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DIAMETERS IN TYPICAL 
CONVEX BODIES 

IMRE BÂRÂNY AND TUDOR ZAMFIRESCU 

1. Introduction. The most usual diameters in the world are those of a sphere 
and they all contain its centre. More generally, a chord of a convex body in R^ 
is called a diameter if there are two parallel supporting hyperplanes at the two 
endpoints of the chord. 

It is easily seen that there are points on at least two diameters. From a result 
of Kosinski [6] proved in a more general setting it follows that every convex 
body has a point lying on at least three diameters. Does a typical convex body 
behave like a sphere and contain a point on infinitely or even uncountably many 
diameters? 

But what is a typical convex body? The space 9£ of all convex bodies (d-
dimensional compact convex sets) in Rd, equipped with the Hausdorff metric, 
is a Baire space. Its subspace 9Cl of all convex bodies which are smooth and 
strictly convex is residual (see [5]) and is therefore itself a Baire space. We say 
that typical elements or most elements of a Baire space enjoy some property if 
all those enjoying it form a residual set. 

It is known that in most planar convex bodies most points lie on infinitely 
many diameters ([9]). This is in striking contrast with the fact that in the measure-
theoretical sense almost every point in any planar convex body lies on finitely 
many diameters [3] and with the fact that in many usual planar convex bodies 
every point lies on at most three diameters. Unfortunately, it does not seem that 
the method of proof used in [9] can be generalized to higher dimensions. 

In R^, using other methods we prove that in most convex bodies most points 
lie on infinitely many diameters. Moreover, we show that in most convex bodies 
infinitely many points lie on uncountably many diameters. To a question of 
Hammer [2] concerning points on uncountably many diameters an answer was 
provided long ago by Besicovitch and Zamfirescu [1]. This answer will now be 
strengthened and put into a new light. 

For a survey of results on typical convex bodies, see [10]. We use the following 
notations: xy means the line segment from x to y. NR(X), or simply N(x), is the 
set of outer unit normals of K at x G bdK, where bdK is the boundary of K. 
For K G 3C1, N{x) consists of a single point which we denote by a(x). The 
interior of K is denoted by int K. 

For M C Rd, diam M = sup {\\x -y\\ : x,y G M}. 

A lemma. Let 0 < À < 1 and consider a diameter xy of K G 30 Set 
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z = Ax + (1 — X)y and 

Kx=z+X-^(z-K\ 

Rx = K\mtKx, 
R2=Kx\mtK. 

Actually R\ and R2 depend onx, y and A, but we will suppress this dependence 
in the notation. Notice that x G R\ and x G R2. We call a diameter X—regular 
if neither R\ nor /?2 includes a continuum containing x and different {x}. A 
diameter is regular if it is A—regular for all A G (0, 1). 

It is easy to see that no diameter of the unit ball in R^ is regular. We give an 
example of a A—regular diameter with A = 1/2 as follows. Define a function 
/ : [ - l , 1]—flby 

( v ^ T ^ i f * € [ - l , I ] l i a I &-}U{l> 
1 min g,(x) otherwise, 

where gi is the linear function that coincides with / at 

x = (2 • 41'-1 - l)/2 • 4 / _1 and x = {A1 - l)/4' (i = 1, 2, 3 , . . .)• 

Clearly, / is concave. Now let K C R^ be the convex body obtained by rotating 
the graph of / around the JC-axis. It follows from this construction that the 
interval [—1, 1] on the x-axis is a 1/2—regular diameter of K. 

LEMMA. For most convex bodies K G $C and for most points x G bdK there 
is a unique diameter xy and this diameter is regular. 

Proof. We show uniqueness first, which is easy. 9£1 is residual in % (see 
[5]). Take K G %} and x ebdK. Then a(x) is uniquely determined and there 
is a unique y G bdK with a(y) = —a{x). Thus xy is a diameter and it is the 
only diameter that contains JC. 

Let a G (0, 1/2), /3 > 0 and define, for K G 3C \ 

Sa(K) ={x G bdK : the diameter xy is not 

A— regular for some A G [a, 1 — a]}, 

Sa,p(K) ={x G Sa(K) : 3 continuum C 3 x in R\ or R2 with 

diamC ^ (3 for some A G [a, 1 — a]}. 

