Canad. Math. Bull. Vol. **55** (4), 2012 pp. 799–814 http://dx.doi.org/10.4153/CMB-2011-119-7 © Canadian Mathematical Society 2011

Manifolds Covered by Lines and Extremal Rays

Carla Novelli and Gianluca Occhetta

Abstract. Let *X* be a smooth complex projective variety, and let $H \in Pic(X)$ be an ample line bundle. Assume that *X* is covered by rational curves with degree one with respect to *H* and with anticanonical degree greater than or equal to $(\dim X - 1)/2$. We prove that there is a covering family of such curves whose numerical class spans an extremal ray in the cone of curves NE(*X*).

Introduction

Let *X* be a smooth complex projective variety that admits a morphism with connected fibers $\varphi: X \to Z$ onto a normal variety *Z* such that the anticanonical bundle $-K_X$ is φ -ample, dim *X* > dim *Z*, and $\rho_X = \rho_Z + 1$ (*i.e.*, an elementary extremal contraction of fiber type).

It is well known, by fundamental results of Mori theory, that through every point of X there is a rational curve contracted by φ . The numerical classes of these curves lie in an extremal ray of the cone NE(X). By taking a covering family of such curves one obtains a *quasi-unsplit* family of rational curves, *i.e.*, a family such that the irreducible components of all the degenerations of curves in the family are numerically proportional to a curve in the family. It is very natural to ask if the converse is also true:

Given a covering quasi-unsplit family V of rational curves, is there an extremal elementary contraction that contracts all curves in the family or, in other words, does the numerical class of a curve in the family span an extremal ray of NE(X)?

As proved in [8] (see also [10] and [14]) there is always a rational fibration, defined on an open set of *X*, whose general fibers are proper, which contracts a general curve in *V*. More precisely, a general fiber is an equivalence class with respect to the relation induced by the closure \mathcal{V} of the family *V* in the Chow scheme of *X* in the following way: two points *x* and *y* are equivalent if there exists a connected chain of cycles in \mathcal{V} that joins *x* and *y*.

By a careful study of this fibration and of its indeterminacy locus, a partial answer to this question has been given in [6, Theorem 2]; namely, if the dimension of a general equivalence class is greater than or equal to the dimension of the variety minus three, then the numerical class of a general curve in the family spans an extremal ray of NE(X).

Received by the editors February 12, 2010; revised September 13, 2010.

Published electronically June 14, 2011.

AMS subject classification: 14J40, 14E30, 14C99.

Keywords: rational curves, extremal rays.

Before the results in [6] a special but very natural situation in which the question arises was studied in [5]. In that paper manifolds covered by rational curves of degree one with respect to an ample line bundle *H* were considered, and it was proved that a covering family of such curves (we will call them lines, by abuse) of anticanonical degree greater than or equal to $\frac{\dim X+2}{2}$ spans an extremal ray (see also [4, Theorem 2.4]).

Recently, in [15, Theorem 7.3], the extremality of a covering family *V* of lines was proved under the weaker assumption that the anticanonical degree of such curves, denoted by abuse of notation by $-K_X \cdot V$, is greater than or equal to $\frac{\dim X+1}{2}$.

The goal of this paper is to prove the following theorem.

Theorem Let (X, H) be a polarized manifold with a dominating family of rational curves V such that $H \cdot V = 1$. If $-K_X \cdot V \ge \frac{\dim X - 1}{2}$, then [V] spans an extremal ray of NE(X).

The main idea is, as in [15], to combine the ideas and techniques of [5], especially taking into consideration a suitable adjoint divisor $K_X + mH$ and studying its nefness, with those of [6], in particular regarding the existence of special curves in the indeterminacy locus of the rational fibration associated with *V*.

1 Background Material

Let *X* be a smooth projective variety defined over the field of complex numbers. A *contraction* $\varphi \colon X \to Z$ is a proper surjective map with connected fibers onto a normal variety *Z*.

If the canonical bundle K_X is not nef, then the negative part of the cone NE(X) of effective 1-cycles is locally polyhedral by the Cone Theorem. By the Contraction Theorem, it is possible to associate a contraction with each face in this part of the cone.

Unless otherwise stated, we will reserve the name *extremal face* for a face contained in $\overline{\text{NE}}(X) \cap \{a \in N_1(X) \mid K_X \cdot a < 0\}$, and we will call *extremal contraction* the contraction of such a face.

An extremal contraction associated with an extremal face of dimension one, *i.e.*, with an extremal ray, is called an *elementary contraction*; an extremal ray τ is called *numerically effective*, and the associated contraction is said to be of *fiber type*, if dim $Z < \dim X$; otherwise the ray is called *non nef* and the contraction is *birational*.

If the codimension of the exceptional locus of an elementary birational contraction is equal to one, the ray and the contraction are called *divisorial*, otherwise they are called *small*.

A Cartier divisor which is the pullback of an ample divisor A on Z is called a *supporting divisor* of the contraction φ .

If the anticanonical bundle of X is ample, X is called a Fano manifold. For a Fano manifold, the *index*, denoted by r_X , is defined as the largest natural number r such that $-K_X = rH$ for some (ample) divisor H on X.

Throughout the paper, unless otherwise stated, we will use the word *curve* to denote an irreducible curve.

Definition 1.1 A family of rational curves is an irreducible component $V \subset$ Ratcurvesⁿ(X) (see [14, Definition 2.11]). Given a rational curve we will call a family of deformations of that curve any irreducible component of Ratcurvesⁿ(X) containing the point parametrizing that curve. We will say that V is unsplit if it is proper. We define Locus(V) to be the set of points of X through which there is a curve among those parametrized by V; we say that V is a covering family if Locus(V) = X and that V is a dominating family if $\overline{Locus(V)} = X$.

We denote by V_x the subscheme of V parametrizing rational curves passing through $x \in \text{Locus}(V)$ and by $\text{Locus}(V_x)$ the set of points of X through which there is a curve among those parametrized by V_x .

By abuse of notation, given a line bundle $L \in Pic(X)$, we will denote by $L \cdot V$ the intersection number $L \cdot C_V$, with C_V being any curve among those parametrized by V.

Proposition 1.2 ([14, IV.2.6]) Let V be an unsplit family of rational curves on X. Then

(i) $\dim \operatorname{Locus}(V) + \dim \operatorname{Locus}(V_x) \ge \dim X - K_X \cdot V - 1;$

(ii) every irreducible component of $Locus(V_x)$ has dimension $\geq -K_X \cdot V - 1$.

