
JFP 13 (5): 945–956, September 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796803004763 Printed in the United Kingdom

945

Producing all ideals of a forest, functionally

JEAN-CHRISTOPHE FILLI ÂTRE

Laboratoire de Recherche en Informatique, Université Paris Sud, 91405 Orsay Cedex, France

(e-mail: Jean-Christophe.Filliatre@lri.fr)

FRAN ÇOIS POTTIER

INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

(e-mail: Francois.Pottier@inria.fr)

Abstract

We present functional implementations of Koda and Ruskey’s algorithm for generating all

ideals of a forest poset as a Gray code. Using a continuation-based approach, we give an

extremely concise formulation of the algorithm’s core. Then, in a number of steps, we derive

a first-order version whose efficiency is comparable to that of a C implementation given by

Knuth.

1 Introduction

It is sometimes said that functional programming languages are inherently less

efficient than their imperative counterparts. Today, such an opinion has become a

stereotype without substance. Yet, we still confront it regularly, and must provide

convincing “practical” evidence. In this paper, we show how a complex algorithm,

heretofore presented only in an imperative form, can be expressed in a programming

language equipped with first-class functions. We obtain code that is more concise,

significantly easier to prove correct, yet equally efficient as the original. Then, we

derive a first-order version of our code, which can be easily implemented in C, if

desired.

The algorithm we are interested in is due to Koda & Ruskey (1993). It enumerates

the ideals of certain finite partially ordered sets – namely, those whose Hasse

diagram is a forest – as a Gray code. In general, a Gray code is a sequence of

words such that two consecutive words differ by only one letter. A widely studied

particular case consists in enumerating all binary integers, from 00 · · · 0 to 11 · · · 1,

as a Gray code. Gray codes find application in mathematics, electrical engineering,

optics, scheduling, network reliability, etc. In fact, a whole section is devoted to

them in the fourth volume of Knuth’s Art of Computer Programming. A preliminary

version of this section is currently available electronically (Knuth, 2001b). While

writing it, Knuth took interest in Koda and Ruskey’s algorithm, and published two

implementations of it (Knuth, 2001a). Our interest arose from these readings.

Koda and Ruskey’s algorithm can be described in a simple way. The task is to

enumerate all colorings of a given, arbitrary forest. A coloring consists in marking

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


946 J.-C. Filliâtre and F. Pottier

Fig. 1. Koda and Ruskey’s algorithm applied to the forest (1).

every node as either black or white, with the sole constraint that all descendants of

a white node be white as well. For instance, the following forest:

(1)

admits exactly 15 distinct colorings, all of which are given in Figure 1. By definition,

a sequence of colorings forms a Gray code if and only if every coloring of the

forest appears exactly once in it and two consecutive colorings differ by the color

of exactly one node.

Let us illustrate the algorithm’s functioning on the forest (1). The main idea is

to interleave the sequences of colorings which correspond to each of the trees that

form the forest. Here, one must interlace the sequence of the three colorings of the

left-hand tree, namely:

(2)

with the sequence of the five colorings of the right-hand tree, given below:

(3)

Thus, the first line of Figure 1 exhibits the first coloring of the left-hand tree,

combined successively with all colorings of the right-hand tree. The second line

shows the second coloring of the left-hand tree, again combined with all colorings

of the right-hand tree, but this time in reverse order – indeed, it is clear that the

mirror image of a Gray code remains a Gray code. Lastly, the third line exhibits

the third coloring of the left-hand tree and all colorings of the right-hand tree, this

time again in their initial order.

There remains to explain how to enumerate all colorings of a tree. Let the first

coloring be uniformly white. Then, to obtain the remainder of the sequence, color

the root node black and enumerate all colorings of the forest formed by its children.

The sequence thus obtained is indeed a Gray code, because (i) the first and second

colorings differ only by the color of the root node, and (ii) from then on, the root

node remains unaffected, and the sequence of the colorings of the children forms a

Gray code by construction. This process is illustrated by (2) and (3) above. Note

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


Functional pearl 947

that the coloring where every node is black does not necessarily appear last in a

sequence.

Koda & Ruskey’s (1993) paper describes two versions of this algorithm, written

as imperative pseudo-code and as Pascal code. One has complexity O(nN), where n

is the number of nodes in the forest and N is the number of its colorings, that is,

the length of the Gray code to be produced. The other is a refinement with optimal

complexity, namely O(N). More recently, two C implementations were given by

Knuth (Knuth, 2001a). All of these implementations are complex: they are typically

50–80 lines long and involve imperative modifications of subtle data structures.