A routine argument shows that Sa^(K) is closed. Clearly 

S(K)={J{JS^(K) 
a>0 /3>0 
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is in the set of endpoints of non-regular diameters. Set 

3£° = {K G <Kl : S(K) is of second category}. 

Choosing sequences a, —* 0 and f3j —> 0, Sai^{K) cannot all be nowhere dense 
if A' G 3C°. Then, for some / andy, Sahpj(K) must contain a "disk" 

D = bdKf>\B(x, 7), 

where x G b d £ , 7 > 0 and B(x,l) stands for the ball with radius 7 and centre 
x. Set 

Xa,M = iK € %} • Sa,p(K) contains a disk of radius 7}. 

Clearly, for some sequence 7* —• 0, 

*°=uuu*«.^ 
i j k 

Now we show that 9£ a^ is nowhere dense in 9C • This will prove the lemma. 
We (again) omit the proof of the following claim: ^C«,̂ ,7 is closed. 

Now let Obe an open set in %\%a^i- Take a smooth and strictly convex 
body K G O. Choose a finite set X C bdA' with the property that any disk 
D C bdK of radius 7/2 contains a point of X. This is clearly possible. For 
each x, let xy be the unique diameter through x. Cut off a small cap Cx (and 
Cy) from K by a hyperplane orthogonal to a(x) and close to x (y, respectively). 
These cuts can be chosen so small that the caps Cx, Cy(x G X) are all pairwise 
disjoint, and the diameter of each Cx and Cy is less than 7/2. Moreover, if the 
cuts are small enough, then 

K' = K\{J(CxUCy)eO 
xex 

and any K* G <K with %' C K* C K belongs to O, too. The diameter xy 
intersects bd K' in points u and v where u G Ç* and v G C r Let 5(w) [#(v)] be 
a (J — l)-dimensional ball with centre u[v] and radius p, lying in the bounding 
hyperplane of Cx [Cy]. The radius p can be chosen so small that B(u) C Cx and 
B(v) C C>, for all JC G X. 

Define two functions / , g : [0, oo) —• [0, oo) by 

m=[tA x tu*, 

*(0 = t\ 

where e is to be specified later. 
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Let z G Rd and write 

z — u — z+ + (p, 

where a = a(x) and z+ is the component of z — w orthogonal to a. Define the 
set 

Fx = {z G Rd : ||z+|| ^ p, 0 ^ < S v - M/( | |Z + | | )} , 

where yu > 0 and v > 0 will be chosen so small that, firstly, Fx C Ç* and, 
secondly, no hyperplane touching Fx at some point z with ||z+|| < p, £ = 
v - M/X||Z+||) meets # \ G (for all x G X). Similarly, let w e Rd and set 

w — v — w+ + ub 

where b — — a is the outer normal to A' at y and w+ is the component of w — v 
orthogonal to b. Define 

Gy = {w ERd : IKII ^ p,0 ^ a; ̂  i/ - ^(IK| |)}, 

where, again, i/ > 0 and /i > 0 are chosen so that Gy C Cy and no hyperplane, 
touching Gy at some point w with ||w+|| < p, a; = i/ — /xg(||w+||) meets K\Cy. 
Clearly, v and [i can be chosen the same for all Fx and Gy. 

Define now 

K* = conv(#' U ( J ( F , U Gy)). 

Evidently K D K* D K' and so K* G O. We claim that /T 0 flC^/y. 
Consider x G X and the points y, w, v defined above. Set 

x* = u + i/<2, y* = v + i/&. 

By the construction, x*y* is a diameter of #* with outer normals a and fr at its 
endpoints. We will now show that for x* = \x* + (1 — A)y* with a < A < 1 — a 
neither R*{ — K*\intKl nor R\ = ^\ int^T* contains a continuum of diameter 
(3 containing x*. 