This last proposition, in case *V* is the unsplit family of deformations of a rational curve of minimal anticanonical degree in an extremal face of NE(X), gives the *fiber locus inequality*:

Proposition 1.3 ([12, Theorem 0.4], [19, Theorem 1.1]) Let φ be a Fano–Mori contraction of X. Denote by E the exceptional locus of φ and by F an irreducible component of a non-trivial fiber of φ . Then

 $\dim E + \dim F \ge \dim X + \ell - 1,$

where $\ell := \min\{-K_X \cdot C \mid C \text{ is a rational curve in } F\}$. If φ is the contraction of an extremal ray τ , then $\ell(\tau) := \ell$ is called the length of the ray.

Definition 1.4 We define a *Chow family of rational curves* W to be an irreducible component of Chow(*X*) parametrizing rational and connected 1-cycles.

We define Locus(W) to be the set of points of X through which there is a cycle among those parametrized by W; notice that Locus(W) is a closed subset of X ([14, II.2.3]). We say that W is a *covering family* if Locus(W) = X.

Definition 1.5 If V is a family of rational curves, the closure of the image of V in Chow(X), denoted by \mathcal{V} , is called the *Chow family associated with* V.

Remark 1.6 If V is proper, *i.e.*, if the family is unsplit, then V corresponds to the normalization of the associated Chow family \mathcal{V} .

Definition 1.7 Let \mathcal{V} be the Chow family associated with a family of rational curves V. We say that V (and also \mathcal{V}) is *quasi-unsplit* if every component of any reducible cycle in \mathcal{V} is numerically proportional to V.

Definition 1.8 Let W be a Chow family of rational curves on X and $Z \subset X$. We define Locus $(W)_Z$ to be the set of points $x \in X$ such that there exists a cycle Γ among those parametrized by W with $\Gamma \cap Z \neq \emptyset$ and $x \in \Gamma$.

We define $ChLocus(W)_Z$ to be the set of points $x \in X$ such that there exists a chain of cycles among those parametrized by W connecting x and Z. Notice that, a priori, $ChLocus(W)_Z$ is a countable union of closed subsets of X.

Notation If $T \subset X$, we will denote by $N_1(T, X) \subset N_1(X)$ the vector subspace generated by numerical classes of curves in *T*; we will denote by $NE(T, X) \subset NE(X)$ the subcone generated by numerical classes of curves in *T*.

The notation $\langle \cdots \rangle$ will denote a linear subspace, while the notation $\langle \cdots \rangle_c$ will denote a subcone.

Lemma 1.9 ([14, Proposition IV.3.13.3], [1, Lemma 4.1]) Let $T \subset X$ be a closed subset, and let W be a Chow family of rational curves. Then every curve contained in ChLocus(W)_T is numerically equivalent to a linear combination with rational coefficients of a curve contained in T and irreducible components of cycles among those parametrized by W which intersect T.

Lemma 1.10 (Cf. [5, Proof of Lemma 1.4.5], [17, Lemma 1]) Let $T \subset X$ be a closed subset, and let V be a quasi-unsplit family of rational curves. Then every curve contained in ChLocus(V)_T is numerically equivalent to a linear combination with rational coefficients $\lambda C_T + \mu C_V$, where C_T is a curve in T, C_V is a curve among those parametrized by V and $\lambda \geq 0$.

Corollary 1.11 (Cf. [9, Corollary 2.2 and Remark 2.4]) Let Σ be an extremal face of NE(X) and denote by F a fiber of the contraction associated with Σ . Let V be a quasi-unsplit family numerically independent from curves whose numerical class is in Σ . Then

NE (ChLocus(\mathcal{V})_{*F*}, *X*) = $\langle \Sigma, [V] \rangle_c$,

i.e., the numerical class in X of a curve in $ChLocus(\mathcal{V})_F$ is in the subcone of NE(X) generated by Σ and [V].

Lemma 1.12 Let D be an effective divisor on X, and let L be a nef divisor. If $(L+D)|_D$ is nef, then L + D is nef.

Proof Assume that γ is an effective curve on X such that $(L + D) \cdot \gamma < 0$. By the nefness of L we have $D \cdot \gamma < 0$, hence $\gamma \subset D$. But L+D is nef on D, a contradiction.

2 Rationally Connected Fibrations

Let *X* be a smooth complex projective variety, and let W be a covering Chow family of rational curves.

Definition 2.1 The family W defines a relation of rational connectedness with respect to W, which we shall call rc(W)-relation for short, in the following way: x and y are in rc(W)-relation if there exists a chain of cycles among those parametrized by W that joins x and y.

Manifolds Covered by Lines and Extremal Rays

We can associate a fibration with the rc(W)-relation, at least on an open subset ([7], [14, IV.4.16]); we will call it rc(W)-fibration.

In the notation of [6], by [10, Theorem 5.9] there exists a closed irreducible subset of Chow(X) such that, denoting by *Y* its normalization and by $Z \subset Y \times X$ the restriction of the universal family, we have a commutative diagram

where p is the projection onto the first factor and e is a birational morphism whose exceptional locus E does not dominate Y. Moreover, a general fiber of q is irreducible and is an rc(W)-equivalence class.

Let *B* be the image of *E* in *X*; note that dim $B \le \dim X - 2$, as *X* is smooth.

If we consider a (covering) Chow family \mathcal{V} , associated with a quasi-unsplit dominating family V, then by [6, Proposition 1, (ii)] B is the union of all $rc(\mathcal{V})$ -equivalence classes of dimension greater than dim X – dim Y.

Moreover, we have the following lemma.

Lemma 2.2 Let V be a quasi-unsplit dominating family of rational curves on a smooth complex projective variety X. Let B be the indeterminacy locus of the rc(V)-fibration $q: X \rightarrow Y$; let D be a very ample divisor on $q(X \setminus B)$, and let $\widehat{D} := \overline{q^{-1}D}$. Then

- (i) $\widehat{D} \cdot V = 0;$
- (ii) if $C \not\subset B$ is a curve not numerically proportional to [V], then $\widehat{D} \cdot C > 0$;
- (iii) if $\widehat{D} \cdot C > 0$ for every curve $C \subset B$ not numerically proportional to [V], then [V] spans an extremal ray of NE(X).

Proof See [6, Proof of Proposition 1].

Corollary 2.3 ([6, Proposition 3]) Let V be a quasi-unsplit dominating family of rational curves on a smooth complex projective variety X; denote by B the indeterminacy locus of the rc(V)-fibration and by f_V the dimension of the general rc(V)-equivalence class.

If [V] does not span an extremal ray of NE(X), then B is not empty. In particular, there exist $rc(\mathcal{V})$ -equivalence classes of dimension at least $f_V + 1$.

We now give a lower bound on the dimension of $ChLocus(\mathcal{V})_S$, depending on the position of the subvariety *S* with respect to the indeterminacy locus of the rc(\mathcal{V})-fibration.

