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Over the past few years, deep learning has risen to the foreground as a topic of massive interest,
mainly as a result of successes obtained in solving large-scale image processing tasks. There are
multiple challenging mathematical problems involved in applying deep learning: most deep learning
methods require the solution of hard optimisation problems, and a good understanding of the trade-
off between computational effort, amount of data and model complexity is required to successfully
design a deep learning approach for a given problem.. A large amount of progress made in deep
learning has been based on heuristic explorations, but there is a growing effort to mathematically
understand the structure in existing deep learning methods and to systematically design new deep
learning methods to preserve certain types of structure in deep learning. In this article, we review
a number of these directions: some deep neural networks can be understood as discretisations of
dynamical systems, neural networks can be designed to have desirable properties such as invertibility
or group equivariance and new algorithmic frameworks based on conformal Hamiltonian systems
and Riemannian manifolds to solve the optimisation problems have been proposed. We conclude our
review of each of these topics by discussing some open problems that we consider to be interesting
directions for future research.

Key words: Deep learning, ordinary differential equations, optimal control, structure-preserving
methods
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1 Introduction

Structure-preserving numerical schemes have their roots in geometric integration [62], and
numerical schemes that is build on characterisations of PDEs as metric gradient flows [5], just to
name a few. The overarching aim of structure-preserving numerics is to preserve certain proper-
ties of the continuous model, e.g. mass or energy conservation, in its discretisation. But structure
preservation is not just restricted to play a role in classical numerical analysis of ODEs and PDEs.
Indeed, through the advent of continuum interpretations of neural networks [60, 46, 47, 116],
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structure preservation is also entering the field of deep learning. Here, the main objectives are
to use the continuum model and structure-preserving schemes to derive stable and converging
neural networks and associated training procedures and algorithms.

1.1 Neural networks

Neural networks are a rich class of machine learning models that can be leveraged for many
different tasks including regression, classification, natural language processing, reinforcement
learning and image generation [85]. While it is difficult to provide an all-encompassing definition
for neural networks, they can generally be characterised as a combination of simple, parametric
functions between feature spaces. These functions act as individual building blocks (commonly
called the layers of the network). The main mechanism for combining these layers, which will
be adopted in this work, is by function composition.

For any k € {0, ...,K — 1}, let X¥ denote a vector space (our feature space). While in most
applications, these are simply finite-dimensional Euclidean spaces, we will assume more general
structures (such as Banach spaces) when appropriate. With this, we then define a generic layer

ffakx el - !
where ©F is the set of possible parameter values of this layer. A neural network

UV: Xx0—=>Y

(x,0) 2K (-1

can then be defined via the iteration

ZO=X

1.2
M =rkF 0%, k=0,...,K—1, (12)

such that X° = X and XX =Y, where 0 :=(6°,...,05 1) e ®% x - - . x ©K~! =: ® denotes the
entirety of the network’s parameters. The first layer is commonly referred to as the neural net-
work’s input layer, the final layer as the neural network’s output layer and all of the remaining
layers are called hidden layers.

While the above definitions are still quite general, in practice several standard layer types
are employed. Most ubiquitous are those that can be written as a learnable affine combina-
tion of the input, followed by a simple, non-linear function: the layer’s activation function. The
quintessential example are fully connected layers

FiRY x RMM 5 RMy > RM

(1.3)
(z,(4, b)) > o (Az + b),

whose parameters are the weight matrix A € RM>M and the bias vector b€ RM . Its activa-
tion function o : RM — RM is typically applied component-wise, e.g. the hyperbolic tangent
[tanh(z)]; := tanh(z;) or the Rectified Linear Unit (ReLU) [relu(z)]; := max(0, z;). For classifica-
tion networks, the most common choice for the output layer’s activation function is the softmax

activation function, which is given by

exp(z;)
M/ 9
Zj:l exp(z))

[softmax(z)]; =
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such that the neural network’s output entries can be regarded as the individual class membership
probabilities of the input. An important extension to the concept of fully connected layers lies
in convolutional layers [86] where the matrix-vector product is replaced by the application of a
(multichannel) convolution operator. These are the main building block of neural networks used
in imaging applications.

Suppose we are given a set of paired training data (x,,,)\_, C X x ), which is the case for
predictive tasks like regression or classification. Training the model then amounts to solving the
optimisation problem

. I o
min {E(O) = ; Ly(Y(x,, 0)) + R(@)} . (1.4)
Here, L,(y) :=L(y,y,) : Y — R is the loss for a specific data point where L: Y x Y — R 1=
R U {00} is a general loss function, which usually satisfies L > 0 and L(y;,y») = 0 if and only if
y1 =),. The function L, is usually smooth on its effective domain {y | L,(y) < oo} and convex.
The term R : ® — R, acts as a regulariser which penalises and constrains unwanted solutions.
In this setting, solving (1.4) is a form of empirical risk minimisation [117]. Typically, variants
of stochastic gradient descent are employed to solve this task. The calculation of the necessary
gradients is performed using the famous backpropagation algorithm, which can be understood
as an application of reverse-mode auto-differentiation [92].

1.2 Residual networks and differential equations

In the following, we will discuss artificial neural network architectures that arise from the numer-
ical discretisation of time-and parameter-dependent differential equations. Differential equations
have a long history in the mathematical treatment of neural networks. Initially, neural networks
were motivated by biological neurons in the brain. Mathematical models for the interactions of
biological neurons are based on non-linear, time-dependent differential equations. These have
inspired some famous artificial neural networks such as the Hopfield networks [68].

On a time interval [0, T'], an approximation to the solution of the differential equation is
obtained at discrete times 0=1" <¢' <... <X =T, e.g. ** =k h and h = T /K, corresponding
to the different layers of the network architecture. For a fixed final time 7, the existence of an
underlying continuous model guarantees the existence of a continuous limit as the number of
layers goes to infinity and /4 goes to zero.

In the spirit of geometric numerical integration [62], we discuss structural properties of the
artificial neural network as arising from the structure-preserving discretisation of a differential
equation with appropriate qualitative features such as having an underlying symmetry, an energy
function or a Lyapunov function or preserving a volume form or a symplectic structure.

Contrary to the ‘classical’ design principle for layers of affine transformations followed by
activation functions (cf. (1.3)), the so-called residual layers are a variation to this principle,
which has risen to become a standard design concept of neural networks. Here, the output of
one such layer is again added to its input, which again defines a network, the ResNet [65],
U X x©®— X, W(x,0)=_zK that is now given by the iteration

Z0 =X

1.5
M=k p ol 40", k=o0,....K—1, (1-5)
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FIGURE 1. Evolutions of the ResNet model (1.6) for three different datasets. The upper two rows show
evolutions in 2D and the lower row in 3D. The link function o is the hyperbolic tangent and the data fit and
regulariser are the squared 2-norm, L,(z) = 1|z — y,[13, R(0) = %110 |3.

if X = Y. If, on the other hand, the output space Y differs from X, it is common to add another
layer n: X — ) on top, which defines a network U= noWw: X — Y. This is, for example, a
common scenario in classification, where the dimensionality of ) is determined by the number
of classes.