By construction, bd K* coincides with a piece of bd Fx \béFy] in a neigh­
bourhood of radius p of x* [y*]. Then bd K is rotationally symmetric in a small 
neighbourhood of x* \y*], the axis of symmetry being the line though x*[y*] 
with direction a. Thus R* and R\ are also rotationally symmetric. 

It is easy to reduce our question now to a question about the functions / and 
g : R\ and R\ contain a continuum of diameter at least /3 containing x* if and 
only if either 
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on the interval [0, /?/2], or 

on the same interval. We show now that neither of these two possibilities holds. 
Write a = (1 - A)/A; then 

a / ( l - a)< G < (1 - a)/a. 

Clearly 

/ ( 0 = t4 < -g(at) = l2t3 

G 

if 0 ^ r < G2/(1 - a)2, and we choose 0 < e < a2/(I - a)2. Now for t = 2e 

f(t) = 3e2 + 16e4, 

^ ( a 0 = a 2 . 8 e 3 ^ ( ^ ) - 8 e 3 , 

and so 

! , ( * ) < / ( » i f e < ^ ( r ^ ) 2 . 

We also have to have r = 2e < /3/2, t = 2e < p and 7/" = 72e < p. Thus, 
choosing 

there will be no continuum, of diameter at least (5 and containing x* in either 
of the sets./?? and R*2 for all x G X. 

Assume now that there is a disk D* C Sa^(K*) of radius T, with centre 
z* G AT*, Z* € Cx (or C^) would imply x* G D* (or y* G D*) because Cx and Cy 

have diameter less then (3/2. But x* G D* C Sa^(K*) contradicts what we just 
established. So JCZ* G bd AT, and, by the choice of X, \\z* — JC|| < 7/2 for some 
x eX. The diameter of Cx is less than 7/2, so ||JC — JC* || < 7/2 whence 

| |z* -x* | | ^ | | Z * - J C | | + | | J C - J C * | | < 7 

and x* £ D* G Sa^(k*), a contradiction. 
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Points on infinitely many diameters. 

THEOREM 1. In most convex bodies, on most diameters, each point belongs 
to infinitely many diameters. 

Proof. Let K be a smooth convex body with the properties of the lemma. 
Also, let Ma be the set of points in R^ lying on a least a diameters of K. 

Consider a regular diameter xy of K. For À G (0, 1), let 

z = Xx + (1 — A)v, 

Kx = z+]-^(z-K). 

For v GbdK close to JC, let vw be a diameter of K and 

v = z +—-—(z — w). 
A 

Put 

fz(y) — Ilv ~~ zll — |lv' ~ zll-

From now on we assume d ^ 3; the case d — 2 can be dealt with analogously 
(or see [9]). By the definition of a regular diameter, in any neighbourhood of 
x there is a component V+ off~l(R+) and a component V~ off~l(R~) both 
surrounding JC, i.e., such that x lies in a bounded component V'+ of C V+ and in 
a bounded component V'~ of C V~. Now pz has in every component V+ a local 
maximum. Since every local maximum is an endpoint of a diameter through 
z, z £ M^. By the Lemma, the set of regular diameters is residual. Thus the 
theorem is proved. 

THEOREM 2. In most convex bodies, most points belong to infinitely many di­
ameters. 

Proof. As a consequence of the proof of Theorem 1, we find k components 
Vj*-,..., V£ of/z

_1(R+) and k-1 components Vf,. . . , Vf_ x off~l(R-) such that 
Vf C V/+ and V ^ C V/~ (/ = 1, . . . , / : — 1). Since v' depends continuously 
on v and v and z, so does /z(v), which implies that for some neighbourhood 
Ni of z we have, for any u G Ni, two components £//", £7^ of f~l(R+) and 
a component f/f of f~l(R~) such that Uf lies in a bounded component f//+ 

of Cf/^ and ( / ^ lies in a bounded component U\~ of CC/f • Thus, for any 
u G UÏ=xNh Ur C ^//+ and U++l C (//" (i - 1,. . . ,k - 1). It follows that, 
for any such w, fu(v) has at least k local maxima (in the variable v). Every such 
local maximum is the endpoint of a diameter through u. This means that 

k 

f]NtCMk. 
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Now let O be open in K. Since every point of K lies on a diameter, there is a 
diameter meeting O. By Theorem 1, there also is a regular diameter xy with a 
point z E xy DO. Now, the considerations above imply that CMk is nowhere 
dense, since 

k 

Onf]NiCMk. 