Lemma 2.4 Let V be a quasi-unsplit dominating family of rational curves on a smooth complex projective variety X; denote by B the indeterminacy locus of the rc(V)-fibration and by f_V the dimension of the general rc(V)-equivalence class. Let $S \subset X$ be an irreducible subvariety such that $[V] \notin NE(S, X)$. Then there exists an irreducible X_S contained in ChLocus $(V)_S$ such that

C. Novelli and G. Occhetta

(i) if $S \not\subset B$, then $\dim X_S \ge \dim S + f_V$;

(ii) if $S \subset B$, then dim $X_S \ge \dim S + f_V + 1$.

Moreover, X_S *is not* $rc(\mathcal{V})$ *-connected.*

Proof We refer to diagram (2.1). Given any $T \subset Z$ we will set $Z_T := p^{-1}(p(T))$. Let $S' \subset Z$ be an irreducible component of $e^{-1}(S)$ that dominates *S* via *e*.

By our assumptions on NE (*S*, *X*) we have that *S*' meets any fiber of $p|_{Z_{S'}}$ in points so, up to replace $Z_{S'}$ with $S' \times_{p(S')} Z_{S'}$, we can assume that *S*' is a section of $p|_{Z_{S'}}$.

Let Z' be an irreducible component of $Z_{S'}$ that contains S'. We have

(2.2)
$$\dim Z' \ge \dim p(S') + f_V = \dim S' + f_V \ge \dim S + f_V.$$

Moreover, notice that $S = e(S') \subset e(Z') \subset e(Z_{S'}) \subset ChLocus(\mathcal{V})_S$.

Assume that $S \not\subset B$. Then $Z' \not\subset E$, hence the map $e|_{Z'}: Z' \to X$ is generically finite. Therefore, in view of (2.2), dim $e(Z') = \dim Z' \ge \dim S + f_V$; moreover, since $S \subset e(Z')$, we have that e(Z') is not $rc(\mathcal{V})$ -connected.

Assume now that $S \subset B$. Assertion (ii) will follow once we prove that the general fiber G of $e|_{\overline{Z}}$ has dimension strictly smaller than the general fiber of $e|_{S'}$ for at least one irreducible component \overline{Z} of $Z_{S'}$ that dominates p(S'). In fact, recalling also (2.2), in this case we will have

 $\dim e(\overline{Z}) = \dim \overline{Z} - \dim G > (\dim S' + f_V) - (\dim S' - \dim S) = f_V + \dim S.$

Claim Let *G* be an irreducible component of a fiber of $e|_{Z_{S'}}$; let $z \in G$ be any point, and let $z' := p^{-1}(p(z)) \cap S'$ be the intersection of the fiber of *p* containing *z* with *S'*; then there exists an irreducible component *F* of the fiber *F'* of $e|_{S'}$ containing *z'* such that $p(G) \subseteq p(F)$.

To prove the claim, recall that since $e(Z_G) \subset \text{ChLocus}(\mathcal{V})_{e(z)}$, the image via e of any curve in $Z_G \cap S'$, which is irreducible, being a section over p(G), must be a point, otherwise it would be a curve contained in $S \cap \text{ChLocus}(\mathcal{V})_{e(z)}$, which is a contradiction, since curves in S are numerically independent from [V].

Therefore, $Z_G \cap S'$ is contained in a fiber F' of $e|_{S'}$. To prove the claim we take as F the irreducible component of F' containing $Z_G \cap S'$.

Let $S^1 \subset S'$ be the proper closed subset on which $e|_{S'}$ is not equidimensional, and let $S^2 \subset S'$ be the proper closed subset of points in which the fiber of $e|_{S'}$ is not locally irreducible. Recalling that $p|_{S'}$ is a finite map we see that $p(S^1 \cup S^2)$ is a proper closed subset of p(S').

Let $y \in p(S') \setminus p(S^1 \cup S^2)$ be a general point. In particular, there is only one irreducible component *F* of the fiber *F'* of $e|_{S'}$ passing through $z' = p^{-1}(y) \cap S'$ and dim $F = \dim S' - \dim S$.

Notice that dim $e(Z_F) > f_V$, otherwise a one parameter family of fibers of p meeting F would have the same image in X (Cf. [6, End of proof of Proposition 1], where $e(Z_F) = \text{Locus}(V_{e(F)})$).

This implies that for an irreducible component \overline{Z}_F of Z_F we have dim $e(\overline{Z}_F) > f_V$. Taking as \overline{Z} an irreducible component of $Z_{S'}$ containing \overline{Z}_F we have that, for every

point $z \in p^{-1}(y) \cap \overline{Z}$ and any irreducible component *G* of the fiber of $e|_{\overline{Z}}$ passing through *z* we have $p(G) \subseteq p(F)$, hence dim $G < \dim F = \dim S' - \dim S$. The same inequality then holds for the general fiber by semicontinuity of the local dimension. Noticing that *S* is contained in ChLocus_{*e*(\overline{Z})}(\mathcal{V}), the last assertion follows.

Remark 2.5 Both the bounds in Lemma 2.4 are sharp. An example for the second one is given in [6, Example 2]. In that example $B \simeq \mathbb{P}^2 \times \mathbb{P}^1$; taking as *S* a fiber of the projection onto \mathbb{P}^2 , we have equality in (ii).

3 Blowing-down

In this section we consider the following situation, which will show up in the proof of Theorem 4.3.

Lemma 3.1 Let (X, H) be a polarized manifold with a dominating family of rational curves V such that $H \cdot V = 1$. Denote by f_V the dimension of the general rc(V)-equivalence class and assume that there exists an extremal face Σ in NE(X) whose associated contraction $\sigma: X \to X'$ is a smooth blow-up along a disjoint union of subvarieties T_i of dimension $\leq f_V$ such that $E_i \cdot V = 0$ for every exceptional divisor E_i and $H \cdot l_i = 1$ if l_i is a line in a fiber of σ . Finally denote by V' a family of deformation of $\sigma(C)$, with C a general curve parametrized by V. Then

- (i) $-K_{X'} \cdot V' = -K_X \cdot V;$
- (ii) there exists an ample line bundle H' on X' such that $H' \cdot V' = 1$;
- (iii) if C' is a curve parametrized by V' such that $T_i \cap C' \neq \emptyset$, then $C' \subset T_i$;
- (iv) $\rho_{X'} > 1$;
- (v) *if* [V'] spans an extremal ray of NE(X'), then [V] spans an extremal ray of NE(X).

Proof It is enough to prove the statement in the case where dim $\Sigma = 1$, *i.e.*, $\sigma: X \to X'$ is the blow-up of X' along a smooth subvariety T associated with the extremal ray Σ . In fact, if dim $\Sigma > 1$, the contraction of Σ factors through elementary contractions, each one satisfying the assumptions in the statement.

Denote by *E* the exceptional locus of σ . Since $E \cdot V = 0$, the first assertion in the statement follows from the canonical bundle formula for blow-ups.