It is easy to see that (1.5) corresponds to a particular discretisation of an ODE. To make
the connection more precise, denote by zF := z(¢¥), 4% := A(¢*), and b* := b(t*) samples of three
functions z: [0, 7] — RM, 4 : [0, T] — R¥*M and b: [0, T] — RY. With this notation we can
write the ResNet (1.5) as W(x, 8) = z(T) with

2 =2+ ho (A=) + b)), k=0, . K—1, z0)=x (1.6)

if T = K and thus & = 1. For general T, it can be readily seen that (1.6) corresponds to the forward
Euler discretisation of

H)=f(=(t),0(), te[0,T], z(0)=x (1.7)
with 0 := (4, ) : [0, T] — RM*M 5 RM = RM*+M anq
S(@(@),0(0) = o (A()z(1) + b(?)). (1.8)

Thus, there is a natural connection between the discrete deep learning problem (1.4), (1.5) and
the optimal control formulation (1.4), (1.7). The dynamics of the ResNet (1.5) as a discretisation
of (1.7) is depicted in Figure 1.

From here on we will suppress the dependence on # whenever it is clear from the context.
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It is well-known that the optimal control formulation can be phrased as a closed dynamical sys-
tem by using Pontryagin’s principle and that this results in a constrained Hamiltonian boundary
value problem [12]. The Hamiltonian of this system is

H(z,p,0)=(p.f(z,0)), (1.9)
where p € T*X = RM is a vector of Lagrange multipliers. The dynamical system is then given by
z=0,H, p=-—0.H, (1.10)

subject to the constraint
0=0yH. (1.11)

The adjoint equation for p can be expressed as

1 N
p=3f"p, p(N)=3 3 LT, (112)
n=1

In what follows we will review some of the guiding principles of structure-preserving deep
learning, emphasising recent contributions on new neural networks architectures as discretisa-
tions of ODEs and PDEs in Section 2, invertible neural networks in Section 3, the interpretation
of the training of neural networks as an optimal control problem in Section 4, equivariant neu-
ral networks in Section 5 and structure-preserving numerical schemes for the training of neural
networks in Section 6.

2 Neural networks inspired by differential equations

2.1 Structure-preserving ODE formulations

In this section, we look at how the ODE formulation (1.7) can be restricted or extended in order
to ensure that its flow has favourable properties. The relationship of these flow properties to the
performance of the network and its optimisation is an emerging topic of investigation, presently
being explored theoretically and experimentally.

We are zooming in on the forward problem itself, assuming that the parameters 6 are fixed.
By abuse of notation, we will in this section write f(z, z) for f(z, 8(¢)) in that we consider 6(¢) a
known function of ¢. It is perhaps not so obvious what the desirable properties of the flow should
be, and to some extent we lean here on prior work by Haber and Ruthotto [60] as well as Chang
et al. [23].

A central consideration in both ODEs and neural networks is that of stability, so the well-
developed stability theory of ODEs and their discretisation offers valuable insights into the
stability of neural networks. However, it is important to qualify in which sense one is talking
about stability, and how the different notions of stability of ODEs carry over to neural net-
works. A classical notion of stability of ODEs considers the stability of equilibrium points, i.e.
points z° = z(0) with f(z,z°) = 0 for ¢ € [0, 0o). This type of stability can be studied in terms of
Lyapunov functions, that is, functions ¥ (z) that are non-increasing along solution trajectories.
Functions that are constant along solutions are called first integrals, and a particular instance is
the energy function of autonomous Hamiltonian systems.
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In this view, trajectories for perturbations of the initial value are studied for all ¢ € [0, 00).
However, this notion of stability has limited applicability to neural networks, as one typically
only considers finite time horizons ¢ € [0, 7] (cf. Section 1.2). Furthermore, equilibria hold no
particular significance in neural networks.

Therefore, a more directly applicable view of stability is whether z(7") does not change ‘too
much’ when the initial value z° is perturbed. That is, small perturbations in the data should not
lead to large deviations in the end result. Such considerations lead to asking whether z(7) is, e.g.
Lipschitz continuous (or more generally, uniformly continuous) in z°. This means that for any
two solutions z;(¢) and z,(¢) to (1.7), we have

1z2(T) — 2z (D) < Cllz2(0) — z1(0)| 2.1

for some C > 0. It is well-known that this type of estimate can be obtained in several differ-
ent ways, depending on the properties of the underlying vector field in (1.7). In particular, the
Lipschitz constant C now depends on /" as well as 8. Thus, in order to guarantee that C is not too
large, one may want to impose certain restrictions on f or 6.

If f(¢,z) is Lipschitz in its second argument with constant Lip(f), then (2.1) holds with
C=eUr) Looking at (1.8), one can use Lip(f)=Lip(o) max || 4()| where Lip(o) is a
Lipschitz constant for the activation function o. Note that for a discretisation of this ODE, the
smallest Lipschitz constant not only depends on f and 0, but also on number of discretisation
steps N, as well as the chosen numerical discretisation scheme. If one is to design a neural net-
work as a discretised ODE which is supposed to be stable in the sense stated above, one has to
take all of these into account.

For stability of non-linear ODEs one may, for instance, consider growth and contractivity in
the L?-norm using a one-sided Lipschitz condition. This is similar to the analysis proposed in
[139]. Suppose there exists a constant v € R such that for all admissible zj, z,, and ¢ € [0, T]
we have

((t,2) = f(t,21),2 = 21) S Vllz2 — 2. (22)
In this case it is easily seen that for any two solutions z;(f), z»(¢) to (1.7) one has
llz2(2) = 21D < 1122(0) — 21 (0) ]| €,

so that the problem is non-expansive if v < 0 [64]. For instance, the vector field (1.8) satisfies
(2.2) for o absolutely continuous if

V < SUP Amax
t.D

<DA(t) + (DA(t))" >
2 b

where the supremum is taken over all diagonal matrices D with diagonal entries in o’'(R).
Note that even if A(f) is skew-symmetric, the vector field (1.8) may still have a positive
one-sided Lipschitz constant v, but if we assume for instance that o/(s) € [0, 1], it holds that
V< %mtax l4(?)|| 0. Haber and Ruthotto [60] suggest using the eigenvalues of the linearised
ODE vector field to analyse the stability behaviour of the forward problem. If the eigenvalues
of the resulting Jacobian matrix have only non-positive real parts, it may be an indication of
stability, yet for non-autonomous systems such an analysis may lead to wrong conclusions. It is
indicated in [60] that by adding a regularisation term to the loss function in the training phase,
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FIGURE 2. The variation of weights and biases over time for three different values of the regularisation
parameter L. The four leftmost plots show the elements of the weight matrix and the two rightmost ones
show the biases.

the weights and biases may change slowly enough for the eigenvalue analysis to be valid when
considering the stability of the forward problem. We illustrate this issue through an example. We
use the standard vector field (1.8) and approximate its solution by the Euler method to obtain the
standard ResNet iteration (1.6). Suppose that R(#) in (1.4) is chosen to be a discretisation of

2

T
dt
0

d
RO0)=1 [ | S0

in order to penalise rapid variations in the parameters 6(¢) through the layers. A discretised
version could be

A K
R(0) = Y E : 16 — 011l
j:

where 4 is the time step # — #~!. We first train the model on the well-known spiral problem in
two dimensions, using K = 70 two-dimensional layers and N = 8000 data points. We apply three
different values for the regularisation parameter, A € {0, 0.01, 0.5}. In Figure 2 we have plotted
how the weights and biases change over time.