The present paper describes an alternative approach to implementing Koda and

Ruskey’s algorithm. We begin with a simple algorithm (Section 2), which we first

implement in a purely functional manner and then translate into a slightly more

imperative style. Indeed, our programming language is Objective Caml (Leroy et al.,

2002), so it is natural to exploit – to some degree – its imperative features. However, it

would be possible to use any language that supports first-class functions and mutable

arrays, such as other ML dialects, Haskell, Lisp, Scheme, etc. In Section 3, we slightly

modify the algorithm so as to achieve optimal complexity O(N). Then, Sections 4

and 5 present refined implementations of the second algorithm, eliminating first-

class functions in favor of lower-level representations, while preserving most of the

simplicity afforded by our approach. Lastly, Section 6 compares our implementations

with those proposed by Knuth, performance-wise.

2 A continuation-based algorithm

We represent a forest as a value of OCaml type forest, defined as follows:

type tree = Node of int × forest

and forest = tree list

α list is OCaml’s predefined type for lists of elements of type α. The list containing

x1, x2, . . . , xn in this order is written [x1; x2; ...; xn]. The empty list is written

[]. The addition of an element x at the beginning of a list l is written x :: l. The n

nodes of the forest are labeled by the integers 0, 1, . . . , n− 1 in an arbitrary manner.

The algorithm needs to maintain a current coloring. It also needs to display every

coloring after it is computed. Thus, our purely functional implementation uses a

combined I/O and state monad, whose OCaml signature is given in the top half

of Figure 2. A state contains both the coloring, represented as an array of integers

where 0 stands for white and 1 stands for black, and the output displayed so far,

represented as a string. A computation is a state transformer, that is, a function

from states to states. The state create n is the algorithm’s initial state, where every

node is colored white. The computation update i c colors node i with color c. The

operation get i returns the color of node i. Finally, the computation print appends

the description of the current coloring to the output string. Implementing this

monad in OCaml is straightforward; we omit the code. To sequence computations,

it is convenient to introduce the following infix operation, which is nothing but

function composition:

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


948 J.-C. Filliâtre and F. Pottier

type state = int array × string

type computation = state → state

val create : int → state

val update : int → int → computation

val get : int → state → int

val print : computation

let rec enum_forest k f s = match f with

| [] → k s

| t :: f → enum_tree (enum_forest k f) t s

and enum_tree k (Node (i,f)) s =

if get i s == 0 then

(k ++ update i 1 ++ enum_forest k f) s

else

(enum_forest k f ++ update i 0 ++ k) s

Fig. 2. A continuation-based version of Koda and Ruskey’s algorithm (C0).

val (++) : computation → computation → computation

Let us now describe the core of the algorithm. Because trees and forests are

defined in a mutually inductive way, we naturally define two mutually recursive

functions enum tree and enum forest, which enumerate the colorings of a tree and

of a forest, respectively. The key idea is to give these functions an extra argument

k, of type computation, which will be called after every coloring of the tree (resp.

forest) is complete. The function k may be viewed as a continuation, and we call

it so in the following. The idea is, if the function k enumerates the colorings of a

certain forest f0, then the computation enum forest k f enumerates the colorings

of the forest f @ f0 and enum tree k t those of the forest t :: f0, where @ denotes

forest concatenation.

The code is given in Figure 2; we refer to it as C0. Throughout, the variable s

denotes the current state. Let us begin with enum forest. If the forest is empty, we

simply call the continuation. If, on the other hand, the forest contains at least one

tree t next to a sub-forest f, then we enumerate the colorings of t, by applying

enum tree to t, with a new continuation that enumerates the colorings of f with

continuation k. Let us now turn to enum tree. Its task is slightly more complex,

because it must enumerate the colorings either in one direction, or in the other,

depending upon the current state. To determine which, enum tree looks up the

color of the tree’s root, that is, get i s. If it is currently white, then the whole tree

must be white. We have a complete coloring, so we signal the continuation k; then,

we color the root black and enumerate its children’s colorings using enum forest.

If, on the other hand, the root is currently black, we do the converse. That is, we

first use enum forest to enumerate the children’s colorings in reverse order, which

leaves all of the children entirely white; then, we color the root white, and signal the

continuation k.

