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Manifolds Covered by Lines and
Extremal Rays

Carla Novelli and Gianluca Occhetta

Abstract. Let X be a smooth complex projective variety, and let H € Pic(X) be an ample line bundle.
Assume that X is covered by rational curves with degree one with respect to H and with anticanonical
degree greater than or equal to (dim X — 1)/2. We prove that there is a covering family of such curves
whose numerical class spans an extremal ray in the cone of curves NE(X).

Introduction

Let X be a smooth complex projective variety that admits a morphism with connected
fibers ¢: X — Z onto a normal variety Z such that the anticanonical bundle —K} is
p-ample, dim X > dim Z, and px = pz + 1 (i.e., an elementary extremal contraction
of fiber type).

It is well known, by fundamental results of Mori theory, that through every point
of X there is a rational curve contracted by . The numerical classes of these curves
lie in an extremal ray of the cone NE(X). By taking a covering family of such curves
one obtains a quasi-unsplit family of rational curves, i.e., a family such that the irre-
ducible components of all the degenerations of curves in the family are numerically
proportional to a curve in the family. It is very natural to ask if the converse is also
true:

Given a covering quasi-unsplit family V' of rational curves, is there an ex-
tremal elementary contraction that contracts all curves in the family or, in
other words, does the numerical class of a curve in the family span an extremal
ray of NE(X)?

As proved in 8] (see also [10] and [14]) there is always a rational fibration, defined
on an open set of X, whose general fibers are proper, which contracts a general curve
in V. More precisely, a general fiber is an equivalence class with respect to the relation
induced by the closure V of the family V' in the Chow scheme of X in the following
way: two points x and y are equivalent if there exists a connected chain of cycles in V
that joins x and y.

By a careful study of this fibration and of its indeterminacy locus, a partial answer
to this question has been given in [[6, Theorem 2]; namely, if the dimension of a gen-
eral equivalence class is greater than or equal to the dimension of the variety minus
three, then the numerical class of a general curve in the family spans an extremal ray
of NE(X).
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Before the results in [[6] a special but very natural situation in which the question
arises was studied in [5]]. In that paper manifolds covered by rational curves of degree
one with respect to an ample line bundle H were considered, and it was proved that
a covering family of such curves (we will call them lines, by abuse) of anticanonical
degree greater than or equal to % spans an extremal ray (see also [4, Theorem
2.4]).

Recently, in [15, Theorem 7.3], the extremality of a covering family V' of lines was
proved under the weaker assumption that the anticanonical degree of such curves,
denoted by abuse of notation by —Kx - V/, is greater than or equal to %.

The goal of this paper is to prove the following theorem.

Theorem  Let (X, H) be a polarized manifold with a dominating family of rational
curves V such thatH -V = 1. If —Kx - V > %, then [V] spans an extremal ray
of NE(X).

The main idea is, as in [[15], to combine the ideas and techniques of [5]], especially
taking into consideration a suitable adjoint divisor Kx + mH and studying its nef-
ness, with those of [6], in particular regarding the existence of special curves in the
indeterminacy locus of the rational fibration associated with V.

1 Background Material

Let X be a smooth projective variety defined over the field of complex numbers. A
contraction p: X — Z is a proper surjective map with connected fibers onto a normal
variety Z.

If the canonical bundle Kx is not nef, then the negative part of the cone NE(X)
of effective 1-cycles is locally polyhedral by the Cone Theorem. By the Contraction
Theorem, it is possible to associate a contraction with each face in this part of the
cone.

Unless otherwise stated, we will reserve the name extremal face for a face contained
in NE(X) N {a € Ni(X) | Kx - a < 0}, and we will call extremal contraction the
contraction of such a face.

An extremal contraction associated with an extremal face of dimension one, i.e.,
with an extremal ray, is called an elementary contraction; an extremal ray 7 is called
numerically effective, and the associated contraction is said to be of fiber type, if
dim Z < dim X; otherwise the ray is called non nef and the contraction is birational.

If the codimension of the exceptional locus of an elementary birational contrac-
tion is equal to one, the ray and the contraction are called divisorial, otherwise they
are called small.

A Cartier divisor which is the pullback of an ample divisor A on Z is called a
supporting divisor of the contraction .

If the anticanonical bundle of X is ample, X is called a Fano manifold. For a Fano
manifold, the index, denoted by rx, is defined as the largest natural number r such
that —Kx = rH for some (ample) divisor H on X.

Throughout the paper, unless otherwise stated, we will use the word curve to de-
note an irreducible curve.
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Definition 1.1 A family of rational curves is an irreducible component V. C
Ratcurves”(X) (see [14}, Definition 2.11]). Given a rational curve we will call a family
of deformations of that curve any irreducible component of Ratcurves”(X) containing
the point parametrizing that curve. We will say that V is unsplit if it is proper. We
define Locus(V) to be the set of points of X through which there is a curve among
those parametrized by V; we say that V is a covering family if Locus(V') = X and that
V is a dominating family if Locus(V') = X.