The three trained models were run for a test dataset of 4000 points and the classification
success rate was 99.2%, 94.9% and 94.3%, respectively, for A =0,0.01,0.5. We wanted to
compare the eigenvalue analysis to the contractivity principle for this experiment. This was
done locally in time by first computing the Jacobian matrix J(¢) := Z—J;(t, z(t)) of the vector field
f(t,z(1)) = o (A(t)z(f) + b) for every time step along a trajectory of the trained model. We com-
pared the smallest real part of the eigenvalues of J with the logarithmic norm of J, which is a
local version of the one-sided Lipschitz constant discussed above. The result is seen in Figure 3.
Notice that the discrepancy between these two measures of stability does not seem to decrease
as more regularisaton is added as one might expect.
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FIGURE 3. Eigenvalues and logarithmic norm for three values of the regularisation parameter A as a
function of time.

Clearly, the set of all vector fields of the form (1.8) include both stable and unstable cases.
There are different ways of ensuring that a vector field has stable or contractive trajectories.
One is to put restrictions on the family of matrices A(¢); another option is to alter the form of
(1.8) either by adding symmetry to it or by embedding it in a larger space where it can be given
desirable geometric properties. For example, by doubling the dimension, it is possible in several
different ways to obtain a non-autonomous Hamiltonian vector field. In [23] and [60] several
models are suggested. We mention a few of them in Section 2.1.2.

2.1.1 Dissipative models and gradient flows

For different reasons, it is desirable to use vector fields with good stability properties [135]. This
will ensure that data which are close to each other in a chosen norm initially remain close as the
features propagate through the neural network. A model suggested in [60] is to consider weight
matrices A(f) of the form

A =S810) = S®O" -y,

where S(¢) is arbitrary and y is a small dissipation parameter. Flows of vector fields of the form
%= A(t)z + b(t) exactly preserve the L2-norm of the flow when 4(7) is skew-symmetric. The non-
linearity will generally alter this behaviour, but adding a small amount of dissipation can improve
the stability. It is, however, not guaranteed to reduce the one-sided Lipschitz condition.

Zhang and Schaeffer [139] analyse the stability of a model where the activation function o is
always chosen to be the Rectified Linear Unit (ReLU) function. The form of the discretised model
is such that in the limit when 4 tends to zero, it must be replaced by a differential inclusion rather
than an ODE of the form discussed above, meaning that z — f(#, z) belongs to some specified
subdomain of RM. Their model vector field is

J(t,2) = =Ar (D)o (A1 (D)z(t) + b1(1)) + ba (D). (23)

Growth and stability estimates are derived for this class of vector fields, as well as for cases
where restrictions are imposed on the parameters, such as 4,(f) having positive elements or the
case A;(t) = A>(t)" =: A(t) and b,(f) = 0. For this last case, we consider for simplicity the ODE

= —AWO) oAz + b)) =f(1, 2), 2.4)

which is a gradient system in the sense that z = —V,V with V = (y(4(¢)z + b(t)), 1) where y’ = o
and 1 is the vector of ones.
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Theorem 2.1

(1) Let V(t,z) be twice differentiable and convex in the second argument. Then the gradient
vector field f(t,z) = — V.V (t, z) satisfies a one-sided Lipschitz condition (2.2) with v < 0.

(2) Suppose that o (s) is absolutely continuous and 0 < o’(s) < 1 a.e. in R. Then (2.4) satisfies
the one-sided Lipschitz condition (2.2) for any choice of parameters A(t) and b(t) with

_Mi < Vo g 0’
where [, = mtin u(t) and where (t) is the smallest singular value of A(t). In particular,
Ve = —u? is obtained when o (s) = s.
Proof. (1) We compute
(f(t,22) = f(t,21),22 — 21) = =(VV(t,22) = V.V (1, 21), 22 — z1)
and define
d
¢(&) = £V(f, £+ (1 =8)z1)

such that

1
(VW (t,22) = V(21,22 — 21) = (1) — $(0) = /0 #/(6) de.

Therefore, by the convexity of V(z, z),

1
(f(t,z) = f(t,21), 20 —21) = — </0 VIV(t, 6z + (1 — E)z1) dE (22 — 21), 22 —21> <O0.

(2) Let z; and z, be vectors in RM. Using (2.4) while suppressing the t-dependence in the
parameters, we find

(f(t,22) = f(t,21),22 — z21) = —(0(Az2 + D) — 0 (Az1 + b), A(z2 — z1)). (2.5)

For real scalars ¢, n and 8 we have

@& +B)—o(m+ B —n)=/j o'(s+ ) ds (¢ —n)
and since 0 < o'(s + B) < 1 a.e. we have
0< @+ —om+BNE —n<E —n)
Using this inequality in (2.5) we obtain
—ll4zs — Az | < {f(t,22) = f(1,21), 22 — 21) <O
Since [|A(zy — z1)[|*> = u2 ||lz2 — z1 || the result follows. O

Remark. In Theorem 2.1 we restricted the class of activation functions to be absolutely con-
tinuous with 0 < o'(s) < 1. This is true for many of the activation functions proposed in the
literature, in particular for the commonly used activation functions ReLU o =tanh and the
sigmoid o (s) = 1/(1 + exp(—s)).
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2.1.2 Hamiltonian vector fields

One may take inspiration from mechanical systems and introduce the Hamiltonian framework.
Separable Hamiltonian systems are defined in terms of kinetic and potential energy functions
Tand V

H(t,z,p)=T(t,p)+ V(t,z2).
This leads to differential equations of the form
z=0,H=0,T, (2.6)
p=—0.H=-0.V. (2.7)

There are different ways to construct a Hamiltonian system from (1.8). In [23] the following
model is suggested:

=410 o141 (t)p + bi(1)),
p=—Ar(t)T o2 (A2(0)z + by (1))

Let y; : R — R be such that y/(f) = 0,(¢), i = 1, 2. The corresponding Hamiltonian is

T(t,p) =n(4i(Op +bi(DN,  V(2,2) = ya(A2(D)z + b2 (D)1,

where 1=(1,...,1)7. A simple case is obtained by choosing o/(s) :=s, 41(f) =1, b (f) = 0 and
0>(s) := o (s), which after eliminating p yields the second-order ODE

E=—0.V = —A2(0) 0 (A2(0)z + ba(1)).

A second example is considered by Chang et al. [23], who set 0 =0, =0 and apply the
resulting deep Hamiltonian neural network discretised by an explicit symplectic integrator to
several standard image classification tasks. They find that its performance is competitive with
state-of-the-art ResNet networks, requiring a similar number of parameters but much less mem-
ory. When the training set was drastically reduced or the number of layers was very large (up to
1202), performance was better than ResNet, a result they attribute to the intrinsic stability of the
network architecture.