Thus 
oo oo 

CM^ = cf]Mk = [jCMk 

is of first category and the theorem is proved. 

Points on uncountably many diameters. Theorems 1 and 2 leave open the 
question whether a typical convex body must have a point lying on uncountably 
many diameters. 

For any K G 3C and z EK, let Q,(z) be the set of all unit vectors u G Sd~x such 
that the chord through z in direction M is a diameter of K. Clearly, Q.(z) = —Q(z). 

THEOREM 3. Let S C Rd be countable. For most convex bodies K, at each 
point z G 5 DA', Q(z) is perfect and nowhere dense. 

Let z G S. We prove the theorem for S = {z}; since any countable intersection 
of residual sets is residual, the theorem in its general form will follow. We start 
by observing that z G bd^f for a nowhere dense family of sets K only. So we 
may assume z G intÂ'. We prove that, for most K G %, the set Q,(z) is perfect 
and nowhere dense. First we remark that Q(z) is always closed. Thus we only 
have to prove that £2(z) contains no open set and no isolated element, for most 
K. In fact the nowhere density follows from Theorem 5. However we give here 
a simple direct proof. 

Suppose Q(z) includes an open set. This means that there are two diametrically 
opposite points JC, y with z G xy and two open sets Fx, Fy around x and y on 
b d # such that Fx and Fy are inversely homothetical with respect to z. Let 

9Cn = {K e 9C : 3FX, Fy such that diam Fx ^ n~\ diam Fy ^ n~1}. 

Clearly, % n is closed; it remains to show that C$C 'n *
s dense. This is indeed so 

since any convex body is approximable by a poly tope without parallel facets. 
Suppose now Q(z) has an isolated element u. Then there is a disk Gx C bàK 

around an endpoint x of the diameter xy through z in direction UJ such that the 
only diameter through z with an endpoint in Gx is xy. Let 

2tn = {K e 9t : 3GX such that diam Gx > n~1}. 

We show that %n is nowhere dense. Let O C 9£ be open. 

https://doi.org/10.4153/CJM-1990-003-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-003-8


TYPICAL CONVEX BODIES 57 

Take K' G O to be smooth. Q.(z) is compact, so we may choose a finite open 
covering of £l(z) with sets Du . . . ,Dm of diameter less than (4/i)_1. Consider a 
point 

u>esd-l\\jDh 
i=l 

Since a; ̂  £2(z), the chord x^y^ in direction u satisfies 

a(xu) + a(yu) f 0, 

and in a small neighbourhood Z)(u;) of UJ we have 

||a(xv)-ha(jv)|| > Î / (O; ) 

for some rj{uj) > 0 and all v G D(u;). Choose a finite covering D(u;i),... ,D(u;/) 

of ^ - ^ U ^ i A a n d l e t 

x] = min{r](uji) : / = 1, . . . , /}. 

Now choose a polytope P very close to K', so that 

||v' + v l £ t , / 2 

for any v' G Np(xv), v" G Np(yv), and any 

/ 
v G (J D(w/), 

/=i 

and so that F has a diameter jt/j; in a direction «/ G A for any / = 1, . . . , m. 
These diameters can be chosen so that X[ is a vertex of P and yt is in the relative 
interior of a facet F, of P. Now fix / and denote JC/J,- and Ff- by xy and F 
respectively (for simplicity of notation). Choose a line segment xlx2 parallel to 
F, so that x is the midpoint of xlx2. Let yl[y2] be the point in bdP close to y 
and collinear with x1 and z[x2 and z]. 

We choose the line segment xlx2 so short that j 1 , y2 £ F and that P' = 
conv(P U {x1,^2}) is as close as we wish to P. 

Now we take nl G int Np>(xl) and ft2 G int NP'(x2) very close to — a(y) and we 
cut off from P' two caps by hyperplanes through y orthogonal to nl, respectively 
n2. We get in this way a convex polytope Q as close to P' as we wish. 