We denote by V, the subscheme of V parametrizing rational curves passing
through x € Locus(V') and by Locus(V,) the set of points of X through which there
is a curve among those parametrized by V.

By abuse of notation, given a line bundle L € Pic(X), we will denote by L - V' the
intersection number L - Cy, with Cy being any curve among those parametrized by
V.

Proposition 1.2 ([[14, IV.2.6]) Let V be an unsplit family of rational curves on X.
Then

(i) dimLocus(V) + dim Locus(Vy) > dimX — Ky -V — 1;

(ii) every irreducible component of Locus(Vy) has dimension > —Kx -V — 1.

This last proposition, in case V is the unsplit family of deformations of a rational
curve of minimal anticanonical degree in an extremal face of NE(X), gives the fiber
locus inequality:

Proposition 1.3 ([12, Theorem 0.4], [19, Theorem 1.1]) Let  be a Fano—Mori con-
traction of X. Denote by E the exceptional locus of ¢ and by F an irreducible component
of a non-trivial fiber of p. Then

dimE+dimF > dimX + /¢ — 1,

where £ := min{—Kyx - C | C is a rational curve in F}. If ¢ is the contraction of an
extremal ray T, then (1) := { is called the length of the ray.

Definition 1.4 We define a Chow family of rational curves W to be an irreducible
component of Chow(X) parametrizing rational and connected 1-cycles.

We define Locus(W) to be the set of points of X through which there is a cycle
among those parametrized by W; notice that Locus(W) is a closed subset of X ([[14}
11.2.3]). We say that W is a covering family if Locus(W) = X.

Definition 1.5 IfV isa family of rational curves, the closure of the image of V in
Chow(X), denoted by V, is called the Chow family associated with V.

Remark 1.6 1fV is proper, i.e., if the family is unsplit, then V corresponds to the
normalization of the associated Chow family V.

Definition 1.7 LetV be the Chow family associated with a family of rational curves

V. We say that V (and also V) is quasi-unsplit if every component of any reducible
cycle in V is numerically proportional to V.
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Definition 1.8 Let W be a Chow family of rational curves on X and Z C X. We
define Locus(W) to be the set of points x € X such that there exists a cycle I among
those parametrized by WwithI'NZ # @andx € .

We define ChLocus(W) to be the set of points x € X such that there exists a chain
of cycles among those parametrized by W connecting x and Z. Notice that, a priori,
ChLocus(W) is a countable union of closed subsets of X.

Notation If T C X, we will denote by N, (T,X) C N;(X) the vector subspace gen-
erated by numerical classes of curves in T; we will denote by NE (T, X) C NE(X) the
subcone generated by numerical classes of curves in T.

The notation (- - - ) will denote a linear subspace, while the notation (- - - ). will
denote a subcone.

Lemma 1.9 ([14} Proposition 1V.3.13.3], [, Lemma 4.1]) Let T C X be a closed
subset, and let W be a Chow family of rational curves. Then every curve contained
in ChLocus(W)y is numerically equivalent to a linear combination with rational co-
efficients of a curve contained in T and irreducible components of cycles among those
parametrized by W which intersect T.

Lemma 1.10 (Cf. [5, Proof of Lemma 1.4.5], [I7, Lemma 1]) Let T C X be a
closed subset, and let V be a quasi-unsplit family of rational curves. Then every curve
contained in ChLocus(V)r is numerically equivalent to a linear combination with ra-
tional coefficients A\Ct + uCy, where Ct is a curve in T, Cy is a curve among those
parametrized by V and A > 0.

Corollary 1.11 (Cf. [9} Corollary 2.2 and Remark 2.4]) Let 3 be an extremal face
of NE(X) and denote by F a fiber of the contraction associated with 3. Let V be a
quasi-unsplit family numerically independent from curves whose numerical class is in
3. Then

NE (ChLocus(V)g, X) = (X, [V]).,

i.e., the numerical class in X of a curve in ChLocus(V)r is in the subcone of NE(X)
generated by ¥ and [V].

Lemma 1.12 Let D be an effective divisor on X, and let L be a nef divisor. If (L+ D)|p
is nef, then L + D is nef.

Proof Assume that y is an effective curve on X such that (L + D) - v < 0. By the
nefness of L we have D-y < 0, hencey C D. But L+Dis nefon D, a contradiction. W

2 Rationally Connected Fibrations

Let X be a smooth complex projective variety, and let W be a covering Chow family
of rational curves.

Definition 2.1 The family W defines a relation of rational connectedness with re-
spect to W, which we shall call rc(W)-relation for short, in the following way: x and
y are in rc(W)-relation if there exists a chain of cycles among those parametrized by
‘W that joins x and y.
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We can associate a fibration with the rc(W)-relation, at least on an open subset
(70, (14, TV.4.16]); we will call it 7¢(W)-fibration.