From the outset, it might not be so clear which geometric features such a non-autonomous
Hamiltonian system has. There seem to be at least two ways to understand this problem [97]. Let
us assume that u = (z, p) € T*RY = RM @ RM with “positions’ z and ‘momenta’ p forming the
phase space. We have the natural symplectic form wy = dp A dz on the phase space. This form
can be represented using the Darboux matrix J as

o=, s=| ] o]

and the Hamiltonian vector field f (¢, z, p) defined via dH(-) = wo(f (¢, z, p), -)-

Let us now introduce as phase space T*R¥ x R by including the time ¢ as a dependent variable.
The natural projection is 7 : (z, p, £) — (z, p). The space T*RM x R can then be furnished with a
contact structure defined as

wy =T *wy — dH A dt.
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The first term is just the original form, ignoring the /~component of the tangents, while the second
form is only concerned with the ‘#-direction’. One can write the matrix of wy by adding a row
and a column to J coming from the second term —dH A d¢

Ju

(Vi)
The resulting vector field is then f; = (7, f;)! and can be expressed through the equations
iyog =0, ipdt=1

where iy, stands for the interior derivative of the form by fy, i.e. i, applied to the two-form
wy is the one-form o =iy, wy such that a(n) = w(fy, n) for all vector fields 1. The form wy is
preserved along the flow, but H is not.

Extended phase space. One can in fact recover an autonomous Hamiltonian problem from the
non-autonomous one by adding two extra dependent variables, say ¢ and p,. We do this by con-
sidering the manifold 7*(RY x R). One needs a new projection i (z, p, t, p;) —> (z, p, t) and we
can define an extended (autonomous) Hamiltonian on 7*(R™ x R) as

K=Hou+p,
and two-form
Qo= pu*t*wy + dp; A dt.

The corresponding matrix, Jg, is just the original Darboux matrix J where each of the
M x M identity matrices has been replaced by (M + 1) x (M + 1) identity matrices. The
extended Hamiltonian K is exactly preserved along the flow so that the new conjugate momen-
tum variable p, will keep track of how H(z, p, t) varies along solutions. The resulting vector field
fr can be written as dK(-) = Q¢(fz, -) and in coordinates the ODE system becomes

t=0,H, p=—0.H, i=1, p=—0H. (2.8)

We see at once that since the equations for z, p do not depend on p;, and since the solution for #
is explicitly given, we solve the same problem as before. After solving for z and p, we obtain p,
independently by integration. The second thing one may observe is that if a numerical method
¢y, has the property that'!

$nopn=pod,

then what we obtain by just considering the first 2 components of the numerical solution to
the extended system is precisely the same as what we would have obtained applying the same
method to the original non-autonomous problem. This observation was used by Asorey et al.
[7] to define what is meant by canonical transformations in the non-autonomous case, and we
refer to this paper for further results on the structural connections between the two systems.
In applications to deep learning, one should note that geometric properties of the solution can

'Tt is common to assume that a given numerical integrator is defined on systems in any dimension.
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mostly be deduced from the extended system rather than the original non-autonomous one; there
are numerical methods, which preserve energy or the symplectic form 2 and rigorous results
can be proved for the long time behaviour of such integrators [62].

2.2 Structure-preserving numerical methods for the ODE model

The rationale behind proposing ODE formulations with geometric structure is to enforce a con-
trolled behaviour of the solution as it is propagated through the hidden layers of the network.
It is therefore also important that when the ODE is approximated by a numerical method, this
behaviour should be retained by the numerical scheme.

2.2.1 Numerical methods preserving dissipativity

When numerically solving ODEs, which satisfy the one-sided Lipschitz condition (2.2), a desir-
able property of the numerical scheme would be that it contracts two nearby numerical solutions
whenever v < 0. That is, it should satisfy

k+1 1 k k
I+ — A < lIzE = A (2.9)

for each time step k, preferably without too severe restrictions on the time step 4. Methods that
can achieve this for any step size exist, and are called B-stable. There are many B-stable methods,
and for Runge—Kutta methods, B-stability can be easily checked by the condition of algebraic
stability. Examples of B-stable methods are the implicit Euler method and all implicit Runge—
Kutta methods in the Gauss, Radau IA, Radau ITA and Lobatto ITIC classes [64]. In deep learning
algorithms it has been more usual to consider explicit schemes since they are much cheaper per
step than implicit ones, but they are subject to restrictions on the time step. For instance, the
explicit Euler method is unstable for any step size when applied even to linear constant coefficient
systems where there are eigenvalues of the coefficient matrix on the imaginary axis. To consider
contractivity of explicit schemes, we need to replace (2.2) by a different monotonicity condition

(f(t,22) —f(t,21), 22 — 21) < D|f (8, 22) —f (&, 2D,

where we assume v < 0. For every Runge—Kutta method with strictly positive weights b; there is
a constant 7 such that the numerical solution is contractive whenever the step size satisfies

h < —2vr.

The value of 7 can be calculated for every Runge—Kutta method with positive weights. For exam-
ple, for the explicit Euler method as well as for the classical fourth-order method of Kutta one
has =1 [38].

2.2.2 Numerical methods preserving energy or symplecticity

For autonomous Hamiltonian systems there are two important geometric properties which are
conserved. One is the energy or Hamiltonian H(z, p); the other is the symplectic structure, a
closed non-degenerate differential two-form. These two properties are also the main targets for
structure-preserving numerical methods.

All Hamiltonian deep learning models presented here can be extended to separable non-
autonomous canonical systems (2.6)—(2.7). Such systems preserve the symplectic two-form
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dp A dg and there are many examples of explicit numerical methods that also preserve this same
form in the sense that dp**! A dg“*! = dp* A dg¥. The simplest example of such a scheme is the
symplectic Euler method, defined for the variables z and p as

A A LR TP, P =gk — R (A, 2, (2.10)

The symplectic Euler method is explicit for separable Hamiltonian systems and is an example
of a splitting method [100]. Many other examples and a comprehensive treatment of symplectic
integrators can be found in [62]. When applying symplectic integrators to Hamiltonian problems,
one has the important notion of backward error analysis. The numerical approximations obtained
can be interpreted as the exact flow of a perturbed system with Hamiltonian H(z, p) = H(z, p) +
hHy(z, p) + - - - 2. This partly explains the popularity of symplectic integrators, since many of the
characteristics of Hamiltonian flows are inherited by the numerical integrator.

Similarly, there exist many numerical methods that preserve energy exactly for autonomous
problems. For instance, there is a large class of schemes based on discrete gradients [101]. A
discrete gradient of a function H(z) is a continuous map VH : RY x R™ — RM which satisfies
the two conditions

H(z) — H(z1)=(VH(z1,22),22 —71), VH(z,2)=VH(z), Vz,z1,z0 € R".

For the Hamiltonian ODE z =JVH(z) it is easily seen that the method defined by

Sl _ gk

= JVH(ZF, T

is energy preserving in the sense that H(z) = H(z") for all k > 0. There are many choices of
discrete gradients, but most of them lead to implicit schemes and therefore have the disadvantage
of being computationally expensive.

Another disadvantage is that even if it makes sense to impose energy conservation for the
extended autonomised system explained above for deep learning models, it is not clear what that
would mean for the original problem. It remains an open problem to understand the potential for
and the benefits of using energy-preserving schemes for non-autonomous Hamiltonian systems
in deep learning.