To run C0 on a forest f, one calls enum forest with a continuation that displays

the current coloring every time it is invoked, that is, print:

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


Functional pearl 949

type computation = unit → unit

let rec enum_forest k = function

| [] → k ()

| t :: f → enum_tree (fun () → enum_forest k f) t

and enum_tree k (Node (i,f)) =

if bits.(i) = 0 then begin

k (); bits.(i) ← 1; enum_forest k f

end else begin

enum_forest k f; bits.(i) ← 0; k ()

end

Fig. 3. A slightly more imperative implementation (C1).

enum_forest print f

This computation is then applied to a suitable initial state, namely create n, where

n is the size of the forest f.

A slightly more imperative implementation. From here on, we use a native imple-

mentation of the monad described above, so as to obtain more idiomatic OCaml

code. That is, the current coloring is now stored in a global array bits, while

colorings are displayed by calling OCaml’s standard library functions. As a result,

computations operate only by side effect. The code is given in Figure 3; we refer

to it as C1. The differences with respect to C0 are minor. The state parameter s

disappears or is replaced with the () constant. The composition operator ++ is

replaced with OCaml’s native sequencing construct ;. The current coloring is looked

up and modified by reading and writing the global array bits. To run C1 on a forest

f, one calls enum forest with a continuation that displays the current contents of

the array bits at every invocation:

enum_forest (fun () → (* display current configuration *)) f

Complexity. To assess C1’s complexity, let us first introduce the two quantities in

terms of which it is expressed, namely the forest’s size and number of colorings. In

the following, we use OCaml’s list syntax for forests. We write Node f for a tree

whose children form a forest f (and whose index is irrelevant). The size of a forest

f (resp. of a tree t), written n(f) (resp. n(t)), is the number of its nodes. It is defined

inductively on the structure of trees and forests:

n([]) = 0

n(t :: f) = n(t) + n(f)

n(Node f) = 1 + n(f)

The number of colorings of a forest f (resp. of a tree t), written N(f) (resp. N(t)),

is defined similarly:

N([]) = 1

N(t :: f) = N(t)×N(f)

N(Node f) = 1 + N(f)

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


950 J.-C. Filliâtre and F. Pottier

Unless it is ambiguous, we write n and N for these two quantities. For the forest (1),

we have n = 5 and N = 15.

We must make some assumptions about the cost of every operation. We ignore

the cost of function calls: this slightly simplifies our computations, while affecting

the final result only up to a constant factor. Two operations remain to be taken into

account: modification of the bits array and closure construction. The former has

constant cost; as for the latter, it is reasonable to assume a constant amortized cost.

We consider both as unitary.

We write F(k, f) for the total cost of applying enum forest to a forest f with a

continuation of cost k. Similarly, we write T (k, t) for the cost of applying enum tree

to a tree t with a continuation of cost k. From the code C1, we derive the equations

that govern these quantities:

F(k, []) = k (4)

F(k, t :: f) = 1 + T (F(k, f), t) (5)

T (k, Node f) = 1 + k + F(k, f) (6)

In equation (5), the unitary cost corresponds to closure construction. The closure

itself is, by hypothesis, a continuation of cost F(k, f), hence the second term.

In equation (6), the unitary cost corresponds to updating the array. From these

equations, it is easy to establish the following upper bounds:

F(k, f) � N(f)× (k + n(f))

T (k, t) � N(t)× (k + n(t))− 1

When one applies enum forest to a forest f with a costless initial continuation,

the upper bound simplifies to N(f) × n(f). Thus, we conclude that C1 has time

complexity O(nN). One may show, in a similar way, that the number of closures

built during evaluation is bounded by N(f) − 1 and thus C1 has space complexity

O(N).

3 First refinement: pre-planning control

This time bound is not optimal; in fact, it is easy to see that C1 actually repeats some

computations many times. Indeed, every time a given forest is traversed, the same

continuation is built. In example (1), enum tree is applied three times to the second

tree; every time, it is passed a fresh continuation, whose effect is in fact the same

(namely to call the initial continuation).

It is possible, with a slight modification to the algorithm, to factor out these

repeated allocations. The idea is that enum tree and enum forest, instead of

enumerating the colorings immediately, should now return a continuation (that is,

a function of type unit → unit) that performs the enumeration when invoked.

