Canad. Math. Bull. Vol. 29 (3), 1986

LATTICE PARTITIONS WITH A STRAIGHT LINE

BY
D. R. K. BROWNRIGG

ABSTRACT. In [1], the solution of a problem of distinct digital filter
enumeration was expressed in terms of enumerating partitions of a rectan-
gular set of lattice points with a straight line, under certain restrictions.
Here, firstly, an explicit expression is derived for the number of such
partitions in that and a more general case. Secondly, the asymptotic ratio
of partitions to square of lattice dimensions is derived for a square lattice.

1. Partitions for a given A,y. Let Ayy be a M by N lattice of points
{pxs,y);s=1,...,N;t=1,...,M}

in the xy plane with unit spacing in x and y.

Let the line L(x,y) = ax + by + ¢ = 0 not pass through any lattice point, so that
L(p) # 0forall p € Ayy.

Gradients between points in Ay are given by

g, p=i=-M-1,....M—-1;j=-N—-1,..., (N1,

S~ o~

Jj#O0
Gp=|+xifi>0,j=0 i,j coprime
—0ifi<0,j=0

Any L(x,y) such that —a/b & Gp can parition Ay in one of MN + 1 ways.

DEFINITION. The partition of Ay by L(x, y) is
PL,Aww) = {(xs,3): (x5 y) € Ay, Llx,,y,) < O}

Hence, for all (x, y,) € (Ayv — P(L, Ayn)), L(x,, y,) > 0.

When —a/b increases from (i/j — €)to (i/j + €), then for sufficiently small e > 0,
the possible partitions of Ay (depending on ¢) change.

For any subset of g collinear points at gradient i/j, the order in which they can be
added to P (L, Ayw) is reversed. That is, if a line of gradient (i/j — €), moved from
left to right over the points, produces partitions
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o, P1;P1,P2;...;P1,P2,...,Pq

then a line of gradient (i/j + €), moved from left to right over the points, produces
partitions

®; Pq;P(q — 1),Pq;...;P2,...,Pq;P1,P2,..., Pq

That is, (¢ — 1) new partitions have been created. That is, the number of new partitions
is equal to the number of immediate neighbor pairs with separation Vj? + j2.

Now if (i/j) = (ai'/aj") for integer i, j, i’, j', a and a > 1 then i/j spuriously
provides enumeration of new partitions as (—a/b) increases through (i /j), since these
partitions are included in those enumerated for (i’ /j").

Thus only (i/j): i,j coprime need be considered. That is, g(i,j) = (i/j) € Gp.

The nearest neighbour to a point at gradient i /j (i, coprime) is distance |j| in the
x-direction and distance |i| in the y-direction, giving an immediate neighbour pair.
Thus for a given row of points there are (N — |j|) such pairs. Also, for a given column
of points there are (M — |i|) such pairs. Hence, for (M — |i|) rows of (N — |}j|) pairs,
given i, j coprime, the number of immediate neighbour pairs in Ay at gradient (i /)
is (M — [i)(N = |j].

Firstly consider L only of negative slope and a > 0, b > 0. Then (—a/b) can
change through (—i/j),i=1,...,(M — 1),j=1,...,(N — 1) and so the number
of partitions P (L, Ayy) is

M=1N—1
Zw=MN+ 1+ 2 2 M=) N =) bij
i=1 j=1

where

.. _ J1ifi,jcoprime
b, j) = {0 otherwise
If L can have slope in [—g,g], g > M, and b > 0, then the number of partitions is

M—-1N-1
Yuw = MN + 1+ 2 2 (M~ i)(N — j)b(i.))
i=1 j=1
+ M(N — 1) {number of new pairs as (—a/b) increases thro’ 0}
M~-1N—-1

+ 2 2 (M —i)(N—j)bl,)
=1 =t M-1N-1

=2MN - M+ 1422 2 M~—i)>WN—j)bi,j)

i=1 j=1

If L can have slope from (—g)to (g), g > M, and a or b can be positive or negative,
then

L(x,y)=ax+ by + c=0

and
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L'(x,y)=—ax—by—¢c=0

give different partitions. The the number of possible partitions is

M—-1N-1
Xy = 2 2 (M —i)-(N = j)bGi,)) a/b<0,a<0

i=1 j=1

+MWN -1 grad. from 0— to O+
M—-1N-1

+ 2 2 M= i)W — )ba,)) a/b>0,a>0
i=1 j=1

+NM— 1) grad. from >g to <(—g)
M—-1N-1

+ 2 2 (M= i) (N - Jj)bi,)) a/b<0,a>0
i=1 j=1

+ MN — 1) grad. from 0— to O+
M—-1N—-1

+ 2 2 M= i) (N—j)bl,)) a/b>0,a<0
i=1 j=1

+ NM - 1) grad. from >g to <(—g)

M-1N-1
=4MN = 2M — 2N + 4 2 > M — i) (N — j)*b(i,J)
i=1 j=1
Thus the number of partitions, P (L, Ayy), when partitions with all or no points are
included, is

M-1N-1
Ty = 2(2MN -MFEN)+2- 2 X M- )N ——j)-b(i,j)) +2
i=1 j=1
If the ‘sense’ of the line is ignored, then the number of possible partitions (with “all’
and ‘none’ a single possibility) is

M—-1N—-1
Ruw=2MN—=M+N)+1+2- > > M~—i)N—j)bd,j
[
A particular case of interest, [1], is the lattice A&N, which is centred on the origin.
That is, point coordinates are
N+1 M+ 1)
{(s- -

s ):s=1,...,N,t:1,...,M}
2 2

In this case, the number of distinct members of a given class (weighted median filters
[1]) is given by the number of ways, Fy, of partitioning Ay with a straight line of
nonpositive slope, passing below and to the left of the origin. If M and N are both odd,
one point of An is at the origin and
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M-1 N-1