Moreover, the fact that $E \cdot V = 0$ also implies that any $rc(\mathcal{V})$ -equivalence class meeting *E* is actually contained in *E*. Therefore, if *F* is a non-trivial fiber of σ , then $ChLocus(\mathcal{V})_F \subseteq E$. By Lemma 2.4

$$\dim \operatorname{ChLocus}(\mathcal{V})_F \geq f_V + \dim F \geq \dim X - 1,$$

hence $E = \text{ChLocus}(\mathcal{V})_F$ and dim $T = f_V$. In particular, applying Corollary 1.11 we get that NE $(E, X) = \langle [V], \Sigma \rangle_c$.

The line bundle $(H + E)|_E$ is nef, and it is trivial only on Σ , since $(H + E) \cdot \Sigma = 0$ and $(H+E) \cdot V = 1$. Then H+E is nef by Lemma 1.12. Notice also that H+E is trivial only on Σ . Indeed, let γ be an effective curve on X such that $(H + E) \cdot \gamma = 0$. Due to the ampleness of H we have $E \cdot \gamma < 0$, hence $\gamma \subset E$. This implies that $[\gamma] \in \Sigma$. Therefore $H + E = \sigma^* H'$, with H' an ample line bundle on X'. By the projection formula $H' \cdot V' = 1$, hence part (ii) in the statement is proved. Now, let *C* ' be a curve parametrized by *V* ' meeting *T* and assume by contradiction that *C* ' is not contained in *T*; denote by \widetilde{C} ' its strict transform. Then

$$1 = H' \cdot C' = \sigma^* H' \cdot \widetilde{C}' = (H + E) \cdot \widetilde{C}' \ge 2,$$

which is a contradiction. It follows that every curve parametrized by V' that meets T is contained in it, so we get part (iii) in the statement.

As to part (iv), assume by contradiction that $\rho_{X'} = 1$. This implies that X' is $rc(\mathcal{V}')$ -connected, but this is impossible as, in view of part (iii), we cannot join points of T and points outside of T with curves parametrized by V'.

Finally, to prove part (v) assume that [V'] spans an extremal ray of X', and let B be the indeterminacy locus of the rc(\mathcal{V})-fibration. We claim that $E \cap B = \emptyset$.

Assume by contradiction that this is not the case. Then *E* meets (and hence contains) an $rc(\mathcal{V})$ -equivalence class *G* of dimension dim $G \ge f_V + 1$. Take a fiber *F* of σ meeting *G*. Then dim $F + \dim G > \dim E$. On the other hand, dim $(F \cap G) = 0$ as $[V] \notin \Sigma$. So we get a contradiction.

Let *A* be a supporting divisor of the contraction associated with [V']. The pullback σ^*A defines a two-dimensional face Π of $\overline{\text{NE}}(X)$ containing Σ and [V]. Let \widehat{D} be as in Lemma 2.2; by the same lemma $\widehat{D} \cdot \Sigma > 0$ and $\widehat{D} \cdot V = 0$.

Assume that Π is not spanned by Σ and [V]; in this case there exists a class $c \in \overline{NE}(X)$ belonging to Π such that $E \cdot c > 0$ and $\widehat{D} \cdot c < 0$.

Let $\{C_n\}$ be a sequence of effective one cycles such that the limit of $\mathbb{R}_+[C_n]$ is \mathbb{R}_+c . By continuity, for some n_0 we have $E \cdot C_n > 0$ and $\widehat{D} \cdot C_n < 0$ for $n \ge n_0$, hence $C_n \subset B$, and $E \cap C_n \neq \emptyset$ for $n \ge n_0$, contradicting $E \cap B = \emptyset$.

4 Main Theorem

First of all we consider polarized manifolds (X, H) with a quasi-unsplit dominating family of rational curves V proving that if, for m large enough, the adjoint divisor $K_X + mH$ defines an extremal face containing [V], then [V] spans an extremal ray of X.

Proposition 4.1 Let (X, H) be a polarized manifold that admits a quasi-unsplit dominating family of rational curves V; denote by f_V the dimension of a general rc(V)-equivalence class.

If, for some integer m such that $m + f_V \ge \dim X - 3$, the divisor $K_X + mH$ is nef and it is trivial on [V], then [V] spans an extremal ray of NE(X).

Proof Assume by contradiction that [V] does not span an extremal ray in NE(*X*).

This implies that $K_X + mH$ defines an extremal face Σ of dimension at least two, containing [V]. By [15, Lemma 7.2] there exists an extremal ray $\vartheta \in \Sigma$ whose exceptional locus is contained in the indeterminacy locus *B* of the rc(\mathcal{V})-fibration. Since $(K_X + mH) \cdot \vartheta = 0$, the length $\ell(\vartheta)$ is greater than or equal to *m*.

Let *F* be a non-trivial fiber of the contraction associated with ϑ . Since this contraction is small, being dim $B \leq \dim X - 2$, then dim $F \geq m + 1$ by Proposition 1.3.

Manifolds Covered by Lines and Extremal Rays

By Lemma 2.4(ii), the dimension of $ChLocus(\mathcal{V})_F$ is

dim ChLocus(
$$\mathcal{V}$$
)_{*F*} \geq dim *F* + f_V + 1.

As the rc(\mathcal{V})-equivalence classes are either contained in *B* or have empty intersection with it, ChLocus(\mathcal{V})_{*F*} \subset *B*. Therefore we get

$$\dim X - 2 \ge \dim B \ge \dim \operatorname{ChLocus}(\mathcal{V})_F \ge f_V + m + 2 \ge \dim X - 1,$$

which is a contradiction.

As the last preparatory step, we consider the following special case.

Lemma 4.2 Let V be a quasi-unsplit dominating family of rational curves on a smooth complex projective variety X. Denote by f_V the dimension of a general $rc(\mathcal{V})$ -equivalence class. Assume that there exists an extremal ray ϑ , independent from [V], whose associated contraction has a fiber F such that dim $F + f_V \ge \dim X$. Then dim $F + f_V = \dim X$ and $NE(X) = \langle [V], \vartheta \rangle_c$. In particular $\rho_X = 2$.

Proof By Lemma 2.4(i) we have

$$\dim X \ge \dim \operatorname{ChLocus}(\mathcal{V})_F \ge f_V + \dim F,$$

hence dim $F + f_V = \dim X$ and $ChLocus(\mathcal{V})_F = X$, so the assertion follows by Corollary 1.11.

Theorem 4.3 Let (X, H) be a polarized manifold with a dominating family of rational curves V such that $H \cdot V = 1$. If $-K_X \cdot V \ge \frac{\dim X - 1}{2}$, then [V] spans an extremal ray of NE(X).

Proof Let *B* be the indeterminacy locus of the $rc(\mathcal{V})$ -fibration $q: X \dashrightarrow Y$; let *D* be a very ample divisor on $q(X \setminus B)$, and let $\widehat{D} := \overline{q^{-1}D}$. Denote by *m* the anticanonical degree of *V* and by f_V the dimension of a general $rc(\mathcal{V})$ -equivalence class. Notice that, since *V* is a dominating family, we have $m \ge 2$.