The modified code, which we refer to as C2, is given in Figure 4. It differs from

C1 in three ways. First, when enum forest is applied to an empty forest, it merely

returns its continuation k, instead of executing it immediately. Second, when it

is applied to a non-empty forest, it immediately invokes enum forest k f, which

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


Functional pearl 951

let rec enum_forest k = function

| [] → k

| t :: f → enum_tree (enum_forest k f) t

and enum_tree k (Node (i,f)) =

let lf = enum_forest k f in

fun () →
if bits.(i) = 0 then begin

k (); bits.(i) ← 1; lf ()

end else begin

lf (); bits.(i) ← 0; k ()

end

Fig. 4. First refinement (C2).

returns a continuation; the need for an explicit delay (that is, a λ-abstraction) has

been removed. Lastly, and most importantly, enum tree calls enum forest only

once and returns a continuation. This call to enum forest is performed as soon

as enum tree receives two arguments, which is precisely the way it is used within

enum forest.

To run C2 on a forest f, one still applies enum forest to f with a display

continuation. The result is now itself a continuation, that must be invoked to

perform the actual enumeration, as follows:

enum_forest (fun () → (* display current configuration *)) f ()

C2 makes more intensive use of higher-order functions than C1: we now employ

functions that return functions. The principle remains the same, though: if the

function k enumerates the colorings of the forest f0, then the function enum forest

k f (resp. enum tree k t) enumerates those of the forest f @ f0 (resp. t :: f0). One

may notice that enum forest and enum tree are now instances of the generic “fold”

functions associated to the data types tree and forest. Still, for the sake of clarity,

we prefer to define them directly.

Complexity. The functions enum forest and enum tree now have three arguments.

Applying them to one argument does not trigger any computation, but the second

and third applications have distinct costs, which must be measured separately.

The cost of an application to two arguments is easily determined. Indeed, every

node in the forest at hand is clearly traversed exactly once; furthermore, traversing

every node induces a unit cost, due to the closure that is built within enum tree.

Hence, the total cost is the number of nodes, n. Moreover, because only this

preliminary phase allocates memory, we may immediately conclude that C2’s space

complexity is O(n).

The cost of a third application is measured as in the previous section. We now

write F(k, f) (resp. T (k, t)) for the cost of executing the function obtained by invoking

enum forest (resp. enum tree) with a continuation of cost k. From the code C2,

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


952 J.-C. Filliâtre and F. Pottier

we derive the following equations:

F(k, []) = k (7)

F(k, t :: f) = T (F(k, f), t) (8)

T (k, Node f) = 1 + k + F(k, f) (9)

Only the second equation differs from those that describe C1. Given these equations,

it is straightforward to verify the following identities:

F(k, f) = N(f)× (k + 1)− 1

T (k, t) = N(t)× (k + 1)− 1

Applying enum forest to a forest f with a costless initial continuation has a cost of

n(f). Then, invoking the continuation thus obtained entails a cost of N(f)− 1. Since

n(f) � N(f) holds, we may conclude that C2 has time complexity O(N), which is

obviously optimal. The first phase above can be viewed as a “pre-planning” phase,

which produces a network of continuations. Then, the second phase performs the

actual enumeration, without allocating any new closures.

4 Second refinement: defunctionalizing

The algorithm given in the previous section has optimal cost. Yet, it is still possible

to reap a small constant factor. Indeed, we notice that every continuation built by the

code in Figure 4 contains calls to unknown functions, namely k and lf. The OCaml

compiler represents these functions as closures containing a code pointer and a data

environment. This may incur a speed penalty on modern processors, because jumps

to unknown addresses often defeat the branch prediction unit, causing a pipeline

stall. One way to address this problem is to replace the branch to an unknown

address with a test, followed with a branch to a constant address. In other words,

we will now abandon the use of higher-order functions. To replace them, we will

introduce a data structure, together with a (first-order) function run which interprets

its values as functions. This technique, known as defunctionalization, was introduced

by Reynolds three decades ago (Reynolds, 1998a; Reynolds, 1998b). It has recently

received some new interest as a program transformation (Danvy & Nielsen, 2001)

or compilation (Cejtin et al., 2000) technique. Indeed, the program transformation

which we are about to describe could be performed automatically by a compiler

such as MLton (Cejtin et al., 2002).

It is easy to observe that every continuation manipulated by C2 is either the initial

continuation (which displays the current configuration), or a continuation built by

enum_tree, whose code then consists of the last six lines of Figure 4. The initial

continuation only needs access to the global array bits, so we will assume that it

has no free variables. Continuations of the latter kind, on the other hand, have three

free variables, namely i, k and lf. This analysis leads us to the following data type

definition:

type continuation =

| Display

| Continue of int × continuation × continuation

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


Functional pearl 953

let rec enum_forest k = function

| [] → k

| t :: f → enum_tree (enum_forest k f) t

and enum_tree k (Node (i,f)) =

Continue (i, k, enum_forest k f)

let rec run = function

| Display →
(* display current configuration *)

| Continue (i, k, lf) →
if bits.(i) = 0 then begin

run k; bits.(i) ← 1; run lf

end else begin

run lf; bits.(i) ← 0; run k

end

Fig. 5. Second refinement (C3).