In the notation of [6], by [10, Theorem 5.9] there exists a closed irreducible sub-
set of Chow(X) such that, denoting by Y its normalization and by Z C Y x X the
restriction of the universal family, we have a commutative diagram

(2.1) 7 —— X

where p is the projection onto the first factor and e is a birational morphism whose
exceptional locus E does not dominate Y. Moreover, a general fiber of g is irreducible
and is an rc(W)-equivalence class.

Let B be the image of E in X; note that dim B < dim X — 2, as X is smooth.

If we consider a (covering) Chow family V, associated with a quasi-unsplit domi-
nating family V, then by [[6} Proposition 1, (ii)] B is the union of all rc(V)-equivalence
classes of dimension greater than dim X — dimY.

Moreover, we have the following lemma.

Lemma 2.2 LetV be a quasi-unsplit dominating family of rational curves on a smooth

complex projective variety X. Let B be the indeterminacy locus of the rc(V)-fibration

q: X -=» Y; let D be a very ample divisor on q(X \ B), and let D := q—'D. Then

i) D-V=0;

(i) ifC ¢ Bisa curve not numerically proportional to [V], then D - C > 0;

(iii) if D - C > 0 for every curve C C B not numerically proportional to [V], then [V']
spans an extremal ray of NE(X).

Proof See [6} Proof of Proposition 1]. [ |

Corollary 2.3 ([l6} Proposition 3]) Let V be a quasi-unsplit dominating family of
rational curves on a smooth complex projective variety X; denote by B the indeterminacy
locus of the rc(V)-fibration and by fy the dimension of the general rc(V)-equivalence
class.

If [V'] does not span an extremal ray of NE(X), then B is not empty. In particular,
there exist rc(V)-equivalence classes of dimension at least fy + 1.

We now give a lower bound on the dimension of ChLocus(V)s, depending on the
position of the subvariety S with respect to the indeterminacy locus of the rc(V)-fi-
bration.

Lemma 2.4 LetV be a quasi-unsplit dominating family of rational curves on a smooth
complex projective variety X; denote by B the indeterminacy locus of the rc(V)-fibration
and by fy the dimension of the general rc('V)-equivalence class. Let S C X be an ir-
reducible subvariety such that [V] & NE (S, X). Then there exists an irreducible X
contained in ChLocus(V)g such that

https://doi.org/10.4153/CMB-2011-119-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-119-7

804 C. Novelli and G. Occhetta

(i) S ¢ B, thendim Xg > dim S + fy;
(ii) #fS C B, then dimXg > dim S+ fy + 1.

Moreover, Xs is not rc('V)-connected.

Proof We refer to diagram (2.1). Given any T C Z we will set Z7 := p~'(p(T)). Let
S’ C Z be an irreducible component of e~ !(S) that dominates S via e.
By our assumptions on NE (S, X) we have that S’ meets any fiber of p| z,, in points
s0, up to replace Zss with 8’ x sy Zss, we can assume that S’ is a section of p|z,, .
Let Z’ be an irreducible component of Zg/ that contains S’. We have

(2.2) dimZz’ > dim p(S') + fy = dim$S’ + fy > dim S+ fy

Moreover, notice that S = e(S’) C e(Z’) C e(Zs:) C ChLocus(V)s.

Assume that S ¢ B. Then Z’ ¢ E, hence the map e|;: Z' — X is generically
finite. Therefore, in view of (2.2)), dime(Z’) = dim Z’ > dim S+ f,; moreover, since
S C e(Z’), we have that e(Z’) is not rc(V)-connected.

Assume now that S C B. Assertion (ii) will follow once we prove that the general
fiber G of e|; has dimension strictly smaller than the general fiber of e|s: for at least
one irreducible component Z of Zs, that dominates p(S’). In fact, recalling also (Z.2)),
in this case we will have

dime(Z) = dimZ — dim G > (dim S’ + fy) — (dim S’ — dim S) = fy + dim S.

Claim Let G be an irreducible component of a fiber 0fe|ZS, ;letz € G be any point,
and let z’ := p~!(p(2z)) NS’ be the intersection of the fiber of p containing z with S’;
then there exists an irreducible component F of the fiber F’ of e|s: containing z’ such
that p(G) C p(F).

To prove the claim, recall that since e(Z;) C ChLocus(V),(,), the image via e
of any curve in Zg N S’, which is irreducible, being a section over p(G), must be
a point, otherwise it would be a curve contained in S N ChLocus(V),(,), which is a
contradiction, since curves in S are numerically independent from [V'].

Therefore, Zg N S’ is contained in a fiber F’ of e|s:. To prove the claim we take as
F the irreducible component of F’ containing Zg N S’.

Let S! C S’ be the proper closed subset on which e|s is not equidimensional, and
let $* C S’ be the proper closed subset of points in which the fiber of e|s- is not locally
irreducible. Recalling that p|s is a finite map we see that p (S' US?) is a proper closed
subset of p(S’).

Let y € p(S8) \ p(S' U S?) be a general point. In particular, there is only one
irreducible component F of the fiber F’ of e|s/ passing through z' = p~!(y) NS’ and
dimF = dim S’ — dim S.

