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Abstract. We show that there exist infinitely many knots of every fixed genus g � 2
which do not admit surgery to an L-space, despite resembling algebraic knots and L-space
knots in general: they are algebraically concordant to the torus knot T(2, 2g + 1) of the
same genus and they are fibred and strongly quasipositive.
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1. Introduction and statement of result. Algebraic knots, which include torus
knots, are L-space knots: they admit Dehn surgeries to L-spaces, certain 3-manifolds
generalising lens spaces which are defined in terms of Heegaard Floer homology [7].

The first author recently described a method to construct infinite families of knots of
any fixed genus g � 2 which all have the same Seifert form as the torus knot T(2, 2g + 1)
of the same genus, and which are all fibred, hyperbolic and strongly quasipositive. Besides
all the classical knot invariants given by the Seifert form, such as the Alexander poly-
nomial, Alexander module, knot signature, Levine–Tristram signatures, the homological
monodromy (in summary, the algebraic concordance class), further invariants such as
the τ and s concordance invariants from Heegaard Floer and Khovanov homology fail
to distinguish these knots from the T(2, 2g + 1) torus knot (and from each other).

This is described in the article [10], where a specific family of pairwise distinct knots
Kg,n, n ∈ N, with these properties is constructed for every fixed genus g � 2. Figure 1 shows
a diagram of the simplest non-trivial example, K2,1.

Here we show that none of the Kg,n is an L-space knot (except Kg,0, which is the torus
knot T(2, 2g + 1) by construction). This implies our main result:

THEOREM 1. For every integer g � 2, there exists an infinite family of pairwise
distinct genus g knots Kg,n, n ∈ N, with the following properties.

(1) Kg,n is algebraically concordant to the torus knot T(2, 2g + 1)
(2) Kg,n is fibred, hyperbolic and strongly quasipositive
(3) Kg,n does not admit any nontrivial Dehn surgery to a Heegaard Floer L-space

We show in fact that the knots Kg,n constructed in [10] do not have the same knot Floer
homology as T(2, 2g + 1).
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Figure 1. The knot K2,1, as a plumbing of four Hopf bands.

It is also worth pointing out that each knot Kg,n# − T(2, 2g + 1), for n � 1 and g � 2,
is a candidate for being a counterexample to the Slice-Ribbon conjecture; compare the
discussion in [10].

Below we briefly introduce the notions of L-spaces, L-space knots, quasipositivity
and fibredness and relate our result to recent work by Boileau, Boyer and Gordon on the
subject of L-space knots. Section 2 contains a description of the fibred knots Kg,n via
their monodromy (taken from [10]) and collects the main ingredients from Heegaard Floer
theory and Lagrangian Floer homology used in the proof of our result, which is given in
Section 3.

1.1. L-spaces, quasipositivity and fibredness. L-spaces are named after lens
spaces, three-dimensional manifolds formed by glueing two solid tori along their bound-
aries. By definition, a closed 3-manifold M is an L-space if it is a rational homology sphere,
that is, H∗(M,Q)∼= H∗(S3,Q), and its Heegaard Floer homology has the smallest possi-
ble rank: rk ĤF(M)= |H1(M,Z)|. Every lens space (except S1 × S2, which fails to be a
rational homology sphere) is in fact an L-space. More generally, 3-manifolds with finite
fundamental group (the manifolds with elliptic geometry, certain Seifert fibred manifolds)
are known to be L-spaces [16, Proposition 2.3].

A knot K ⊂ S3 is an L-space knot if some positive integral Dehn surgery on K yields an
L-space. Basic examples include the torus knots and the Berge knots, since they admit lens
space surgeries; see [1, 6, 12]. In addition, all algebraic knots (the connected links of plane
curve singularities, which include all positive torus knots) are L-space knots. This follows
from a theorem of Hedden stating that certain cables of L-space knots are again L-space
knots [7, Theorem 1.10], combined with the classical description of algebraic knots as
iterated cables of torus knots, involving the Puiseux inequalities (see, for example [3]).

By work of Ghiggini [5] and Ni [13, Corollary 1.3], [14], all L-space knots are known
to be fibred: they arise as the bindings of open book decompositions of S3. In addition,
Hedden proved that the open book associated to an L-space knot (or to its mirror) sup-
ports the tight contact structure of S3, under Giroux’ correspondence (see [8, Theorem 1.2,
Proposition 2.1] and Ozsváth-Szabó [16, Corollary 1.6]). In summary, L-space knots are
tight fibred knots.