By Proposition 1.2 dim Locus(V_x) $\ge -K_X \cdot V - 1 = m - 1$. Since a general fiber of the rc(\mathcal{V})-fibration contains Locus(V_x) for every point *x* in it, we have $f_V \ge m - 1$.

If $K_X + mH$ is nef, then the assertion follows by Proposition 4.1; therefore, we can assume that $K_X + mH$ is not nef.

Let ϑ be an extremal ray such that $(K_X + mH) \cdot \vartheta < 0$, and let φ_ϑ be the associated contraction. Notice that ϑ has length $\ell(\vartheta) \ge m + 1$, hence every non-trivial fiber of φ_ϑ has dimension $\ge m$ by Proposition 1.3. On the other hand, in view of Lemma 4.2 we can assume that all fibers of φ_ϑ have dimension $\le m + 1$.

In particular this implies that we have $H \cdot C_{\vartheta} = 1$, where C_{ϑ} is a minimal degree curve whose numerical class belongs to ϑ . Indeed, if this were not the case, we would have $\ell(\vartheta) \ge 2m + 1$, hence every non-trivial fiber of φ_{ϑ} would have dimension $\ge 2m > m + 1$ by Proposition 1.3 and the fact that $m \ge 2$.

If the Picard number of *X* is one, the theorem is clearly true, so we can assume that $\rho_X \ge 2$. Now we split up the proof into two cases, according to the value of ρ_X . First we consider the case $\rho_X = 2$ and then the general one.

https://doi.org/10.4153/CMB-2011-119-7 Published online by Cambridge University Press

C. Novelli and G. Occhetta

Case (*a*) $\rho_X = 2$.

The proof is based on different arguments, depending on the dimension of the fibers of the contraction associated with the extremal ray ϑ .

Case (a1) The contraction φ_{ϑ} admits an (m + 1)-dimensional fiber *F*.

Consider $X_F := \text{ChLocus}(\mathcal{V})_F$. We have, by Corollary 1.11, that $\text{NE}(X_F, X) = \langle [V], \vartheta \rangle_c$ and, by Lemma 2.4, that

$$\dim X_F \ge \dim F + f_V \ge (m+1) + (m-1) \ge \dim X - 1.$$

If $X_F = X$, then the statement is proved. So we can assume that an irreducible component \overline{X}_F of X_F is a divisor and thus that $f_V = m - 1$. Notice that $\overline{X}_F \cdot V = 0$, otherwise we would have $X_F = X$.

Consider now the intersection number of X_F with curves whose numerical class belongs to ϑ . Since $\rho_X = 2$ and $\overline{X}_F \cdot V = 0$, we cannot also have $\overline{X}_F \cdot \vartheta = 0$.

Let us show that we cannot have $\overline{X}_F \cdot \vartheta < 0$ as well.

Assume by contradiction that this is the case. Then $\text{Exc}(\vartheta) \subset \overline{X}_F$, so φ_ϑ is divisorial by Proposition 1.3. By the same proposition, recalling that we are assuming that all the fibers of φ_ϑ have dimension $\leq m + 1$, every non-trivial fiber has dimension m + 1.

Then φ_{ϑ} is the blow-up of a smooth variety X' along a smooth center T by [2, Theorem 4.1 (iii)]. The dimension of the center is

$$\dim T = (n-1) - (m+1) \le m - 1 = f_V.$$

We can thus apply Lemma 3.1(iv), and we get $\rho_X = \rho_{X'} + 1 > 2$, reaching a contradiction.

Therefore $\overline{X}_F \cdot \vartheta > 0$, hence $(\overline{X}_F)|_{\overline{X}_F}$ is nef and thus, by Lemma 1.12, \overline{X}_F is nef. As $\overline{X}_F \cdot V = 0$ and $\rho_X = 2$, \overline{X}_F is the supporting divisor of an elementary contraction of X whose associated extremal ray is spanned by [V].

Case (a2) The contraction φ_{ϑ} is equidimensional with *m*-dimensional fibers.

By Proposition 1.3, φ_{ϑ} is of fiber type and $\ell(\vartheta) = m + 1$. Hence, by [11, Lemma 2.12], *X* is a projective bundle over a smooth variety *Y*, *i.e.*, $X = \mathbb{P}_Y(\mathcal{E})$, where $\mathcal{E} = (\varphi_{\vartheta})_* H$.

Notice that *Y* has Picard number one and is covered by rational curves (the images of the curves parametrized by *V*), therefore *Y* is a Fano manifold.

By the canonical bundle formula for projective bundles we have

$$K_X + (m+1)H = \varphi_{\vartheta}^*(K_Y + \det \mathcal{E}).$$

In particular, if C_V is a curve among those parametrized by V, we can compute, by the projection formula,

$$(K_Y + \det \mathcal{E}) \cdot (\varphi_{\vartheta})_* (C_V) = (K_X + (m+1)H) \cdot C_V = 1.$$

It follows that $(K_Y + \det \mathcal{E}) \cdot \varphi_{\vartheta}(C_V) = 1$ and that $K_Y + \det \mathcal{E}$ is the ample generator of Pic(*Y*). The ampleness of \mathcal{E} implies that $\det \mathcal{E} \cdot \varphi_{\vartheta}(C_V) \ge m + 1$; therefore, $-K_Y \cdot \varphi_{\vartheta}(C_V) \ge m$, hence the index r_Y of *Y* is greater than or equal to *m*.

Manifolds Covered by Lines and Extremal Rays

If $r_Y = m$ and l denotes a rational curve of minimal degree in Y, then det $\mathcal{E} \cdot l = m+1$; moreover, the splitting type of \mathcal{E} , which is ample and of rank m+1, on rational curves of minimal degree is uniform of type (1, ..., 1).

We can thus apply [3, Proposition 1.2], so we obtain that $X \simeq \mathbb{P}^m \times Y$. It follows that the curves of *V* are contained in the fibers of the first projection and that [*V*] spans an extremal ray.

Therefore we are left with $r_Y \ge m + 1$. Recalling that dim $Y = \dim X - m \le m + 1$, by the Kobayashi–Ochiai Theorem [13] we get that Y is a projective space or a hyperquadric.

Assume by contradiction that [*V*] does not span an extremal ray of *X*.

By Lemma 2.2(iii) there exists a curve $C \subset B$, whose numerical class is not proportional to [V], such that $\widehat{D} \cdot C \leq 0$. Actually, since $\rho_X = 2$ and $\widehat{D} \cdot V = 0$, we have $\widehat{D} \cdot C < 0$.