Notice that dim e(Zr) > fy, otherwise a one parameter family of fibers of p meet-
ing F would have the same image in X (Cf. [6, End of proof of Proposition 1], where
e(Zr) = Locus(Ver))). B B

This implies that for an irreducible component Zr of Zr we have dim e(Zp) > fy.
Taking as Z an irreducible component of Zs/ containing Zr we have that, for every
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point z € p~!(y) N Z and any irreducible component G of the fiber of e|; passing
through z we have p(G) C p(F), hence dim G < dim F = dim §’ — dim S. The same
inequality then holds for the general fiber by semicontinuity of the local dimension.

Noticing that S is contained in ChLocuse@ ('V), the last assertion follows. [ |

Remark 2.5 Both the bounds in Lemma[2.4]are sharp. An example for the second
one is given in [6, Example 2]. In that example B ~ P? x Pl taking as S a fiber of the
projection onto P?, we have equality in (ii).

3 Blowing-down

In this section we consider the following situation, which will show up in the proof
of Theorem[4.3]

Lemma 3.1 Let (X, H) be a polarized manifold with a dominating family of rational
curves V such that H - V. = 1. Denote by fy the dimension of the general rc(V)-
equivalence class and assume that there exists an extremal face 3 in NE(X) whose asso-
ciated contraction o: X — X' is a smooth blow-up along a disjoint union of subvarieties
T; of dimension < fy such that E; -V = 0 for every exceptional divisor E; and H -I; = 1
if l; is a line in a fiber of o. Finally denote by V' a family of deformation of o(C), with
C a general curve parametrized by V. Then

(i) —Kx -V'=-Kx-V;

(ii) there exists an ample line bundle H' on X' such that H' - V' = 1;

(iii) if C' is a curve parametrized by V' such that T; N C’ # &, then C' C Tj;

(iv) px' > 1;

(v) if[V'] spans an extremal ray of NE(X'), then [V] spans an extremal ray of NE(X).

Proof It is enough to prove the statement in the case where dim¥ = 1,ie,0: X —
X' is the blow-up of X' along a smooth subvariety T associated with the extremal ray
3. In fact, if dim ¥ > 1, the contraction of ¥ factors through elementary contrac-
tions, each one satisfying the assumptions in the statement.

Denote by E the exceptional locus of ¢. Since E - V = 0, the first assertion in the
statement follows from the canonical bundle formula for blow-ups.

Moreover, the fact that E - V = 0 also implies that any rc(V)-equivalence class
meeting E is actually contained in E. Therefore, if F is a non-trivial fiber of o, then
ChLocus(V)r C E. By Lemmal[2.4]

dim ChLocus(V)r > fy + dimF > dimX — 1,

hence E = ChLocus(V)r and dim T = fy . In particular, applying Corollary [L1T]we
get that NE (E, X) = ([V], X)..

The line bundle (H + E)|g is nef, and it is trivial only on X, since (H+E) - ¥ =0
and (H+E)-V = 1. Then H+E is nef by Lemma[[.12] Notice also that H +E is trivial
only on X. Indeed, let y be an effective curve on X such that (H + E) - v = 0. Due
to the ampleness of H we have E - v < 0, hence v C E. This implies that [y] € X.
Therefore H + E = o*H’, with H’ an ample line bundle on X’. By the projection
formula H' - V/ = 1, hence part (ii) in the statement is proved.
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Now, let C’ be a curve parametrized by V' meeting T and assume by contradiction
that C’ is not contained in T; denote by C’ its strict transform. Then

1=H -C'=0*H'-C'=(H+E)-C' >2,

which is a contradiction. It follows that every curve parametrized by V' that meets T
is contained in it, so we get part (iii) in the statement.

As to part (iv), assume by contradiction that px, = 1. This implies that X’ is
rc(V’)-connected, but this is impossible as, in view of part (iii), we cannot join points
of T and points outside of T with curves parametrized by V.

Finally, to prove part (v) assume that [V’] spans an extremal ray of X', and let B
be the indeterminacy locus of the rc('V)-fibration. We claim that EN B = @.

Assume by contradiction that this is not the case. Then E meets (and hence con-
tains) an rc(V)-equivalence class G of dimension dim G > fi; + 1. Take a fiber F of
o meeting G. Then dim F 4+ dim G > dim E. On the other hand, dim(F N G) = 0 as
[V] & 3. So we get a contradiction.

Let A be a supporting divisor of the contraction associated with [V’]. The pull-
back o*A defines a two-dimensional face I of NE(X) containing ¥ and [V]. Let D
be as in Lemma[2.2} by the same lemma D-¥>0andD-V =0.

Assume that II is not spanned by ¥ and [V]; in this case there exists a class ¢ €
NE(X) belonging to IT such that E- ¢ > 0 and D - ¢ < 0.