Besides Dehn surgery, another important construction of 3-manifolds, starting from
a knot K ⊂ S3, is given by branched covering of S3 branched along K. The n-fold cyclic
branched covering, branched along K, is denoted�n(K). For example, if K is an alternating
knot, �2(K) is always an L-space [17].
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Recently, Boileau et al. [2] considered L-space knots K ⊂ S3 with the additional prop-
erty that �n(K) is also an L-space for some n ∈ N, n � 2. They deduced strong restrictions
on such knots. In order to state their results, we briefly recall the notion of strongly quasi-
positive knots, which were introduced and first studied by Rudolph in the 80s [19]. Let
the symbols σ1, σ2, . . . , σn−1 denote the standard positive generators of the braid group
on n strands, σi corresponding to the braid in which the i-th strand crosses over the
(i + 1)-st strand in the direction of the braid’s orientation (and no other crossings). A
braid β is called strongly quasipositive if it can be written as a product of conjugates of
the σi:

β =
d∏

j=1

wjσnj w
−1
j ,

where d ∈ N, n1, . . . , nd ∈ {1, . . . , n − 1} and the conjugating words wj are of the special
form

wj = σnj−k · · · σnj−1

for some k (depending on j). Accordingly, such braids are called strongly quasipositive.
Hedden showed that a fibred knot is tight if and only if it is strongly quasipositive [8].
Fibredness is important here: there do exist non-fibred strongly quasipositive knots.

THEOREM 2 (Boileau et al. [2]). Let K be a strongly quasipositive knot with monic
Alexander polynomial. Then

(1) �n(K) is not an L-space for n � 6.
(2) If �n(K) is an L-space for 2 � n � 5, then K has maximal signature and its

Alexander polynomial is a product of cyclotomic polynomials.

COROLLARY 1 (Boileau et al. [2]). Let K be an L-space knot such that �n(K) is an
L-space for some n. Then

(1) n � 4 implies that K is the trefoil knot.
(2) n = 3 implies that K is either the trefoil knot or its Alexander polynomial is equal

to t4 − t3 + t2 − t + 1, the Alexander polynomial of the cinquefoil knot. If it is
neither the trefoil nor the cinquefoil, it is a hyperbolic knot.

These results suggest that the two properties, admitting an L-space surgery and admit-
ting an L-space branched cover are orthogonal in the sense that only few knots seem to
satisfy both properties simultaneously. When applied to genus g knots Kg,n satisfying the
properties of Theorem 1 (and described in the next section), the above Corollary 1 implies
that �m(Kg,n) is not an L-space for m, g � 3 and n �= 0:

COROLLARY 2. Fix g � 3 and let Kg,n denote the genus g knot described below. If
m � 3 and n �= 0, the m-fold cyclic branched cover �m(Kg,n) of S3, branched along Kg,n is
not an L-space. �

For g = 2, the knots Kg,n have the same Alexander polynomial as the cinquefoil knot
T(2, 5). The following (open) question was brought to our attention by Ken Baker, Michel
Boileau, Marco Golla and Arunima Ray, independently.

QUESTION. Is the double branched cover �2(Kg,n) an L-space for any of the knots Kg,n,
n �= 0 (mentioned in Theorem 1 and described below)? Is �3(K2,n) an L-space?
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Figure 2. The surface S of genus g and one boundary circle with the twist curves αi, βj.

Figure 3. The curve βg,n = tn
c(βg) wraps n-times around the curve c in both directions which gives a

total of 2n strands parallel to c (represented by the shaded band). αg−1 and βg,n intersect in 4n points.