M-N+ 1+ M—10)-(N—j))b(,)
:(ZMN):( Z E( i)*(N = j)-b 1))

MN 2 2

If M or N is even, then a sufficiently small shift of an L passing through the origin
(not now belonging to Appy) Will not change P(L, Ayy). Thus taking Fywy = (Zun)/2
in such cases would only include half the number of such partitions, all of which should

be included in Fpy.
Let By be the number of lines L(x,y) = ax + by + ¢ = 0 that pass through the
origin and for which each pair

L'x,y)=ax+by+c—e=0
and
L'(x,y)=ax+by+c+e=0
gives
PL’, Aw) = PL", Ayw)

for some sufficiently small € > 0. Then, as the coordinates of points in Ayy are of the

form
((2-(14 —D+ceN) 2-(v-1+ ('(M)))
2 ’ 2 '
where
N
uz—lEJ+S,S:1, N
>
= =]+ =
1% [2 t, t l» 7M
1 if X even integer
cX) =
0 if X odd integer
then

QNG
Buv = ¢c(M*N) + 2, > bQ2i+ c¢(N),2j + c(M))
i=1j=1
where | X | is the greatest integer less than or equal to X. (N.B. Consistent as if M and
NOdd, BMN = O)
Thus
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2. Asymptotic Value for A,y . Consider

1 if i,/ coprime
b(i,j) =
0 otherwise
M-=i-M—))
M -1y

fG.j,M) =

If M- 1)=K:D, K>0,D >0, K and D integer then for any k, [ integer:
k=1,... ,K,l=1,...,Klet

U = max (f(i,j,M)), Ly = min(f(i,j,M))
(k—=—D)D+1<i<kD,(I-1)D+1=<j=<1ID

then
M= (k—=1D'D+ 1) M—- (- 1)D+ 1)
kl — (M— 1)2
M - k-D)M —[-D)
Ly = 5
M—-1)
and
D-1D2M+D-1-D-(k+1)
Uy—Ly= 2
M -1
DOD-1H2M+D-1-D-(1 +1)
B M = 1)
2 1 1 1 1 2
:U]]_L||:_'(1____+—— ><_
K 2K D KD 2KD? K

Therefore, for any € > 0, K, can be chosen s.t. (2/K,) < € and so

Uo—Lu<e (ifK=K,

Thus
4 o b(i,j) & 2 fG@,j,M)-b(i,j)
Loy 3 - 3y [Gpee)
i=k-DD+1 j=a-np+1 D i=k=DD+1 j=(—-DD+]1 D
kD D b(i,j)
< (Ly + € E E
i=tk-0D+1 j=a-nyp+1 D
Now
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M-1 M-1 b(l ]) M-1 i b(lvj)
Ev= 2 3 Sy ) -
-1 o1 (M= 1) - (M= 1?2
as
1ifi=1
b(i,i) =
0 otherwise
Therefore
2 M -1
Ey=-——— 2 &@) — 1, &) is Euler function
(M - ])' i—1
and
2
Ey=—"—®oM - 1) - |

M =1y
and from thm. 330 in [2]
6 logM — 1)
n 0( g ( )

E, = —
o’ M -1
That is,
dM -1 6
lim Ey =2 lim ———— — 1 =—
e e (M= 1Y ﬁz

Thus for any { > 0 and for sufficiently large D, then for any D > D,

kD kD k=1DD (k- 1D

2 2 i) = Z 2 b
i=1 j=1 =
-—| < L
(k**D* — (k — l)“~D') T
That is,
kD
2 XS b 6
i—(k~DD+1 j=1 2l <
2k —1)-D* w*
But for any i, the unit values of b(i, /) are approximately uniformly distributed in j.
Thus
kD D kD i
> 2 b)) 2 2 b))
i=k-DD+1 j=¢-DD+1 _i*’(k'l)l)fl Ji=1
D? k —3)-D?
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can be made as small as required for sufficiently large D.
Thus for any & > 0, there exists D s.t. for all D = D

kD ID b(l,) 6
2 2 2J - <d
i=k-=1p+1 j=-p+1 D ™
So
6 S L fG,j,M)b(,)) 6
L= -8)< > Tl o (S 4 o)
? i=k=DD+1 j=(-DD+]1 D~ ?
Now,
1 X & 1 & X M -kDyMm-1-D)
— 2 2== 2 2
K* =1 1= Y Chper iy M - 1)
B K*-(2*M — (K + 1):D)? B 1(1 1 N 2 )2
4-K*+(M — 1) 4 K KD
So
1k X 6 | | 21\2 /6
LES Lt e
K* k=1 1=1 T 4 K KD o
and

K | 1 2 \2 6
A R (R 27 PR NEET B
k=1 1=1 4 K KD w?

and as €, & can be as small as required for large enough K, D (e.g. choose € = (2/K))
then if K = D, thenas M — ©, K — o and D — .
Thus & and R can be made as close to (6/4w*) = (3/27") as required.

So
R SEIR TS Do (M=) (M~ j) b))
LI D T bl
K* k=1 1=1 i=tk=10D+1 j=g-1D+1 DM — 1)
oS! (M—i)'(M“j)‘b(i»j) 16 3
S o) 182
i=1 j=1 M—1) 4 ™ 21

asM — o with K = D and KD = (M — 1).
So

M-1 M—1
2 2 f.J.M)bG.j)
lim =—

TTOSS fLjaM)

i=1 j=1
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and as M increases

T 6-M* 3-M*
MM 1T2 MM 11'2
7 3-M* F 3-M*
M g
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