Let {C,} be a sequence of effective one cycles such that the limit of R, [C,] is R;c.
By continuity, for some ny we have E - C,, > 0 and D- C, < 0 for n > ng, hence
C, C B,and ENC, # @ for n > ny, contradicting EN B = &. [ |

4 Main Theorem

First of all we consider polarized manifolds (X, H) with a quasi-unsplit dominating
family of rational curves V proving that if, for m large enough, the adjoint divisor
Kx + mH defines an extremal face containing [V'], then [V'] spans an extremal ray of
X.

Proposition 4.1 Let (X, H) be a polarized manifold that admits a quasi-unsplit dom-
inating family of rational curves V'; denote by fy the dimension of a general rc(V)-equi-
valence class.

If, for some integer m such that m+ fy > dim X — 3, the divisor Kx + mH is nef and
it is trivial on [V'], then (V] spans an extremal ray of NE(X).

Proof Assume by contradiction that [V] does not span an extremal ray in NE(X).
This implies that Kx + mH defines an extremal face ¥ of dimension at least two,
containing [V]. By [I5, Lemma 7.2] there exists an extremal ray ¥ € 3 whose excep-
tional locus is contained in the indeterminacy locus B of the rc(V)-fibration. Since
(Kx + mH) - ¥ = 0, the length £(1) is greater than or equal to m.
Let F be a non-trivial fiber of the contraction associated with 1. Since this con-
traction is small, being dimB < dim X — 2, then dim F > m + 1 by Proposition
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By Lemma[2.4{(ii), the dimension of ChLocus(V)g is
dim ChLocus(V)r > dimF + fy + 1.

As the rc(V)-equivalence classes are either contained in B or have empty intersection
with it, ChLocus(V)r C B. Therefore we get

dimX — 2 > dim B > dim ChLocus(V)r > fy + m+2 > dimX — 1,

which is a contradiction. ]
As the last preparatory step, we consider the following special case.

Lemma 4.2 LetV be a quasi-unsplit dominating family of rational curves on a smooth
complex projective variety X. Denote by fy the dimension of a general rc(V)-equivalence
class. Assume that there exists an extremal ray 1, independent from [V'], whose associ-
ated contraction has a fiber F such that dim F+ fy > dim X. Then dim F+ fy = dim X
and NE(X) = ([V],9).. In particular py = 2.

Proof By Lemmal[2.4(i) we have
dim X > dim ChLocus(V)r > fy + dimF,

hence dim F + fy = dim X and ChLocus(V)r = X, so the assertion follows by Corol-
lary ]

Theorem 4.3 Let (X, H) be a polarized manifold with a dominating family of rational
curves V such thatH -V = 1. If —Kx - V > %, then [V] spans an extremal ray
of NE(X).

Proof Let B be the indeterminacy locus of the rc(V)-fibration q: X --» Y;let D be
a very ample divisor on q(X \ B), and let D:= q~'D. Denote by m the anticanonical
degree of V and by fi; the dimension of a general rc(V)-equivalence class. Notice
that, since V is a dominating family, we have m > 2.

By Proposition[[.2]dim Locus(V,) > —Kx -V — 1 = m — 1. Since a general fiber
of the rc('V)-fibration contains Locus(V,) for every point x in it, we have f, > m—1.

If Kx + mH is nef, then the assertion follows by Proposition 4.1} therefore, we can
assume that Kx + mH is not nef.

Let ¢ be an extremal ray such that (Kx + mH) - ¥ < 0, and let oy be the associated
contraction. Notice that ¥ has length ¢(¢) > m + 1, hence every non-trivial fiber of
¢y has dimension > m by Proposition[L.3] On the other hand, in view of Lemmal[4.2]
we can assume that all fibers of ¢y have dimension < m + 1.

In particular this implies that we have H - Cy = 1, where Cy is a minimal degree
curve whose numerical class belongs to ). Indeed, if this were not the case, we would
have ¢(9) > 2m + 1, hence every non-trivial fiber of ¢y would have dimension >
2m > m + 1 by Proposition[L3]and the fact that m > 2.

If the Picard number of X is one, the theorem is clearly true, so we can assume
that px > 2. Now we split up the proof into two cases, according to the value of px.
First we consider the case px = 2 and then the general one.
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Case (a) px = 2.
The proof is based on different arguments, depending on the dimension of the
fibers of the contraction associated with the extremal ray o).

Case (al) The contraction ¢y admits an (m + 1)-dimensional fiber F.
Consider Xy := ChLocus(V)r. We have, by Corollary [L11] that NE (Xp, X) =
([V],9), and, by Lemma[2.4] that

dimXr >dimF+ fy > (m+1)+(m—1) > dimX — 1.

If Xp = X, then the statement is proved. So we can assume that an irreducible
component Xz of X is a divisor and thus that f;y = m — 1. Notice that Xr - V = 0,
otherwise we would have X = X.

Consider now the intersection number of Xy with curves whose numerical class
belongs to 9. Since px = 2 and Xp - V = 0, we cannot also have Xr - 9 = 0.

Let us show that we cannot have Xr - 9 < 0 as well.

Assume by contradiction that this is the case. Then Exc(d)) C XF, so py is diviso-
rial by Proposition By the same proposition, recalling that we are assuming that
all the fibers of ¢y have dimension < m + 1, every non-trivial fiber has dimension
m+ 1.