By Lemma 2.4(ii), there exists $X_C \subset \text{ChLocus}(\mathcal{V})_C$, which is not $\text{rc}(\mathcal{V})$ -connected such that $\dim X_C \ge f_V + \dim C + 1 \ge m + 1$.

By Lemma 1.10 \hat{D} has non positive intersection number with every curve in X_C and it is trivial only on curves that are numerically proportional to [V].

Since $\hat{D} \cdot \vartheta > 0$, we have that φ_{ϑ} does not contract curves in X_C , hence dim $Y \ge \dim X_C \ge m + 1$ and so dim $Y = \dim X_C = m + 1$.

Since X_C is not $rc(\mathcal{V})$ -connected, for every point *c* of X_C , the intersection X_c of the $rc(\mathcal{V})$ -equivalence class containing *c* with X_C has dimension equal to *m*. In particular, X_C is the union of a one parameter family of $rc(\mathcal{V})$ -connected subvarieties X_c .

We claim that there exists a line l in Y that is not contained in $\varphi_{\vartheta}(X_c)$ for any $c \in C$. Notice that, since φ_{ϑ} does not contract curves in X_C , through a general point y in Y there is a finite number of such subvarieties.

If $Y \simeq \mathbb{P}^{m+1}$, a line joining *y* with a point outside the union of these subvarieties has the required property.

Assume now that $Y \simeq \mathbb{Q}^{m+1}$. For any $y \in \mathbb{Q}^{m+1}$ the locus of the lines through y is a quadric cone \mathbb{Q}_y^m with vertex y. Therefore, if every line through y is contained in $\varphi_{\vartheta}(X_c)$ for some $c \in C$, then \mathbb{Q}_y^m is an irreducible component of $\varphi_{\vartheta}(X_c)$. Since X_c moves in a one-dimensional family, for the general point $y \in \mathbb{Q}^{m+1}$, the general line through y has the required property.

The splitting type of \mathcal{E} on this line is one of the following: (2, 1, ..., 1) if $Y \simeq \mathbb{Q}^{m+1}$ and either (3, 1, ..., 1) or (2, 2, 1, ..., 1) if $Y \simeq \mathbb{P}^{m+1}$. Recalling that $m \ge 2$ we have that, among the summands of \mathcal{E}_l there is at least one $\mathcal{O}_{\mathbb{P}^1}(1)$.

Consider $\mathbb{P}_l(\mathcal{E}|_l)$ whose cone of curves is generated by the class of a line in a fiber of the projection onto *l* and the class of a minimal section C_0 . By the discussion above we have that $H \cdot C_0 = 1$. Moreover, $\varphi_{\vartheta}^*(K_Y + \det \mathcal{E}) \cdot C_0 = 1$, hence $[C_0] = [V]$. In particular \widehat{D} is nef on $\mathbb{P}_l(\mathcal{E}|_l)$.

Consider an irreducible curve in $\mathbb{P}_l(\mathcal{E}|_l) \cap X_C$. By our choice of l, this curve is not contained in a rc(\mathcal{V})-equivalence class contained in X_C , so it is negative with respect to \widehat{D} , a contradiction. The case $\rho_X = 2$ is thus completed.

Case (*b*) $\rho_X > 2$.

Notice that, in view of Corollary 2.3, we can restrict to the case $B \neq \emptyset$; moreover, by Lemma 2.2(iii), we can also assume the existence of a curve $C \subset B$ such that [C]

is not proportional to [V] and $\widehat{D} \cdot C \leq 0$.

We claim that $K_X + (m + 1)H$ is nef.

Assume by contradiction that $K_X + (m + 1)H$ is not nef. Let τ be a ray such that $(K_X + (m + 1)H) \cdot \tau < 0$; denote by C_{τ} a rational curve of minimal anticanonical degree in τ and by φ_{τ} the contraction associated with τ .

Notice that τ has length $\ell(\tau) \ge m + 2$, hence every non-trivial fiber of φ_{τ} has dimension $\ge m + 1$ by Proposition 1.3.

On the other hand φ_{τ} cannot have fibers of dimension > m + 1, otherwise, by Lemma 4.2, we would have $\rho_X = 2$. Therefore every non-trivial fiber of φ_{τ} has dimension m + 1.

In view of Proposition 1.3, we thus get that φ_{τ} is of fiber type and that the length of τ is $\ell(\tau) = m+2$; this last fact gives $H \cdot C_{\tau} = 1$. Let us consider W_{τ} to be a minimal degree covering family of curves whose numerical class belongs to τ .

Since *B* is not empty, there are $rc(\mathcal{V})$ -equivalence classes of dimension $\geq f_V + 1 \geq m$; let *G* be one of these classes. Notice that since φ_{τ} is equidimensional with (m + 1)-dimensional fibers, we have $f_W = m + 1$. By Lemma 2.4(i) we have

 $\dim \operatorname{ChLocus}(\mathcal{W}_{\tau})_G \geq \dim G + f_W = 2m + 1 \geq \dim X,$

so by Lemma 1.9 we deduce $\rho_X = 2$, a contradiction that proves the nefness of $K_X + (m+1)H$.

Recall now that the extremal ray ϑ that we fixed at the beginning of the proof has length $\ell(\vartheta) \ge m + 1$ and is generated by a curve C_{ϑ} such that $H \cdot \vartheta = 1$, therefore $(K_X + (m + 1)H) \cdot \vartheta = 0$ and $K_X + (m + 1)H$ is not ample.

Let Σ be the extremal face contracted by $K_X + (m + 1)H$. We now consider two cases separately, depending on the existence in Σ of a fiber type extremal ray.

Case (b1) There exists a fiber type extremal ray ρ in Σ .

Let φ_{ϱ} be the contraction associated with ϱ , and denote by W_{ϱ} a minimal degree covering family of curves whose numerical class belongs to ϱ . By Lemma 2.4(ii), there exists an irreducible $X_C \subset \text{ChLocus}(\mathcal{V})_C$ such that dim $X_C \ge f_V + 2$.

According to Lemma 1.10, every curve in X_C can be written as $\alpha[C] + \beta[V]$ with $\alpha \ge 0$; in particular, since $\widehat{D} \cdot V = 0$ by Lemma 2.2, it follows that \widehat{D} is not positive on any curve contained in X_C . By the same lemma $\widehat{D} \cdot W_{\varrho} > 0$, hence $[W_{\varrho}] \notin \text{NE}(X_C, X)$. Therefore, Lemma 2.4(i) gives

$$\dim \operatorname{ChLocus}(\mathcal{W}_{\rho})_{X_{C}} \geq \dim X_{C} + f_{W_{\rho}} \geq f_{V} + 2 + m \geq \dim X,$$

where $f_{W_{\rho}}$ is the dimension of the general $rc(W_{\rho})$ -equivalence class.