A value of type continuation contains a tag – either Display or Continue –

which effectively plays the role of a code pointer. When the tag is Continue, it is

accompanied with values for i, k and lf, which suffice to capture the continuation’s

meaning.

The defunctionalized version of enum_tree, given in Figure 5, now returns a data

structure of type continuation, instead of an actual continuation. To use such a

data structure, we must interpret it as a function, that is, describe how it is “run”.

This is the role of the new function run. The function proceeds by cases, according

to the continuation’s tag. If it is Display, the current configuration is displayed

(code omitted). If it is Continue, then suitable values for i, k and lf are read from

the data structure, and the continuation’s code is executed. It is taken from the last

five lines of Figure 4, with calls to k and lf replaced with recursive calls to run. To

run C3 on a forest f, one writes run (enum_forest Display f).

According to measurements performed on a number of random forests, this

refinement yields a performance increase that is consistently comprised between

20% and 30%. Although this may be deemed a rather small improvement, we found

it interesting, in particular because this formulation helped us discover the next

refinement.

5 Last refinement: using integer continuations

From the definition of enum_tree in Figure 5, it is now clear that enum_forest k f

allocates exactly one continuation object for every node in the forest f. (One

may also notice that these objects form a directed acylic graph.) So, the initial

continuation set aside, continuations are in one-to-one correspondence with nodes.

This prompts us to identify the two notions, and – considering nodes are numbered

– to represent continuations as integers. By convention, the integer −1 will be used

to represent the initial continuation.

What becomes of the information stored in Continue objects? The integer i

becomes redundant, since it now is the continuation. The continuation k (resp. lf)

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


954 J.-C. Filliâtre and F. Pottier

let rec enum_forest k = function

| [] → k

| t :: f → enum_tree (enum_forest k f) t

and enum_tree k (Node (i,f)) =

ka.(i) ← k;

lfa.(i) ← enum_forest k f;

i

let rec run = function

| (-1) →
(* display current configuration *)

| i →
if bits.(i) = 0 then begin

run ka.(i); bits.(i) ← 1; run lfa.(i)

end else begin

run lfa.(i); bits.(i) ← 0; run ka.(i)

end

Fig. 6. Last refinement (C4).

will now be stored at index i in a global array ka (resp. lfa) of size n. Because

continuations are now integers, ka and lfa are arrays of integers.

The new version of enum_tree, given in Figure 6, now initializes the arrays ka

and lfa instead of allocating continuations, and returns i itself instead of a fresh

Continue object. The algorithm’s asymptotic space complexity remains unchanged,

but a constant factor is saved, whose exact amount depends on the runtime system.

In run, the initial continuation is now distinguished by the special value −1. In

the general case, i stands for a node number, and the two continuation nodes k and

lf are obtained by looking up the arrays ka and lfa at index i. To run C4 on a

forest f, one writes run (enum_forest (-1) f).

According to measurements performed on a number of random forests, this

refinement yields a performance increase that is consistently comprised between

0 and 10 percent. This is a minor improvement, but we believe this formulation

is nevertheless interesting, for two reasons. First, it is amenable to a very simple

implementation in a low-level language such as C. All storage is allocated in three

global arrays, requiring no dynamic allocation. Secondly, it sheds some light on the

algorithm’s structure. Since a continuation is now either a node or −1, the arrays

ka and lfa can be viewed as partial mappings from nodes to nodes. One may check

that they are initialized by enum_forest and enum_tree as follows:

• If i is the root of the left-most tree in the forest, then ka.(i) is −1;

• if i has a left sibling j in the forest, then ka.(i) is j;

• otherwise, i must have a parent j in the forest, and ka.(i) is ka.(j).

• If i has a child in the forest, then lfa.(i) is its right-most child;

• otherwise, lfa.(i) is ka.(i).

This version of the algorithm bears a rather strong resemblance with Knuth’s

coroutine-based algorithm (Knuth, 2001a). Indeed, Knuth’s algorithm defines exactly

one coroutine per node, and relies on tables which map every node to its left

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


Functional pearl 955

sibling and to its right-most child, if defined. However, Knuth’s approach has an

inherent deficiency: coroutines signal completion by returning, which may cause the

whole call stack to be unwound, whereas they do so, in our case, by invoking a

continuation. Thus, as recognized by Knuth, his algorithm may have asymptotically

worse behavior in some cases. It is noteworthy that our approach naturally leads to

an algorithm that is superficially similar to Knuth’s, but easier to understand, and

more efficient.