Then ¢y is the blow-up of a smooth variety X’ along a smooth center T by [2}
Theorem 4.1 (iii)]. The dimension of the center is

dmT=(n—-1)—(m+1) <m—1= fy.

We can thus apply Lemma[3.1(iv), and we get px = pxs + 1 > 2, reaching a contra-
diction.

Therefore Xp - 1 > 0, hence (X) |x, is nef and thus, by Lemma[L.12] Xp is nef. As
Xr -V = 0and px = 2, Xr is the supporting divisor of an elementary contraction of
X whose associated extremal ray is spanned by [V].

Case (a2) The contraction ¢y is equidimensional with m-dimensional fibers.

By Proposition[L3] ¢y is of fiber type and £(1}) = m + 1. Hence, by [11, Lemma
2.12], X is a projective bundle over a smooth variety Y, i.e, X = Py(E), where
&= (@ﬂ)*H.

Notice that Y has Picard number one and is covered by rational curves (the images
of the curves parametrized by V'), therefore Y is a Fano manifold.

By the canonical bundle formula for projective bundles we have

Kx + (m+1)H = py(Ky + det &).

In particular, if Cy is a curve among those parametrized by V, we can compute, by
the projection formula,

(Ky +det&) - (py)«(Cv) = (Kx+(m+1)H) - Cy = 1.

It follows that (Ky + det &) - ¢y(Cy) = 1 and that Ky + det € is the ample genera-
tor of Pic(Y). The ampleness of € implies that det € - py(Cy) > m + 1; therefore,
—Ky - py(Cy) > m, hence the index ry of Y is greater than or equal to m.
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If ry = m and I denotes a rational curve of minimal degree in Y, then det€ - I =
m+1; moreover, the splitting type of €, which is ample and of rank 1+ 1, on rational
curves of minimal degree is uniform of type (1,. .., 1).

We can thus apply [3) Proposition 1.2], so we obtain that X ~ P™ x Y. It follows
that the curves of V' are contained in the fibers of the first projection and that [V]
spans an extremal ray.

Therefore we are left with v > m + 1. Recalling that dimY = dimX — m <
m + 1, by the Kobayashi—Ochiai Theorem [[I3] we get that Y is a projective space or a
hyperquadric.

Assume by contradiction that [V'] does not span an extremal ray of X.

By Lemma 2.2((iii) there exists a curve C C B, whose numerical class is not pro-

ortional to [V'], such that D-C < 0. Actually, since px = 2 and DV = 0, we have
D-C <o.

By Lemma[2.4{(ii), there exists Xc C ChLocus(V)c, which is not rc(V)-connected
such thatdimX¢ > fy +dimC+ 1> m+ L.

By Lemma D has non positive intersection number with every curve in X¢
and it is trivial only on curves that are numerically proportional to [V'].

Since D - ¥ > 0, we have that ¢y does not contract curves in X¢, hence dimY >
dimXc >m+1landsodimY = dimXc = m + 1.

Since X¢ is not rc(V)-connected, for every point ¢ of X¢, the intersection X, of the
rc(V)-equivalence class containing ¢ with X has dimension equal to . In particular,
Xc is the union of a one parameter family of rc(V)-connected subvarieties X,.

We claim that there exists a line [ in Y that is not contained in ¢y(X,) for any
¢ € C. Notice that, since ¢y does not contract curves in X¢, through a general point
y in'Y there is a finite number of such subvarieties.

IfY ~ P! aline joining y with a point outside the union of these subvarieties
has the required property.

Assume now that Y ~ Q™*!. For any y € Q™! the locus of the lines through y
is a quadric cone ()" with vertex y. Therefore, if every line through y is contained
in @y (X,) for some ¢ € C, then @y is an irreducible component of py(X,). Since X,
moves in a one-dimensional family, for the general point y € Q™*!, the general line
through y has the required property.

The splitting type of € on this line is one of the following: (2,1,...,1) if Y ~
Q™! and either (3,1,...,1) or (2,2,1,...,1)if Y >~ P"™*! Recalling that m > 2 we
have that, among the summands of &, there is at least one Op: (1).

Consider P;(€|;) whose cone of curves is generated by the class of a line in a fiber
of the projection onto / and the class of a minimal section Cy. By the discussion above
we have that H - Cy = 1. Moreover, ©}(Ky +det &) - Cy = 1, hence [Cy] = [V]. In
particular Dis nefon IP,(& 1.

Consider an irreducible curve in P;(€|;) N X¢. By our choice of ], this curve is not
contained in a rc(V)-equivalence class contained in X¢, so it is negative with respect
to ﬁ, a contradiction. The case px = 2 is thus completed.

Case (b) px > 2.
Notice that, in view of Corollary[2.3] we can restrict to the case B # &; moreover,
by Lemma 2.2((iii), we can also assume the existence of a curve C C B such that [C]
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is not proportional to [V] and D - C < 0.