Therefore, by applying Lemma 1.10 twice, we get that the class of every curve in *X* can be written as

(4.1)
$$\lambda(\alpha[C] + \beta[V]) + \mu[W_{\rho}]$$

with $\alpha, \lambda \geq 0$ and $\alpha[C] + \beta[V] \in NE(X_C, X)$.

This has some very important consequences. First of all, since we are assuming $\rho_X > 2$, this implies that $\rho_X = 3$; in particular, [C] is not contained in the plane Π

in N₁(*X*) spanned by $[W_{\varrho}]$ and [V]. Moreover, the intersection of Π with NE(*X*) is a face of NE(*X*).

We have to prove that $\Pi \cap \overline{NE}(X) = \langle [V], [W_{\varrho}] \rangle_c$. If this is not the case, then there exists a class *a* such that $\Pi \cap \overline{NE}(X) = \langle a, [W_{\varrho}] \rangle_c$ and $\widehat{D} \cdot a < 0$.

Denote by $b \in N_1(X)$ a class, not proportional to [V], lying in the intersection of $\partial \overline{NE}(X)$ with the plane $\Pi' = N_1(X_C, X)$ and by Π'' the plane spanned by $[W_{\varrho}]$ and *b*.

Formula (4.1), traslated in geometric terms, says that NE(*X*) is contained in the intersection of half-spaces determined by Π and by Π'' as in the figure below, which shows a cross-section of $\overline{NE}(X)$.

Let $\{C_n\}$ be a sequence of effective one cycles such that the limit of $\mathbb{R}_+[C_n]$ is \mathbb{R}_+a . By continuity, for some n_0 we have $\widehat{D} \cdot C_n < 0$ for $n \ge n_0$, hence $C_n \subset B$ for $n \ge n_0$, and all the above arguments apply to C_n , for $n \ge n_0$. In particular, defining b_n and \prod_n'' as above, we get that, for $n \ge n_0$, NE(X) is contained in the intersection of halfspaces determined by \prod and by \prod_n'' . Since $\prod_n'' \to \prod$ as $\mathbb{R}_+[C_n] \to \mathbb{R}_+a$, and $\rho_X = 3$, we get a contradiction.

Case (b2) Every ray in Σ is birational.

Let η be any ray in Σ . By Proposition 1.3, for every non-trivial fiber of its associated contraction φ_{η} we have dim $F \ge \ell(\eta) \ge m + 1$. Recalling that, by Lemma 4.2, we can assume dim $F \le m + 1$, we have dim $F = m + 1 = \ell(\eta)$. This also implies that if C_{η} is a minimal degree curve whose numerical class is contained in η , we have $H \cdot C_{\eta} = 1$.

By Proposition 1.3, φ_{η} is a divisorial contraction, and hence, by [2, Theorem 4.1 (iii)], is the blow-up of a smooth variety along a smooth center *T* of dimension $(n - 1) - (m + 1) \le m - 1$.

Let *E* be the exceptional divisor of φ_{η} . By Lemma 2.4(ii), there exists an irreducible $X_C \subset \text{ChLocus}(\mathcal{V})_C$ with dim $X_C \ge f_V + 2$.

By Lemma 1.10 \widehat{D} has non positive intersection number with every curve in X_C .

If $E \cap X_C \neq \emptyset$, then there is a fiber F of φ_η meeting X_C . Counting dimensions, we find that dim $(F \cap X_C) \ge 1$, which is a contradiction as $\widehat{D} \cdot \eta > 0$. So $E \cap X_C = \emptyset$, whence $E \cdot V = 0$.

Therefore *E* contains $rc(\mathcal{V})$ -equivalence classes and dim $T \ge f_V$, since φ_η is finite-to-one on $rc(\mathcal{V})$ -equivalence classes. Recalling that $f_V \ge m - 1$ we derive dim $T = f_V = m - 1$.

Assume that dim $\Sigma \geq 2$, and let E_1, E_2 be the exceptional loci of two different extremal rays η_1, η_2 in Σ . Since the fibers of the contractions φ_{η_1} and φ_{η_2} have dimension m + 1 and $2(m + 1) > \dim X$, we have that $E_1 \cap E_2 = \emptyset$.

Therefore the contraction $\sigma: X \to X'$ of the face Σ verifies the assumptions of Lemma 3.1, hence there exists an ample line bundle H' on X' and an unsplit dominating family V' on X' such that $H' \cdot V' = 1$ and $-K_{X'} \cdot V' = -K_X \cdot V \ge \frac{\dim X' - 1}{2}$.

Denote by $f_{V'}$ the dimension of the general $rc(\mathcal{V}')$ -equivalence class. Since a general fiber of the $rc(\mathcal{V}')$ -fibration contains $Locus(V'_{x'})$, we have

$$f_{V'} \ge \dim \operatorname{Locus}(V'_{x'}) - 1 \ge m - 1.$$

Consider the adjoint divisor $K_{X'} + mH'$. If it is nef, or an extremal ray ϑ' such that $(K_{X'} + mH') \cdot \vartheta' < 0$ has a fiber of dimension greater than or equal to m + 2, then [V'] spans an extremal ray by Proposition 4.1 or by Lemma 4.2, so [V] spans an extremal ray by Lemma 3.1.

Let us show that the remaining case does not happen.

Assume that there is an extremal ray ϑ' such that $(K_{X'} + mH') \cdot \vartheta' < 0$ and every fiber of the associated contraction has dimension less than or equal to m + 1. In particular we have $H' \cdot \vartheta' = 1$, otherwise we would have $\ell(\vartheta') \ge 2m + 1$, hence every non-trivial fiber of the associated contraction would have dimension $\ge 2m > m + 1$ by Proposition 1.3. Moreover, we have $(K_{X'} + (m+1)H') \cdot \vartheta' \le 0$, since $\ell(\vartheta') \ge m+1$.

On the other hand, recalling that $\sigma^* H' = H + \sum E_i$ and that $\sigma^* K_{X'} = K_X - \sum (m+1)E_i$, we have

$$\sigma^*(K_{X'} + (m+1)H') = K_X + (m+1)H,$$

so, by the projection formula, $K_{X'} + (m+1)H'$ is ample on X', a contradiction.

Corollary 4.4 Let (X, H) be a polarized manifold of dimension at most five, with a dominating family of rational curves V such that $H \cdot V = 1$. Then [V] spans an extremal ray of NE(X).

5 An Example

In the paper [5], an application of the results about extremality of families of lines was a relative version of a theorem proved in [18], which was the first step towards a conjecture of Mukai for Fano manifolds.

This conjecture states that, for a Fano manifold *X*, denoted by ρ_X its Picard number and by r_X its index, we have

$$\rho_X(r_X-1) \leq \dim X.$$

More precisely, in [18, Theorem B] it was proved that, if $r_X \ge \frac{\dim X}{2} + 1$, then $\rho_X = 1$ unless $X \simeq \mathbb{P}^{\dim X/2} \times \mathbb{P}^{\dim X/2}$, while in [5, Theorem 3.1.1] it was proved that a fiber type contraction $\varphi: X \to Y$ supported by $K_X + mL$ with $m \ge \frac{\dim X}{2} + 1$ is elementary unless $X \simeq \mathbb{P}^{\dim X/2} \times \mathbb{P}^{\dim X/2}$.