2.2.3 Splitting methods and shears

Splitting methods are very popular time integration methods that can be easily applied to preserve
geometric structures of the underlying ODE problems such as symplecticity, invertibility and
some symmetries. The idea of splitting and composition is simply to split the vector field in
the sum of two (or more) vector fields, to integrate separately each of the parts and compose
the corresponding flows. For example, splitting a Hamiltonian vector field into the sum of two
Hamiltonian vector fields and composing their flows results into a symplectic integrator. If the
individual parts are easy to integrate exactly, the resulting time integration method has often low
computational cost. We refer to [100] for an overview on splitting methods.

2This is a divergent asymptotic series, but truncation is possible at the expense of an exponentially small
remainder term.
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An ODE on R is a shear if there exist a basis of R? in which the ODE takes the form

yi=0, i=1,....,k
D=, .y, i=k+1,...,d.

A diffeomorphism on R is called a shear if it is the flow of a shear. Splitting vector fields into
the sum of shears allows the computation of the individual flows exactly simply applying the
forward Euler method to each term.

Consider the shears R” x R" — R"” x R":

(z,p) > (z+g(P),p),
(z,p) > (z,p+1(2).

In the case of autonomous, separable, Hamiltonian systems, the symplectic Euler method (2.10)
can be seen as the composition of two such maps where

g(p) :=ho,T(p), f(2):=—ho.V(z).

Another popular example is the Stormer—Verlet integrator or leapfrog integrator which is also the
composition of two shears. It is possible to represent quite complicated functions with just two
shears. The ‘standard map’ (also known as Chirikov—Taylor map) is an area preserving, chaotic
composition of two shears, much studied in dynamics and accelerator physics.

Shears are useful tools to construct numerical time integration methods that preserve geometric
features. As already mentioned symplecticity is one such property (if / and g are gradients),
another is the preservation of volume and, as we will see in Section 3, shears can be used to
obtain invertible neural networks.

2.3 Features evolving on Lie groups or homogeneous manifolds

If the data belongs naturally to a differentiable manifold M of finite dimension and f(z, ) in (1.7)
is a vector field on M for all 6 € © then z(f) € M. Concrete examples of datasets in this category
are manifold-valued images and signals. One example is diffusion tensor imaging consisting of
tensor data, which at each point (i, /) in space corresponds to a 3 x 3 matrix 4;; € Sym*(3), the
3 x 3 symmetric positive definite matrices [36]. If m x / is the number of pixels in the image
then M = Sym™(3)"*/. Another example is InSAR imaging data taking values on the unit circle
S', in which M = (S I)le [115]. In both these examples denoising autoencoder neural networks
[126] can be used to learn image denoising. The loss function (1.4) can take the form

I,m

LW(x,0),0) =) d(¥(x,0)i), 1)),

ij=1

where x = (x11,...,X,,) € M is the noisy image y= (11, .. .,Vim) € M is the source image
and d is a distance function on Sym™(3) or S!, respectively. For example, in the case of Sym™(3)
with 7,Sym™(3) = Sym(3), a possible choice of Riemannian metric is

X, Yyr,m ::trace(A_%XA_lYA—%)’
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where X and Y are symmetric 3 x 3 and 4 is symmetric and positive definite, and with trace
denoting the trace of matrices. With this metric Sym™(3) is a Riemannian symmetric space and
is geodesically complete [130].

A third example concerns classification tasks where the data are Lie group valued curves for
activity recognition. Here, M = G” with m the number of points where the curve is sampled
and G = SO(3) is the group of rotations [18]. A loss function can be built using the following
distance between two sampled curves ¢y = (¢4, ...,Cim) €G", ca=(c21,...,Com) € G™:
der.en) = mii log(ci+1¢7,) _ log(c2+1¢5,) i

i=1 ||| 108(01,i+101_,3)||§ Il 10g(¢2,i+102_,;)||§

g

where g is the Lie algebra of G, ||-|ly is a norm deduced from an inner product on g,
and log: G — g denotes the matrix logarithm. An important feature of this distance is that
it is re-parametrisation invariant and taking the infimum over all (discrete) parametrisations
of the second curve one obtains a well defined distance for curves independent of their
parametrisation [19].

The ODE (1.7) should in this setting be adapted to be an ODE on M. If M is a (d — p)-
dimensional submanifold of RY, M :={y|g(y)=0}, g: R? — R, then the ODE (1.7) can be
modified adding constraints. Alternatively, sometimes one can consider intrinsic manifold for-
mulations, which allow the representation of the data with d — p degrees of freedom instead of
d. The numerical integration of this ODE must then respect the manifold structure.

2.4 Open problems
2.4.1 Geometric properties of Hamiltonian models

Autonomous Hamiltonian systems and their numerical solution are by now very well understood.
For such models, one has conservation of energy that is attractive when considering stability of
the neural network map. The same cannot, to our knowledge, be said about the non-autonomous
case. One can approach this problem in different ways. One is to consider canonicity in the
sense of [7] and study the geometric properties of canonical transformations via the extended
autonomous Hamiltonian system. This is, however, not so straightforward for a number of rea-
sons. One issue is that every level set of the extended Hamiltonian will be non-compact. Another
issue is that the added conjugate momentum variable, denoted p; above, is artificial and is only
used to balance the time-varying energy function.

One should also consider the effect of regularisation, since one may expect that smoothing of
the parameters will cause the system to behave more similarly to the autonomous problem. See
Section 4.2 of this paper.

2.4.2 Measure-preserving models

The most common example of an invariant measure is phase space volume. In invertible net-
works, some attention is given to volume-preserving maps, see [113, 40] and also Section 3 of
this paper. For the ODE model, this amounts to the vector field f(#, z) being divergence free,
and there are several ways to parametrise such vector fields. All Hamiltonian vector fields are
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volume preserving, but the converse is not true. Volume-preserving integrators can be obtained,
for example, via splitting and composition methods [100].

2.4.3 Manifold based models

A generalisation of most of the approaches presented in this section to the manifold setting is
still missing. For data evolving on manifolds the ODE (1.7) should be adapted to be an ODE on
M. Just as an example, a gradient flow on M analogous to (2.4) can be considered starting from
defining a function V': M x ® — R using the antiderivative of the activation function o and the
Riemannian metric. The Hamiltonian formulations of Section 2.1.2 could be also generalised to
manifolds in a similar way, starting from the definition of the Hamiltonian function.

An appropriate numerical time discretisation of the ODEs for deep learning algorithms must
also guarantee that the evolution through the layers remains on the manifold so that one can make
use of the Riemannian structure of M and obtain improved convergence of the gradient descent
optimisation, see Section 6.2. The numerical time discretisation of this ODE must then respect
the manifold structure and there is a vast literature on this subject, see, for example, [62, Chapter
IV]. For numerical integration methods on Lie groups and homogeneous manifolds including
symplectic and energy-preserving integrators, see [72, 22].

3 Invertible neural networks and normalising flows

In the previous sections, we have viewed certain neural networks as discretisations of con-
tinuous systems. In the following, we will return to the classical view of discrete networks,
which are additionally endowed with a certain structure. Invertible neural networks, i.e. bijec-
tive neural networks, are such an example. They have been an emerging topic in deep learning
over the last few years. They are naturally connected to neural networks that are inspired
by ordinary differential equations, as flows of ODEs are themselves invertible. Two of the
main applications of invertible neural networks lie in memory-efficient backpropagation as
well as generative modelling with density estimation. For simplicity, in the following we will
use the abbreviation f; = /¥(-, 6%) when appropriate. Much like, in general, invertible networks
are typically parametrised as a function composition ¥ = fx o - - - o f], with the additional con-
straint that each layer f; is a bijective function. The inverse can then simply be computed via
Ul=f"1o...0fx~!. A main restriction this imposes on the architecture is the fact that for
each layer /% : X¥ x ©F — X**1 one has dim(X*) = dim(X*+!), where the X’ are the feature
spaces. As a consequence, the dimension of the input space determines the dimensions of the
feature spaces in a (fully) invertible neural network.