We claim that Ky + (m + 1)H is nef.

Assume by contradiction that Ky + (m + 1)H is not nef. Let 7 be a ray such that
(Kx + (m + 1)H) - 7 < 0; denote by C, a rational curve of minimal anticanonical
degree in 7 and by ¢, the contraction associated with 7.

Notice that 7 has length £(7) > m + 2, hence every non-trivial fiber of ¢, has
dimension > m + 1 by Proposition[L.3]

On the other hand ¢, cannot have fibers of dimension > m + 1, otherwise, by
Lemma [£2] we would have px = 2. Therefore every non-trivial fiber of ¢, has
dimension m + 1.

In view of Proposition[L.3] we thus get that ¢, is of fiber type and that the length
of 7is £(7) = m+2; this last fact gives H-C, = 1. Let us consider W, to be a minimal
degree covering family of curves whose numerical class belongs to 7.

Since B is not empty, there are rc(V)-equivalence classes of dimension > fi, +1 >
m; let G be one of these classes. Notice that since ¢, is equidimensional with (m + 1)-
dimensional fibers, we have fiy = m + 1. By Lemma[2.4{i) we have

dim ChLocus(W; )¢ > dim G+ fiy =2m+1 > dim X,

so by Lemma we deduce px = 2, a contradiction that proves the nefness of
Kx+ (m+1)H.

Recall now that the extremal ray ¢ that we fixed at the beginning of the proof has
length ¢(99) > m + 1 and is generated by a curve Cy such that H - 9 = 1, therefore
(Kx + (m+1)H) - ¥ = 0and Kx + (m + 1)H is not ample.

Let 3 be the extremal face contracted by Kx + (m + 1)H. We now consider two
cases separately, depending on the existence in X of a fiber type extremal ray.

Case (b1) There exists a fiber type extremal ray g in .

Let ¢, be the contraction associated with g, and denote by W, a minimal degree
covering family of curves whose numerical class belongs to o. By Lemmal2.4(ii), there
exists an irreducible X¢ C ChLocus(V)¢ such that dim X¢ > fir + 2.

According to Lemma[L.T0} every curve in X¢ can be written as «[C] + 5[V] with
«a > 0; in particular, since D-V=0 by Lemma[2.2] it follows that Dis not positive on
any curve contained in X¢. By the same lemma ﬁ-WQ > 0, hence [W,] &€ NE (X¢, X).
Therefore, Lemma[2.4i) gives

dim ChLocus(W,)x. > dimXc + fw, > fv +2+m > dim X,

where fiy, is the dimension of the general rc(W,)-equivalence class.
Therefore, by applying Lemmal[L.10 twice, we get that the class of every curve in X
can be written as

(4.1) A[C] + BIV]) + u[W,]
with o, A > 0 and «[C] + B[V] € NE (X, X).

This has some very important consequences. First of all, since we are assuming
px > 2, this implies that px = 3; in particular, [C] is not contained in the plane II
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in N;(X) spanned by [W,] and [V']. Moreover, the intersection of IT with NE(X) is a
face of NE(X).

We have to prove that IINNE(X) = ([V], [W,]).. If this is not the case, then there
exists a class a such that IT N NE(X) = (a, [W,]), and D-a<0.

Denote by b € N;(X) a class, not proportional to [V], lying in the intersection
of ONE(X) with the plane I’ = N;(X¢, X) and by II" the plane spanned by [W,]
and b.

Formula (&), traslated in geometric terms, says that NE(X) is contained in the
intersection of half-spaces determined by IT and by II"/ as in the figure below, which
shows a cross-section of NE(X).

Let {C,} be a sequence of effective one cycles such that the limit of R, [C,] is Ra.
By continuity, for some 7y we have D-C, < 0forn > ngy hence C, C Bforn > 1o,
and all the above arguments apply to C,, for n > ny. In particular, defining b, and
I1)/ as above, we get that, for n > ny, NE(X) is contained in the intersection of half-
spaces determined by IT and by IT). Since IT)/ — IT as R, [C,] — R;a, and px = 3,
we get a contradiction.

Case (b2) Every ray in X is birational.

Let ) be any ray in X.. By Proposition[I.3] for every non-trivial fiber of its associ-
ated contraction ¢, we have dim F > #() > m + 1. Recalling that, by Lemma[4.7]
we can assume dimF < m + 1, we have dimF = m + 1 = {(n). This also implies
that if C,, is a minimal degree curve whose numerical class is contained in 77, we have
H-C,=1.

By Proposition [[3] ¢, is a divisorial contraction, and hence, by [2} Theorem 4.1
(iii)], is the blow-up of a smooth variety along a smooth center T of dimension (1 —
H—(m+1)<m-—1.

Let E be the exceptional divisor of ¢,. By Lemma[.4((ii), there exists an irreducible
Xc C ChLocus(V)¢ with dim X¢ > fy + 2.