2. Monodromies, L-spaces and exact triangles.

2.1. The monodromy of the fibred knots Kg,n. Let us recall the construction of
the knots Kg,n from the article [10]. Throughout, we fix an integer g � 2, the genus of the
knots to be constructed. The fibred knots Kg,n are given in terms of their monodromies:
Kg,n has a genus g fibre surface Sn. Since the topological type of Sn ⊂ S3 does not depend
on n, we can identify Sn with a fixed abstract (non-embedded) surface S and consider the
monodromy of Kg,n as a mapping class ϕn : S → S. Given a simple closed curve γ ⊂ S, we
denote tγ : S → S the right Dehn twist on γ . Using this notation, the monodromy ϕn, n ∈ N,
is defined as the following composition of Dehn twists:

ϕn := (tβg,n ◦ tβg−1 ◦ . . . ◦ tβ1) ◦ (tαg ◦ . . . ◦ tα1),

where

βg,n := tn
c(βg)

and αi, βj and c are the simple closed curves shown in Figure 2. The curve c, shown in blue,
is the boundary of a neighbourhood of αg ∪ βg−1 in S. In particular, it is nullhomologous,
intersects βg and αg−1 in exactly two points each and does not intersect any of the remaining
curves.

It follows that βg,n ∩ αg−1 consists of 4n points (see Figure 3). Since βg and αg

intersect in exactly one point and αg, c are disjoint, βg,n ∩ αg is a singleton. Moreover,
all pairs of curves involved in the construction realise their minimal geometric intersec-
tion number in their homotopy classes. This is clear whenever two curves are disjoint or
intersect transversely in a single point. For the remaining cases, use the bigon criterion
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[4, Proposition 1.7]. In particular, this applies to the curves βg,n and αg−1, whose minimal
geometric intersection number ι(αg−1, βg,n)= #(αg−1 ∩ βg,n)= 4n is used in the proof of
our Theorem 1. These two curves are represented in Figure 3 (the shaded band represents
2n parallel strands with alternating orientations which are part of βg,n).

2.2. Floer homology of L-space knots. The proof of our result, Theorem 1, relies
on the following theorem by Ozsváth-Szabó, which implies that the knot Floer homology
groups of an L-space knot are at most one-dimensional in each Alexander degree.

THEOREM 3 (Ozsváth-Szabó, Theorem 1.2 in [16]). Let K ⊂ S3 be a knot which admits
a positive integral L-space surgery. Then, there exists a sequence of integers n0 = 0< n1 <

. . . < nk such that

ĤFKd(S
3,K; j)∼=

⎧⎨
⎩

Z if ( j, d)= (±ni, δi), for some i

0 otherwise,

where the supporting dimensions δi only depend on the ni, according to the recursive
formula

δi =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = k

δi+1 − 2(ni+1 − ni)+ 1 if k − i is odd

δi+1 − 1 if k − i> 0 is even.

We make use of two exact triangles in knot Floer homology and in Lagrangian Floer
homology to bound the rank of the knot Floer homology groups of our knots Kg,n from
below. Since the Kg,n are all fibred of genus g, their knot Floer homology groups in
Alexander degree ±g have rank one. To prove that Kg,n is not L-space for n> 0 we will
show that

rk ĤFK(S3,Kg,n; −g + 1) > 1,

which contradicts the condition of the last theorem. Note also that it does not suffice to
consider the coefficients of the Alexander polynomial of the genus g knot Kg,n, since it
equals the Alexander polynomial of the torus knot T(2, 2g + 1), whose coefficients are
all ±1.

2.3. Two exact triangles in knot Floer homology and in Lagrangian Floer
homology. Recall that the monodromies of the knots Kg,n only differ by a single Dehn
twist. In order to estimate their Floer homology ranks, we wish to relate the Floer homology
groups of fibred knots (in possibly distinct 3-manifolds) whose monodromies differ by a
Dehn twist. This is done by realising the composition of the monodromy with a Dehn twist
as a Dehn surgery and using the surgery exact sequence for Floer homology, as follows.

Let Y be a closed oriented 3-manifold and let K ⊂ Y be a genus g fibred knot with
associated monodromy ϕ : S → S, so that, if N is a tubular neighbourhood of K, Y \N is
homeomorphic to the mapping torus (S × [0, 1])/((x, 1)∼ (ϕ(x), 0)). An essential simple
closed curve γ ⊂ S can then be identified with a knot Lγ ⊂ S × {0} ⊂ Y .

