, for a Fano manifold X, denoted by ρX its Picard num-

ber and by rX its index, we have

ρX(rX − 1) ≤ dim X.
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More precisely, in [18, Theorem B] it was proved that, if rX ≥ dim X
2

+ 1, then ρX = 1

unless X ≃ Pdim X/2 × Pdim X/2, while in [5, Theorem 3.1.1] it was proved that a fiber

type contraction ϕ : X → Y supported by KX + mL with m ≥ dim X
2

+ 1 is elementary

unless X ≃ Pdim X/2 × Pdim X/2.

In the last few years some progress has been made towards Mukai’s conjecture; in

particular it was recently proved in [16, Theorem 3] that it holds for a Fano manifold

with (pseudo)index greater than or equal to dim X
3

+ 1.

It is therefore natural to ask if the corresponding relative statement is true, namely,

given a fiber type contraction ϕ : X → Y , corresponding to an extremal face Σ, sup-

ported by KX +mL with m ≥ dim X
3

+1, is it possible to find a bound on the dimension

of Σ?

The answer to this question is negative, as we will show with an example in which

m =
dim X

2
; it follows that [5, Theorem 3.1.1] cannot be improved.

Example 5.1 Let Z be a smooth variety of dimension k + 2; denote by Y the product

Z × Pk and by p1, p2 the projections onto the factors. Let {zi}i=1,...,t be points of Z, and

denote by Fi the fibers of p1 over zi .

Let σ : X → Y be the blow-up of Y along the union of Fi . The canonical bundle of X

is

(5.1) KX = σ∗KY + (k + 1)

t∑

i=1

Ei = σ∗(p∗

1 KZ + p∗

2 KPk ) + (k + 1)

t∑

i=1

Ei .

Denoting by H := (p2 ◦ σ)∗OPk (1) and by L ′ := H −
∑

Ei , we can rewrite formula

(5.1) as

KX + (k + 1)L ′
= σ∗(p∗

1 KZ).

It is easy to check that L ′ is (p1 ◦ σ)-ample. Let A ∈ Pic(Z) be an ample line bundle

such that KZ + (k + 1)A is ample. Then L := L ′ + σ∗(p∗

1 A) is an ample line bundle on

X; moreover, L · l = 1 for a line l in the strict transform of a fiber F of p1 not contained

in the center of σ.

The contraction p1 ◦ σ is supported by KX + (k + 1)L = KX + dim X
2

L and contracts a

face of dimension t + 1.

Remark 5.2 The difference between the relative and the absolute case is given by

the existence of minimal horizontal dominating families of rational curves for proper

morphisms defined on a open subset of a Fano manifold (for the definition and the

references, see [1, Remark 6.4]). Such families do not exist in general in the relative

case.
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539–545.

[9] E. Chierici and G. Occhetta, The cone of curves of Fano varieties of coindex four. Internat. J. Math.
17(2006), no. 10, 1195–1221. http://dx.doi.org/10.1142/S0129167X06003850

[10] O. Debarre, Higher-dimensional algebraic geometry. Universitext, Springer-Verlag, New York, 2001.
[11] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive. In: Algebraic geometry,

Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 167–178.
[12] P. Ionescu, Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc. 99(1986),

no. 3, 457–472. http://dx.doi.org/10.1017/S0305004100064409

[13] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics. J.
Math. Kyoto Univ. 13(1973), 31–47.

[14] J. Kollár, Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete,
32, Springer-Verlag, Berlin, 1996.

[15] C. Novelli and G. Occhetta, Projective manifolds containing a large linear subspace with nef normal
bundle. Michigan Math. J. 60(2011), no. 2.

[16] , Rational curves and bounds on the Picard number of Fano manifolds. Geom. Dedicata
147(2010), 207–217. http://dx.doi.org/10.1007/s10711-009-9452-4

[17] G. Occhetta, A characterization of products of projective spaces. Canad. Math. Bull. 49(2006), no. 2,
270–280. http://dx.doi.org/10.4153/CMB-2006-028-3
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