By Lemmal[L[.I0/ D has non positive intersection number with every curve in Xc.
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If ENXc # @, then there is a fiber F of ¢, meeting Xc. Counting dimensions, we
find that dim(F N X¢) > 1, which is a contradiction as D- n>0.SOENXc =2,
whence E-V = 0.

Therefore E contains rc(V)-equivalence classes and dim T > fy, since ¢, is finite-
to-one on rc(V)-equivalence classes. Recalling that fy > m — 1 we derive dim T =
fV =m— 1.

Assume that dim Y > 2, and let Ej, E, be the exceptional loci of two different
extremal rays 7,7, in X. Since the fibers of the contractions ,, and ¢,, have di-
mension m + 1 and 2(m + 1) > dim X, we have that E; N E, = @.

Therefore the contraction o: X — X’ of the face X verifies the assumptions of
Lemma 3] hence there exists an ample line bundle H' on X’ and an unsplit domi-
nating family V' on X’ such that H' - V' = 1and — Ky, - V' = —Kx -V > dim%/*l.

Denote by fy/ the dimension of the general rc(V’)-equivalence class. Since a gen-
eral fiber of the rc(V’)-fibration contains Locus(V, ), we have

fvr > dimLocus(V)) —1>m— 1.

Consider the adjoint divisor Kx- + mH’. If it is nef, or an extremal ray ¥’ such
that (Kx/ + mH') - 9’ < 0 has a fiber of dimension greater than or equal to m + 2,
then [V’] spans an extremal ray by Proposition or by Lemma so [V] spans
an extremal ray by Lemma[3.1}

Let us show that the remaining case does not happen.

Assume that there is an extremal ray ¥’ such that (Kx, + mH’) - 9’ < 0 and every
fiber of the associated contraction has dimension less than or equal to m + 1. In
particular we have H' -}’ = 1, otherwise we would have ¢(¢') > 2m+ 1, hence every
non-trivial fiber of the associated contraction would have dimension > 2m > m + 1
by Proposition[T.3l Moreover, we have (Kx:+(m+1)H')-9’ < 0, since £(¢') > m+1.

On the other hand, recalling that c*H’ = H + > E; and that 0*Kyx» = Kx —
> (m+ 1)E;, we have

oc*(Kx: + (imm+ 1)H") = Kx + (m+ 1)H,

s0, by the projection formula, Kx+ + (m + 1)H’ is ample on X’, a contradiction. M

Corollary 4.4 Let (X, H) be a polarized manifold of dimension at most five, with a
dominating family of rational curves V such that H-V = 1. Then [V'] spans an extremal

ray of NE(X).

5 An Example

In the paper [5], an application of the results about extremality of families of lines
was a relative version of a theorem proved in [[18], which was the first step towards a
conjecture of Mukai for Fano manifolds.

This conjecture states that, for a Fano manifold X, denoted by pyx its Picard num-
ber and by ry its index, we have

px(ry — 1) < dim X.
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More precisely, in [18, Theorem B] it was proved that, if ry > dimTX +1,then px =1
unless X ~ PdimX/2 5 pdimX/2 \hile in [5 Theorem 3.1.1] it was proved that a fiber
type contraction ¢: X — Y supported by Kx + mL with m > d‘mX + 1 is elementary

unless X ~ PdimX/2 o pdimX/2

In the last few years some progress has been made towards Mukai’s conjecture; in
particular it was recently proved in [16, Theorem 3] that it holds for a Fano manifold
with (pseudo)index greater than or equal to d‘mx + 1.

It is therefore natural to ask if the correspondlng relative statement is true, namely,
given a fiber type contraction ¢: X — Y, corresponding to an extremal face ¥, sup-
ported by Kx +mL with m > C“'“TX +1, is it possible to find a bound on the dimension
of 332

The answer to this question is negative, as we will show with an example in which

m= d”“X ; it follows that [5, Theorem 3.1.1] cannot be improved.

Example 5.1 LetZbea smooth variety of dimension k + 2; denote by Y the product
denote by F; the fibers of py overz..

Leto: X — Y be the blow-up of Y along the union of F;. The canonical bundle of X
is

t t
(5.1) Ky =0"Ky + (k+1)> E = 0" (piKz + p3Kp) + (k+1) > _E;.

i=1 i=1

Denoting by H := (p, 0 0)*Op(1) and by L' := H — 3 E;, we can rewrite formula
as
Kx+ (k+ 1L = o*(piK2).

It is easy to check that L' is (py o o)-ample. Let A € Pic(Z) be an ample line bundle
such that Kz + (k + 1)A is ample. Then L :== L’ + o*(p}A) is an ample line bundle on
X; moreover, L - | = 1 for a line | in the strict transform of a fiber F of py not contained
in the center of o.

The contraction p; o o is supported by Kx + (k+ 1)L = Kx + di%XL and contracts a
face of dimension t + 1.

Remark 5.2 The difference between the relative and the absolute case is given by
the existence of minimal horizontal dominating families of rational curves for proper
morphisms defined on a open subset of a Fano manifold (for the definition and the
references, see [[1, Remark 6.4]). Such families do not exist in general in the relative
case.
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