Fix γ and assume that Lγ is non-trivial. Let K ′ ⊂ Y ′ := Y−1(Lγ ) and, respectively,
K0 ⊂ Y0 := Y0(Lγ ) be the knots determined by K in the manifolds obtained via −1 and,
respectively, 0-surgery on Lγ . Here we use the framing of Lγ induced by the surface S.
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For example, 0-surgery along Lγ consists in removing a solid torus neighbourhood of
Lγ ⊂ Y and gluing it back in, identifying its meridian to a parallel push-off of γ inside of
S × {0}. With this convention, K ′ is also a genus g fibred knot, with associated fibre S and
monodromy ϕ ◦ tγ . On the other hand, K0 has genus at most g − 1, since we can compress
S ⊂ Y0 along the curve Lγ to obtain a genus g − 1 Seifert surface F ⊂ Y0 of K0. Using
this notation, (S, γ, ϕ(γ )) becomes a sutured Heegaard diagram for the sutured mani-
fold Y0(F). This means that the sutured manifold Y0(F) := (Y0 \ (F × [0, 1]), ∂F × [0, 1])
is obtained from the product sutured manifold (S × [0, 1], ∂S × [0, 1]) by attaching a
2-handle along γ × {0} and a 2-handle along ϕ(γ )× {1} (see the Definitions 2.4 and 2.10
of [9]). Theorem 1.5 of [9] and the definition of sutured Floer homology imply that

ĤFK(Y0,K0; −g + 1)∼= HF(γ, ϕ(γ )), (2.1)

where the latter is the Lagrangian Floer homology of (γ, ϕ(γ )). This is a homology whose
generators of the chain complex are intersection points of γ and ϕ(γ ) (which are assumed
to be transverse; see for example [20] for the details of the definition). We recall also that
if two curves a and b are homotopic then

rk HF(a, b)= 2 (2.2)

and if they are not homotopic then

rk HF(a, b)= ι(a, b), (2.3)

where ι(a, b) denotes the geometric intersection number of the curves a and b.

LEMMA 1. Using the same notation as above, that is, K ⊂ Y is a fibred knot of genus
g with monodromy ϕ : S → S, γ ⊂ S is an essential simple closed curve and (Y ′,K ′) is
obtained from (Y ,K) by (−1)-Dehn surgery along γ ⊂ Y, the following triangle is exact.

ĤFK(Y ,K; −g + 1) �� ĤFK(Y ′,K ′; −g + 1)

������
���

���
���

�

HF(γ, ϕ(γ ))

����������������

Proof. This is a direct consequence of (2.1) and Ozsváth and Szabó’s exact sequence
for knot Floer homology.

The second lemma we are going to use is a special case of a theorem due to Seidel. It
generalises the well-known identity ι(ta(b), b)= ι(a, b)2 for essential simple closed curves
a, b on a surface [4, Proposition 3.2].

LEMMA 2 (Seidel [20]). Let S be a compact oriented surface with boundary and tc :
S → S the Dehn twist on a simple closed curve c ⊂ S. For any pair of simple closed curves
a, b ⊂ S, there is an exact triangle of Lagrangian Floer cohomology groups

HF(tc(a), b) �� HF(a, b)

�����
���

���
���

�

HF(c, a)⊗ HF(b, c)

���������������
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3. Proof of the main theorem.

Proof of Theorem 1. Let ψ := tβg−1 ◦ . . . ◦ tβ1 ◦ tαg ◦ . . . ◦ tα1 , so that ϕn = tβg,n ◦ψ . Let
(Y ,K) be given by the open book (S, ψ). That is, K ⊂ Y is a fibred knot with monodromy
ψ : S → S. Note that both the 3-manifold Y and the knot K ⊂ Y are independent of n, since
S only depends on g and ψ is also independent of n. Now consider the open book (S3,Kg,n)

associated to the fibred knot Kg,n, which is the knot of interest. It is obtained from (Y ,K)
by (−1)-Dehn surgery along the curve βg,n ⊂ S ⊂ Y . We can therefore apply Lemma 1 to
this situation, where (Y ′,K ′)= (S3,Kg,n).