Knuth’s “loopless” algorithm, which appears similar to Koda and Ruskey’s

original description (Koda & Ruskey, 1993), addresses this deficiency by using a

mutable data structure that is significantly more complex. The next section compares

it with ours.

6 Performance assessment

We now compare C4, performance-wise, with Knuth’s “loopless” implementation

L. Both were compiled to x86 machine code, using the native OCaml compiler

with array bounds checking turned off, and gcc -O2, respectively. (We have also

hand-translated C4 to C code, with no noticeable time difference with respect

to the OCaml code.) L implements Koda and Ruskey’s more efficient algorithm,

which is loopless, that is, performs a constant amount of computation between two

consecutive colorings. Our implementation is not loopless, but has the same overall

time complexity, namely O(N).

In practice, the two implementations seem to have very similar performance, as

suggested by the following graph. Every data point shows the ratio of their running

times (that is, C4’s divided by L’s) for a random forest (with 30 � n < 45). The graph

has three hundred data points. We have verified that this ratio does not appear to

be correlated with n or N.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

These measurements reflect the time necessary to produce the Gray code only—

nothing was displayed. In a realistic application, every coloring would be exploited

for some purpose before producing the next coloring, so the performance difference

between the two implementations would be even less noticeable. In light of this

remark, we believe it is safe to claim that the two implementations are equally

efficient.

Our code is available electronically (Filliâtre & Pottier, 2002); it is functionally

equivalent to Knuth’s (Knuth, 2001a).

7 Conclusion

We have proposed a functional, higher-order implementation of Koda and Ruskey’s

algorithm. From it, we have derived a first-order version whose efficiency is

comparable to Knuth’s C implementation.

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763


956 J.-C. Filliâtre and F. Pottier

One key advantage of our continuation-based formulation (C2) is to be amenable

to formal proof. It is possible to give reasonably simple specifications for enum tree

and enum forest. Because these functions must enumerate colorings in either

direction, this requires characterizing the final coloring of the Gray code sequence

associated with a given forest. This can be done inductively over trees and forests.

As a result, the formalization is rather straightforward to conduct within a proof

assistant such as Coq (Barras et al., 2002). We are currently in the process of carrying

out such a task.

References

Barras, B., Herbelin, H. et al. (2002) The Coq Proof Assistant. URL: http://coq.inria.fr/.

Cejtin, H., Jagannathan, S. and Weeks, S. (2000) Flow-directed closure conversion for typed

languages. In: Smolka, G., editor, Proceedings 2000 European Symposium on Programming

(ESOP’00): Lecture Notes in Computer Science 1782, pp. 56–71. Springer Verlag.

Cejtin, H., Fluet, M., Jagannathan, S. and Weeks, S. (2002) The MLton Standard ML Compiler.

URL: http://www.mlton.org/.

Danvy, O. and Nielsen, L. R. (2001) Defunctionalization at work. Third International

Conference on Principles and Practice of Declarative Programming (PPDP 2001). (Also

available as BRICS Research Report RS-01-23. URL: http://www.brics.dk/RS/01/23/

BRICS-RS-01-23.ps.gz.)

Filliâtre, J.-C. and Pottier, F. (2002) Functional implementations of Koda and Ruskey’s

algorithm. URL: http://www.lri.fr/~filliatr/software.en.html.

Knuth, D, E. (2001a) An implementation of Koda and Ruskey’s algorithm. URL: http://

www-cs-staff.stanford.edu/~knuth/programs.html.

Knuth, D. E. (2001b) The Art of Computer Programming. Addison-Wesley.

Koda, Y. and Ruskey, F. (1993) A Gray code for the ideals of a forest poset. J. Algorithms,

15(2), 324–340.

Leroy, X., Doligez, D. et al. (2002) The Objective Caml language. URL: http://caml.inria.fr/.

Reynolds, J. C. (1998a) Definitional interpreters for higher-order programming languages.

Higher-order & Symbolic Computation, 11(4), 363–397.

Reynolds, J C. (1998b) Definitional interpreters revisited. Higher-order & Symbolic

Computation, 11(4), 355–361.

https://doi.org/10.1017/S0956796803004763 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004763