3.1 Types of invertible layers

Invertible networks and layers can roughly be divided into two categories: Those that are
algebraically invertible and those that are inverted with a numerical approximation scheme.

3.1.1 Coupling layers

Coupling layers [40] work by splitting a layer’s input into two parts and applying a suit-
able transformation that is easily invertible for one of the two parts. Mathematically, for an
M-dimensional input, the index set / = {1, ..., M} is partitioned into two sets. In convolutional
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networks, the partition is often done channel-wise, i.e. the channels are split into two sets. A
different type of partitioning is invertible downsampling (also known as a masking or squeeze
operation [40]). With x = (x;,x;) € RM x R™2 and y = (y1,,) € RM1 x R™2, a coupling layer
g: x>y is defined via the mapping

Yi=Xxi,

3.1
D)) G-

where f: RM — RM2 and y : RM2 x RM — RM: is invertible in the first argument. Then g~ :
Y > x is given by

X1 =Y1,

3.2
=y (2. f ), G-2)

where ! is the inverse of y in its first argument (for fixed second argument). The coupling

law y can be as simple as y : (a, b) — a + b, with which f is called an additive coupling layer
[40], such that y~! : (¢, b) > ¢ — b. Another commonly used class of coupling layers are affine
coupling layers [40, 41]. More complex, but in theory, more expressive coupling laws can be
constructed from strictly monotonic splines [45]. Note that (3.1) and (3.2) are shear mappings
(Section 2.2.3), which in the case of ODEs are used to construct, e.g. symplecticity-preserving
numerical solutions.

There is in principle no restriction on the function /. This allows for the utilisation of arbitrar-
ily expressive subnetworks f (e.g. a sequence of convolutional layers with non-linear activation
functions), without rendering g (algebraically) non-invertible. The numerical stability of this
inversion may still pose an issue. Stability guarantees (both for the forward and the inverse map-
ping) can, for instance, be controlled via the Lipschitz constant of / and y, as shown in [10]. This
mirrors stability considerations of ODEs (see Section 2.1), where guarantees can be formulated
as conditions on the Lipschitz constants. Note that while £ has to map to RM2, the individual
layers which comprise f may change the dimensionality throughout this subnetwork — only the
final layer has to transform the data to the required space R™2. Since coupling layers perform
learnable computations only on a part of the input, the partitioning should change throughout the
network, for example, by switching the roles of x| and x,.

As demonstrated by Teshima et al. [120], neural networks built using coupling layers are
universal approximators of diffeomorphic functions. This means that they can approximate a
diffeomorphic function up to arbitrary precision, given a sufficiently large architecture. This can
be seen as an extension of various other universal approximation theorems (cf. [37, 69]), which
state similar results for other classes of neural networks and functions.

3.1.2 Invertible layers through iterative schemes

Another class of invertible layers are those that are invertible with an iterative scheme. Invertible
residual networks [9] are a special case of the commonly used residual networks [65], which
allow for the inversion with a simple fixed-point iteration. As in Section 1.2, a residual layer can
be framed as a function g: RY — RY with

g) =x+/(x), (3.3)
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where f: RM — RM is a function parametrised by neural network layers, called the residual
block. For fixed x, let y := x 4 f(x), so that x =y — f(x). A fixed point z* of the function ®,,: z +—
v — f(2) is thus in the preimage of y under g, i.e. g(z*) = y. Note that

[®y(a) = Py(D)l = If (b) = f(@)ll < Lip(f) - |6 — all, (34)

where Lip(f) is the Lipschitz constant of f. According to Banach’s fixed-point theorem, if
Lip(f) < 1, then @, is guaranteed to have a unique fixed point, which is the inverse of y under g,
i.e. z¥ = g~ !(y). This inverse can be approximated to arbitrary precision via the iteration

X=y—f("h (3.5)

for any initial value x°. While most common layer types (such as dense or convolutional lay-
ers equipped with activation functions with bounded derivative) are Lipschitz, the condition
Lip(f) < 1 is not necessarily met. Behrmann et al. [9] enforce the required Lipschitz constraint
by spectral normalisation: Let the linear layer 4y depend linearly on its parameters 6 (e.g. con-
volutional layers without non-linear activation functions and biases; these are linear layers that
linearly depend on their kernel). Then 4; parametrised by

0:=c-0/14sl> (3.6)

has Lipschitz constant Lip(4;) =c. As a consequence, the layer f(x)=0(4; x4+ b) has
Lipschitz constant Lip(f) < ¢ for any activation function o with Lip(c) < 1, where b is a bias
vector. Thus, by updating the layers’ parameters via spectral normalisation according to (3.6)
after each gradient step, the required Lipschitz constraint for invertibility is guaranteed, if one
chooses ¢ < 1. In practice, the spectral norm ||4y||; is calculated with the power method. To save
computations, Behrmann et al. [9] only perform a single power iteration, but reuse the estimation
of the leading singular vector from the previous training step as the initial guess. While the power
method (with a finite number of iterations) technically only provides a lower bound to ||44||2, the
Lipschitz constraint is still met in practice [9].

In Figure 4, the dynamics of an invertible residual network and its non-invertible counterpart in
1D are compared. Both images depict a 30-layer residual network, which was trained to learn the
identity function on [—2, 2] on 15 noisy samples. The Lipschitz constant of the residual blocks f'
were restricted to be smaller than one, whereas no such restriction was put on the non-invertible
network. As invertible functions on the real line are strictly monotonic, the paths created by the
invertible networks are non-crossing, which can happen in non-invertible networks.

In the case of invertible residual networks, the connection to neural networks as numerical
solutions to ODEs is particularly strong. As noted in Section 1.2, ResNets can generally be
viewed as Euler discretisations of an ODE, if one views the activations, weights and biases as
observations of time-dependent variables. Fittingly, Behrmann et al. [9] originally motivate the
inversion of such a ResNet by looking at the dynamics of the associated ODE backwards in time.

3.1.3 Linear invertible components

Above, two general approaches for constructing invertible, non-linear layers were presented. In
the following, we list a few linear, invertible layers, which are used to increase the expressivity
of invertible networks.
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Non-Invertible 1D Neural Network Invertible 1D Neural Network

activation
activation
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layer layer

FIGURE 4. Visualisation of the dynamics of a standard (non-invertible) ResNet compared to an invertible
ResNet in 1D, adapted from [9]. Each line represents the activations at different layers for a particular input
of the network. The networks were trained to approximate the identity function from 15 noisy samples.