ĤFK(Y ,K; −g + 1)
x �� ĤFK(S3,Kg,n; −g + 1)

y
������

����
����

���

HF(βg,n, ψ(βg,n))

z

�����������������

Exactness and the rank-nullity formula for x, y and z imply

rk ĤFK(S3,Kg,n; −g + 1)= dim ker y + dim im y

= dim im x + dim ker z

= rk ĤFK(Y ,K; −g + 1)− dim ker x

+ rk HF(βg,n, ψ(βg,n))− dim im z

� rk HF(βg,n, ψ(βg,n))− rk ĤFK(Y ,K; −g + 1)

To calculate the rank of ĤFK(Y ,K; −g + 1), we apply Lemma 1 again, now taking (Y ′,K ′)
to be the open book obtained from (Y ,K) by (−1)-Dehn surgery along βg,0 = βg ⊂ S ⊂ Y .
We obtain Y ′ = S3 and K ′ = Kg,0. The exact triangle from Lemma 1 now reads as follows.

ĤFK(Y ,K; −g + 1) �� ĤFK(S3,Kg,0; −g + 1)

������
���

���
���

�

HF(βg, ψ(βg))

����������������

Since Kg,0 = T(2, 2g + 1), we know that rk ĤFK(S3,Kg,0; −g + 1)= 1. Further, the curve
ψ(βg)= tβg−1(tαg(βg)) intersects βg in exactly one point, whence rk HF(ψ(βg), βg)=
ι(βg, ψ(βg))= 1. Because the above triangle is exact, we deduce

rk ĤFK(Y ,K; −g + 1)� 2. (3.1)

The missing piece of information is rk HF(βg,n, ψ(βg,n)). To compute it, observe first
that

ψ(βg,n)= tβg−1 ◦ tαg ◦ tαg−1(βg,n),

because βg,n = tn
c(βg) does not intersect any of the curves αi, βi for i � g − 2. We could, in

principle, directly compute the intersection number by studying the curves βg,n andψ(βg,n)

on the surface S. But Lemma 2 conveniently helps to simplify the calculation. First let us
apply it to the curves (a, b, c)= (βg,n, αg, αg−1), which gives

rk HF(tαg−1(βg,n), αg)= rk HF(βg,n, αg)= 1 (3.2)
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because αg−1 ∩ αg =∅ (so that the lower term of the exact triangle has rank 0) and βg,n

and αg intersect in a single point.
Now apply Lemma 2 three times to estimate rk HF(βg,n, ψ(βg,n))= rk HF(ψ(βg,n),

βg,n):

1. First apply the lemma to (a, b, c)= (tαg tαg−1(βg,n), βg,n, βg−1). Since βg−1 ∩ βg,n

=∅, the lower corner of the exact triangle vanishes and we get:

rk HF(ψ(βg,n), βg,n)= rk HF(tαg ◦ tαg−1(βg,n), βg,n).

2. Next choose (a, b, c)= (tαg−1(βg,n), βg,n, αg). The lower term in the exact triangle
is HF(αg, tαg−1(βg,n))⊗ HF(βg,n, αg) which has rank 1 by (3.2). The exactness of
the triangle implies that:

rk HF(tαg ◦ tαg−1(βg,n), βg,n)� rk HF(tαg−1(βg,n), βg,n)− 1.

3. Finally, choose (a, b, c)= (βg,n, βg,n, αg−1). The upper right term in the corre-
sponding triangle is HF(βg,n, βg,n) which has rank 2 by equation (2.2). It follows
that:

rk HF(tαg−1(βg,n), βg,n)� rk
(
HF(αg−1, βg,n)⊗ HF(βg,n, αg−1)

) − 2

= (rk HF(αg−1, βg,n))
2 − 2.

Summing up we get

rk HF(ψ(βg,n), βg,n)� (rk HF(αg−1, βg,n))
2 − 3.

On the other hand, the computation in Section 2.1 gives rk HF(αg−1, βg,n)=
ι(αg−1, βg,n)= 4n, so that:

rk HF(ψ(βg,n), βg,n)� 16n2 − 3.

Finally, substituting the last estimation and the one in (3.1) in the rank inequality
obtained at the beginning of this section we get:

rk ĤFK(S3,Kg,n; −g + 1)� rk HF(βg,n, ψ(βg,n))− rk ĤFK(Y ,K; −g + 1)

� 16n2 − 5.

If n �= 0 this quantity is strictly greater than 1 and Theorem 3 implies that Kg,n cannot be
an L-space knot. This establishes the third property stated in the Theorem. Properties (1)
and (2) are proven in [10].
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