Denote by yj the point in bdg collinear with xJ and z (y = 1, 2). It is clear 
that if the segment xlx2 is short enough then x1^1 and x2y2 will be diameters 
ofQ. 

Let Hx, Hy be the hyperplanes through x, respectively y, both parallel to F. 
Now define a function /Q on 7/x: for t € Hx, let x(0 G bd g be the point close 
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to x with x(t) — t orthogonal to Hx (or zero) then determine y(t) G bdQ collinear 
with z and x(t). Next determine s(t) G Hy as the orthogonal projection of y(t) 
to Hy. Finally let 

fQ{t) = \\x(t)-t\\-^^\\y(t)-s(t)\\. 

By the construction, this function/Q has strict local minima at xl and x2. Now 
we do this same thing successively with all diameters x/y; (i — 1 , . . . , m), not 
disturbing the properties of the polytopes and functions already constructed, 
which are of interest for our purposes. 

We eventually get a poly tope P* G O. We claim that, if K is in a neighbour­
hood 0\C of P* which is small enough, then for every diameter of K through 
z there will be another one with angular distance less than n~l. If K is close 
enough to P* then K cannot have a diameter through z in any direction from 
(J?=1 D(uJi). So every diameter of A' through z is defined by a direction from Di9 

for some / € { 1 , . . . , m}. We show that there are two directions of diameters 
through z in every D; and this will prove the claim. Consider the function fK 

defined in the same way as before, but with K instead of Q. 
If K is close enough to P*, thenfK will be very close to fP* and so fK will 

have at least two local minima t\ and ^, close to xl and x2. At these local 
minima, the corresponding chords xK(tj)yK(tj)(j = 1, 2) will be diameters of K. 
Thus 

and the proof is finished. 
In 1965 Hammer [2] raised the question whether there exist a convex body 

K and a point z G int K such that the set R(z) of all ratios into which z divides 
the various diameters through z is uncountable. Besicovitch and Zamfirescu [1] 
answered the question by providing such a convex body and such an interior 
point. 

THEOREM 4. Let S G Kd be countable. For most convex bodies K, at each 
point z € S C\K, R(z) is uncountable. 

Proof. Let z G S. We prove the theorem for S = {z}. First we remark that 
{K G 3C • z G bdK} is nowhere dense. We prove that, for most K G 3C with 
z G int#, R(z) is perfect. Clearly, R(z) is closed. Thus we only have to show 
that R(z) contains no isolated point, for most K G 2£ • The proof parallels the 
last part of the proof of Theorem 3, where it is shown that, typically, Q,(z) has 
no isolated point. 

The only change which has to be made is the following: Using the notations 
of the mentioned proof, we have to arrange, when choosing the unit vectors nl 

and n2 in int NP>(xl) and intAf/>/(jt2) respectively, that 

H*'-z|l J|*2-z[| 

r-zir \\f-z\\-
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Directions of concurrent diameters. In Theorem 3 it is shown that, for 
countably many points z, the set Q(z) is nowhere dense. This can be considerably 
improved by allowing z to be any point in K and by replacing nowhere density 
by uniform porosity. 

A set M in a metric space (X,è) is called uniformly porous if there exists a 
constant a > 0 such that in any ball B(x, r) C X there is a point y such that 

B(y,a8(x, y))HM = 0. 

THEOREM 5. For most convex bodies K E % and for all points z E AT, Q,(z) is 
uniformly porous. 

Proof. Suppose d ^ 3. The proof for d = 2 is analogous and simpler. Define 
K(e) to be the inner parallel body to K at distance e. We denote the angle 
between the vectors w, v E Sd~l by <£ uv. Let /(S) and fi(S) be the inradius and 
the (d — 2)-dimensional measure of the convex set S C Sd~2 (the convexity is 
understood on Sd~2). Since i(S) —• 0 implies /x(S) —> 0, the number 

a = M{i(S) : n(S) = d-2fi(Sd'2)} 

is positive. Set now 

Kn K e % : 3z € # ( 0 and 3u G S^such that Vv E S 

with <£ uv ^ « l, 3 vv E £2(z) with <£ wv ̂  —. <£ wv >. 