Coupling layers (Section 3.1.1) work by dimension splitting, which in the context of convo-
lutional neural networks usually consists in splitting the channels into two groups, which are
processed independently from one another. This is in contrast to standard, multichannel con-
volutions, where each output channel depends on all input channels. In order to overcome this
limitation, the channels can subsequently be linearly combined (via an endomorphism). If the
matrix of these coefficients is invertible, the automorphism created this way can be integrated as a
linear layer into the invertible network framework. These invertible matrices can be parametrised
in different ways: One approach [78] is to directly parametrise the desired matrix via a LU fac-
torisation (with additional fixed permutation), which can then be inverted. While not discussed
in the original publication, the diagonal entries themselves can be, e.g. parametrised to be larger
than some ¢ > 0 to enforce stable invertibility. This is known as invertible 1 x 1 convolution,
because this ‘channel mixing’ can equivalently be realised as a convolution with (in 2D) one-by-
one filters. An extension to this idea to convolutional layers (with larger filters) is presented in
[67]. A computationally particularly cheaply (and stably) invertible class of matrices are orthog-
onal matrices. In [110], these are parametrised as a sequence of Householder transformations.
Other possible parametrisations of (special) orthogonal matrices include exponentials of skew-
symmetric matrices, Cayley transforms or sequences of Givens rotations. For a discussion about
the numerical optimisation of such classes of parameter matrices compare also the forthcoming
Section 6 and in particular (6.7).

Another type of linear, invertible layer is determined by invertible down- and up-sampling
operations for image data. While classical down- and up-sampling methods (such as bilinear
interpolation or nearest-neighbour methods) from image processing are inherently non-invertible
(as they change the dimensionality of the input), it is possible to construct invertible down- and
up-sampling methods. Since the dimensionality of their output must be the same as the dimen-
sionality of their input, decreasing (or increasing) the spatial dimensionality of an image must
be accompanied by a suitable increase (respectively decrease) in the number of channels. One
such transformation for invertible down-sampling is the pixel shuffle transform [40], which sub-
samples the pixels and reorders them into new channels. The inverse of this transformation is an
invertible up-sampling operation. In [52], this is generalised to learnable invertible down- and
up-sampling operations, which contain the (inverse) pixel shuffle as a special case. The general
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idea is to construct orthogonal strided convolutional operators, where the kernel size matches
the stride s € N, with spatial dimensionality d. It can be shown that by a specific reordering
of an orthogonal 7-by-t matrix (where 7 =s; - - - 54) into a filter kernel, the resulting convolu-
tion is orthogonal. This implies that the inverse is simply given by the corresponding transposed
convolution. The authors propose to parametrise the required orthogonal matrices via exponen-
tiating skew-symmetric matrices. As the matrix exponential is a surjective mapping from the Lie
algebra of skew-symmetric matrices to the special orthogonal matrices, any special orthogonal
matrix can be parametrised this way.

3.2 Applications
3.2.1 Memory-efficient backpropagation

One possible area of application for invertible neural networks is memory-efficient backpropaga-
tion [57]. Let Z5*! = f(z*, 6%) be the output of a neural network’s layer with non-linear mapping
[ X% x ©F - X**1 where 0% are the layer’s parameters. Let L be the loss of the network. Then

VorL = (862" ™) Vet L = (90 (5, 0%)) Va1 L

provides the weight gradient necessary for the training of the network. For the calculation of this
gradient, one needs both the gradient of the loss with respect to the output node (i.e. V_+1L), as
well as the ability to calculate the derivative d,f (2%, 9%). Unless f is linear, the calculation of the
derivative requires access to z¥, meaning that z* needs to be stored in memory. This typically rep-
resents the bulk of the memory demand in training neural networks. If, however, f is invertible,
one can simply calculate z* from zf*! via

Zk =f—l(zk+l ek)

for the additional computational cost of calculating the inverse (where £~ is the inverse of £ in
its first argument). Thus, instead of storing activations in memory during the forward pass, inter-
mediate activations can simply be successively reconstructed from the output layer’s activation.
The memory requirement of training an invertible network using this scheme is thus independent
of the number of invertible layers.

3.2.2 Invertible networks as subnetworks

In practice, many classical applications of neural networks such as classification, regression or
segmentation do not typically map between vector spaces of the same dimensionality. Hence,
a bijective function that maps between these two spaces does not exist, which is why a fully
invertible neural network typically cannot solve the desired task. It is, however, possible to use
an invertible neural networks as a subnetwork in a neural network. For example, if ¥ : X — X
is an invertible network and n : X — ) is a suitable non-invertible layer, the combined network
noW: X — ) can be used for a classification task of predicting labels in ) from features X. As
demonstrated in [74], such a neural network can have competitive performance to a comparably
sized residual network [65] on ImageNet [39]. Adding an output layer which transforms between
spaces mirrors the approach for discretised ODEs, see Section 1.2.

https://doi.org/10.1017/50956792521000139 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792521000139

908 E. Celledoni et al.

The use of invertible networks as subnetworks allows for the utilisation of the memory effi-
cient backpropagation for these subnetworks (cf. Section 3.2.1), while the respective gradients
of non-invertible subnetworks can be calculated conventionally.

3.2.3 Density estimation and generative modelling

Aside from generative adversarial networks (GANs) and variational autoencoders (VAEs), nor-
malising flows are another class of machine learning models that can be used to artificially
generate data. While GANSs are able to generate realistic-looking images [75], they lack the abil-
ity to estimate the likelihood of data under the generative model at hand. Likewise, VAEs can
only estimate a lower bound of the likelihood — the variational lower bound. This is in contrast
to normalising flows, which are trained via maximum likelihood estimation.

Like most generative models, normalising flows generate data from a simple base distribu-
tion (usually Gaussian) via a learned transformation. Let the random variable z have probability
density function g, for which we will write z ~ g(z). For any diffeomorphism £ it holds that

xi=f"' (@)~ q(2) - |det(@S " @)|

due to the change-of-variables theorem® [14]. This means that for the probability density of x
(denoted P), the log-likelihood of x can be expressed as

log P(x) = log g(f(x)) + log |det(dy/ (x))! - (3.7

Let f/ be parametrised by an invertible neural network, i.e. f(x) = ¥(x, 8) for all x € X. Given
training data (x,)"_,, the minimiser of

n=1°

. 1 (¢
min {E(O) =-% (2:1: — log g(¥(x,, 0)) + log |det(dy, ¥ (x,, 9))|> } (3.8)
is a maximum likelihood estimator of the training data under the neural network. Models trained
this way are called normalising flows, because they are usually trained to convert complicated
data into normal distributions. In this framework, artificial data can be generated by sampling
f~!(2), where z ~ ¢(z). An example of learning the ‘two half-moons’ dataset this way is provided
in Figure 5. This case highlights that continuously transforming a normal distribution into a dis-
tribution whose probability density function has disconnected support is not possible. However,
the normalising flow instead assigns low probability density to areas outside of the support,
which results in a distribution that resembles the true distribution.