In the last few years some progress has been made towards Mukai's conjecture; in particular it was recently proved in [16, Theorem 3] that it holds for a Fano manifold with (pseudo)index greater than or equal to $\frac{\dim X}{3} + 1$.

It is therefore natural to ask if the corresponding relative statement is true, namely, given a fiber type contraction $\varphi: X \to Y$, corresponding to an extremal face Σ , supported by $K_X + mL$ with $m \ge \frac{\dim X}{3} + 1$, is it possible to find a bound on the dimension of Σ ?

The answer to this question is negative, as we will show with an example in which $m = \frac{\dim X}{2}$; it follows that [5, Theorem 3.1.1] cannot be improved.

Example 5.1 Let Z be a smooth variety of dimension k + 2; denote by Y the product $Z \times \mathbb{P}^k$ and by p_1, p_2 the projections onto the factors. Let $\{z_i\}_{i=1,...,t}$ be points of Z, and denote by F_i the fibers of p_1 over z_i .

Let $\sigma: X \to Y$ be the blow-up of Y along the union of F_i . The canonical bundle of X is

(5.1)
$$K_X = \sigma^* K_Y + (k+1) \sum_{i=1}^t E_i = \sigma^* (p_1^* K_Z + p_2^* K_{\mathbb{P}^k}) + (k+1) \sum_{i=1}^t E_i.$$

Denoting by $\mathcal{H} := (p_2 \circ \sigma)^* \mathcal{O}_{\mathbb{P}^k}(1)$ and by $L' := \mathcal{H} - \sum E_i$, we can rewrite formula (5.1) as

$$K_X + (k+1)L' = \sigma^*(p_1^*K_Z).$$

It is easy to check that L' is $(p_1 \circ \sigma)$ -ample. Let $A \in Pic(Z)$ be an ample line bundle such that $K_Z + (k + 1)A$ is ample. Then $L := L' + \sigma^*(p_1^*A)$ is an ample line bundle on X; moreover, $L \cdot l = 1$ for a line l in the strict transform of a fiber F of p_1 not contained in the center of σ .

The contraction $p_1 \circ \sigma$ *is supported by* $K_X + (k+1)L = K_X + \frac{\dim X}{2}L$ *and contracts a face of dimension* t + 1.

Remark 5.2 The difference between the relative and the absolute case is given by the existence of minimal horizontal dominating families of rational curves for proper morphisms defined on a open subset of a Fano manifold (for the definition and the references, see [1, Remark 6.4]). Such families do not exist in general in the relative case.

Acknowledgments We learned of the results about extremality of families of lines in [5] from an interesting series of lectures given by Paltin Ionescu. We thank the referee for many useful suggestions and remarks, which helped to fix some issues in the proofs.

C. Novelli and G. Occhetta

References

- M. Andreatta, E. Chierici, and G. Occhetta, *Generalized Mukai conjecture for special Fano varieties*. Cent. Eur. J. Math. 2(2004), no. 2, 272–293. http://dx.doi.org/10.2478/BF02476544
- M. Andreatta and J. A. Wiśniewski, A note on norvanishing and applications. Duke Math. J. 72(1993), no. 3, 739–755. http://dx.doi.org/10.1215/S0012-7094-93-07228-6
- [3] _____, On manifolds whose tangent bundle contains an ample subbundle. Invent. Math. 146(2001), no. 1, 209–217. http://dx.doi.org/10.1007/PL00005808
- M. C. Beltrametti and P. Ionescu, On manifolds swept out by high dimensional quadrics. Math. Z. 260(2008), no. 1, 229–234. http://dx.doi.org/10.1007/s00209-007-0265-6
- [5] M. C. Beltrametti, A. J. Sommese, and J. A. Wiśniewski, *Results on varieties with many lines and their applications to adjunction theory.* In: Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, Springer, Berlin, 1992, pp. 16–38.
- [6] L. Bonavero, C. Casagrande, and S. Druel, On covering and quasi-unsplit families of rational curves. J. Eur. Math. Soc. 9(2007), no. 1, 45–57. http://dx.doi.org/10.4171/JEMS/71
- F. Campana, Coréduction algébrique d'un espace analytique faiblement kählérien compact. Invent. Math. 63(1981), no. 2, 187–223. http://dx.doi.org/10.1007/BF01393876
- [8] _____, Connexité rationnelle des variétés de Fano. Ann. Sci. École Norm. Sup. (4) 25(1992), no. 5, 539–545.
- [9] E. Chierici and G. Occhetta, *The cone of curves of Fano varieties of coindex four*. Internat. J. Math. 17(2006), no. 10, 1195–1221. http://dx.doi.org/10.1142/S0129167X06003850
- [10] O. Debarre, *Higher-dimensional algebraic geometry*. Universitext, Springer-Verlag, New York, 2001.
 [11] T. Fujita, *On polarized manifolds whose adjoint bundles are not semipositive*. In: Algebraic geometry,
- Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 167–178.
 [12] P. Ionescu, *Generalized adjunction and applications*. Math. Proc. Cambridge Philos. Soc. 99(1986), no. 3, 457–472. http://dx.doi.org/10.1017/S0305004100064409
- [13] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13(1973), 31–47.
- [14] J. Kollár, *Rational curves on algebraic varieties*. Ergebnisse der Mathematik und ihrer Grenzgebiete, 32, Springer-Verlag, Berlin, 1996.
- [15] C. Novelli and G. Occhetta, Projective manifolds containing a large linear subspace with nef normal bundle. Michigan Math. J. 60(2011), no. 2.
- [16] _____, Rational curves and bounds on the Picard number of Fano manifolds. Geom. Dedicata 147(2010), 207–217. http://dx.doi.org/10.1007/s10711-009-9452-4
- G. Occhetta, A characterization of products of projective spaces. Canad. Math. Bull. 49(2006), no. 2, 270–280. http://dx.doi.org/10.4153/CMB-2006-028-3
- [18] J. A. Wiśniewski, On a conjecture of Mukai. Manuscripta Math. 68(1990), no. 2, 135–141. http://dx.doi.org/10.1007/BF02568756
- [19] _____, On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math. 417(1991), 141–157.

Dipartimento di Matematica "F. Casorati", Università di Pavia, via Ferrata 1, I-27100 Pavia and

Dipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste 63, I-35121, Padova, Italy e-mail: novelli@math.unipd.it

Dipartimento di Matematica, Università di Trento, via Sommarive 14, I-38123 Povo (TN), Italy e-mail: gianluca.occhetta@unitn.it