Obviously, %^n is closed. 
We show now that !?C„ is nowhere dense. Let O C ^ be an open set. If there 

is no K E O with K(n~l) ^ 0 then O n 3C„ = 0 and we are done. If this is not 
the case, then there is a simple polytope P E O without parallel facets or facets 
of diameter at least n_1, and such that P(n~l) ^ 0. Consider now z E P(n~l) 
and a chord xy of P through z with direction u. If xy is not a diameter of P 
then the chords through z that are close enough to xy are not diameters either. 

So assume xy is a diameter. Then x or v or both are contained in faces of P, 
each of dimension less than d— 1, for P has no parallel facets. Let F\,..., Fk and 
G i,..., Gi be the facets containing x and y respectively. Let H be the hyperplane 
through x with normal u. Project F\,..., Fk from z to / / , then reflect G\,..., G/ 
through z and project the resulting sets from z to / / . In this way we get (d — 1)-
dimensional polytopes F j , . . . , F'k and G\,..., G\ in / / (because the diameter of 
each facet is less than n~l). Let 
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and define G" (/ = 1,...,/) analogously. These sets are convex in Sd~2. 
Clearly, the convex sets F" nG'J (i = 1, ...,&, j = 1,...,/) form a sub­
division of Sd~2. Now P is simple, so k ^ d and / ^ J. Thus there are / and j 
so that 

Then Ff Pi G'j contains a (d — 2)-dimensional (spherical) disk of radius a and 
centre c. Consider the point c\ = x + Ac. For small enough A > 0, the open 
(d— l)-dimensional ball D in H around c\ of radius «||CA — x\\/2 lies in F'PiGj. 
Choose 

v = \\c\ -z\\~l(cx-z). 

We claim that, for any w G Sd~l with <£ vw ̂  (a/8) <£ wv, the halfline {z+Aw : 
A ̂  0} intersects H inside D. 

Indeed, let S* be the sphere with centre z which passes through x and let v' 
be the intersection of zc\ with S*. Let w' and w" be the intersections of the ray 
from z in direction w with 5* and / / , respectively. Let wo be the point of zw" 
nearest to v'. Then 

cos <£ uw • cos <£ uv ̂  cos AZ-1 • COS(2AZ)_1 > cos2l > - . 

But 

Thus 

\\c\-x\\ 4 

v w <£ vw a 
\\c\-x\\ v'x <£ wv 

\\cx-w"\\<4\\v'-wo\\^^\\cx 

which verifies our claim. 
Now, D C F'DGj. Since Ft and G7 are not parallel, w g ft(z). Hence P Ç 9Cn 

and 3C„ is nowhere dense. 
It follows that 

a^nf ac\Qacn 
n=i 

is residual. Let ^ be an element of this set and take z G K. If z G int K, then 
z G A^fl-1) for some n and Q(z) is uniformly porous. If z G bdÀ', then Q(z) 
consists of two (antipodal) points only. The theorem is proved. 
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Remark. It follows from Theorem 5 and from Lebesgue's density theorem 
that, for most K £ 9^ and any z £ K, Q(z) has measure zero on Sd~l. 

Normals to typical convex surfaces. We shall now consider normal lines to 
convex surfaces. Heil [4] proved that any convex surface in Rd admits a point 
lying on at least 6 normals to the surface for any dimension d ^ 3. For a typical 
convex surface and any d ^ 2 the following holds. 

THEOREM. ([7], [8]) For most convex surfaces, most points in Rd lie on in­
finitely many normals. 

We are now able to complete the generic description of normals to convex 
surfaces. 

Let O(z) denote the set of directions of normals through the point z G R^ to 
a given convex surface. 

THEOREM 6. Let S C Rd be countable. For most convex surfaces in Rd the 
following is true: 

(i) For any point z G 5,0(z) is perfect in Sd~l. 
(ii) For any point z £ R d , O(z) is uniformly porous in Sd~l. 

Theorem 6 admits a proof which is very similar and slightly simpler than 
those of Theorems 3 and 5 and will therefore be omitted. 
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