One of the main difficulties in designing normalising flows lies in the evaluation (respec-
tively differentiation) of the determinant term. Note that for a neural network of the form (1.2) it
holds that

det(8.0W (2", 0)) = det(d.x-125) - - - det(d.0z"),

3Here, it suffices to consider invertible functions 1" that are only locally diffeomorphic in x. This is of
practical relevance, because many neural networks are only locally differentiable due to the use of piecewise
differentiable activation functions such as ReLU.
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FIGURE 5. Left: “Two half-moons’ dataset. Middle: An approximation of the probability density function
of the ‘two half-moons’ dataset by a normalising flow, generated by the code from [24]. Right: Points
sampled from the approximated distribution.

such that the computation of the determinant for the whole network can be performed in a
layer-by-layer fashion. Still, naively computing each determinant by the Leibniz formula yields
prohibitive computation times. Depending on the types of layers used, the structure of the
individial layers’ Jacobians makes employing different determinant identities possible. If, for
example, the Jacobian is lower triangular (as is the case with coupling layers [40]), the determi-
nant reduces to the product of the Jacobian’s diagonal entries. Invertible residual networks [9]
on the other hand induce no such structure. By using the spectral norm constraint on f in equa-
tion (3.3), it holds that |det(820 w(z0, 9))| =det(d,0W¥(z’, 6)) and using the identity from [131], the
authors show that

log |det(3,0 ¥(°, 0))| = trace (log 3.0 W (2", 0))

holds. The matrix logarithm is then approximated as a truncated Taylor series, whereas for
the evaluation of the trace, the Hutchinson estimator [70] is employed. An extension to this
concept is presented in [24], where the truncation with a fixed number of steps is replaced
by a ‘Russian roulette’ estimator, a type of Monte Carlo estimator. This estimator intro-
duces a stochastic truncation of the series, which results in an unbiased estimator of the
log-likelihood (3.7).

In the context of normalising flows, another connection to ODEs becomes apparent: As noted
in [25], a continuous version of the change-of-variables theorem may be used to formulate a con-
tinuous normalising flow, which in turn can be solved numerically via a discretisation scheme.
A maximum likelihood estimator can in turn be obtained by training a neural ODE [25].

3.3 Open problems
3.3.1 Fast inverses without coupling

Coupling layers (Section 3.1.1) allow both for quick forward and inverse computations. Their
expressivity is, however, hindered by the fact that expressive, learned transformations are only
applied to a part of their input, while the remaining portion of the input is not transformed.
However, while this problem can be mitigated by using multiple coupling layers (with differ-
ent partitions of the input), it may be desirable to construct invertible layers where each output
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neuron depends on all input neurons (as is the case with ‘conventional’ fully connected or con-
volutional layers). Invertible residual layers (Section 3.1.2) on the other hand fulfil this criterion,
but they rely on a numerical inversion via a fixed-point iteration, which requires multiple evalu-
ations of the forward operation. Furthermore, in order to guarantee their invertibility, a Lipschitz
constant needs to be controlled, which requires additional computation time. For practical pur-
poses, it would be desirable to combine both methods’ advantages in order to obtain both fast
and expressive invertible layers.

3.3.2 Stability guarantees

As discussed in [10], controlling the Lipschitz constant of invertible layers is a conception-
ally simple, but practically costly method of guaranteeing a certain stability of the inverse.
Furthermore, as discussed above, they need to be controlled in order to guarantee the conver-
gence of the iterative scheme for the inversion of residual layers. In the interest of computational
efficiency, is there a computationally cheaper way to control the Lipschitz constant than via
the proposed power method? Work in this direction has already been performed in [24], as the
authors experiment with Lipschitz constants corresponding to mixed norms.

In a similar vein, are there alternative ways of guaranteeing stability other than by controlling
the Lipschitz constant?

4 Deep Learning meets optimal control

As outlined in the introduction, supervised deep learning with the ResNet architecture can be
seen as solving a discretised optimal control problem. This observation has been made in [29,
46, 60, 93] with further extensions to PDEs described in [116]. An advantage of this strategy is
that many tools from scientific computing for the solution of optimal control problems, ODEs
and PDEs can be utilised, see, for example, [59, 106] for layer-parallel training.

Recall (1.4)

. l «
min {E(O) = ;Ln(\ll(xn, 0)) +R(9)} , 4.1)

where the neural network W(-, 0) : ¥ — X is either defined by a recursion like (1.5) or the solu-
tion at the final time of an ODE (1.7). Another approach is to view the training as an optimisation
problem over ® x XN where X is the space of the dynamics z, i.e.

. 1 &
o, {E(e, =~ 2:1: Lu(zao(T)) + R(G)} (4.2a)
such that  z, =f(z,,0(f)), z,(0)=x,, n=1,...,N. (4.2b)

In machine learning the reduced formulation (4.1) is much more common than (4.2).
4.1 Training algorithms

The discrete or continuous optimal control problem can be solved in multiple ways, some of
which we will discuss next.
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4.1.1 Derivative-based algorithms

The advantage of the reduced problem formulation (4.1) is that it is a smooth and unconstrained
optimisation problem such that if ® is a Hilbert space, derivative-based algorithms such as gra-
dient descent are applicable. Due to the non-linearity of W we can at most expect to converge
to a critical point £'(9) = 0 with a derivative-based algorithm. The most basic algorithm to train
neural networks is stochastic gradient descent (SGD) [114]. Given an initial estimate #°, SGD

consists of iterating two simple steps. First, sample a set of data points &' C {1, ..., N} and then
iterate
. . 1 .
G =0/ - — ) (L, 0 W(xy, ) (&) 4.3)

Other first-order algorithms used for deep learning are the popular Adam method [77] and the
Gauss—Newton [60] method. A discussion on the convergence of SGD is out of the scope of this
paper. Instead, we focus on how to compute the derivatives (L, o W(x,, -))'(¢/) in the continuous
model which is the central building block for all first-order methods. This following theorem is
very common and the main idea dates back to Pontryagin [109]. This formulation is inspired by
Bonnans [16, Lemma 2.47].

Theorem 4.1 Assume that { and L, are of class C' and that f is Lipschitz with respect to z.
Let z, € W°([0, T1,RM) be the solution of the ODE (4.2b) with initial condition x, and p, the
solution of the adjoint equation

Pn=—03S (), 0)) Pny  Pu(T) = Ly(z(T)). (4.4)

Then the Fréchet derivative of A:= Ly, o W(x,,-):L>® :=L*>([0, T], RM2+M) —Ratfel™®
is the linear map B .= A'(0) : L*° — R, where

T
Bh= /0 (8af za(0), 0D pu(D), h(2)) dt. 4.5)

For finite dimensional 6 a similar theorem can be proven, which dates back to Grénwall in
1919, see [58, 63]. Defining neural networks via ODEs and computing gradients via continuous
formulas similar to Theorem 4.1 has been first proposed in [25] with extensions in [56] and [44].
In the deep learning community this is referred to as Neural ODEs.

Similar to Theorem 4.1 a discrete version can be derived when the ODE (1.7) is discretised
with a Runge—Kutta method [12, 61]. For simplicity we just state the special case of the explicit
Euler discretisation (ResNet (1.5)) here.

Theorem 4.2 ([12]) Let z, be the solution of the ResNet (1.5) with initial condition x,. If p,
satisfies the recursion

M= pf — ha (00T, k=0, K1, pK=L(5), (4.6)

then the derivative of A := L, o W(x,,, ) is given by 9y A(0) = hdef (2, 0F)T pE+L.

Some readers will spot the similarity between Theorem 4.2 and what is called backpropagation
in the deep learning community. This observation was already made in the 1980s, see, e.g. [83].
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If all functions in (4.5) are discretised by constant functions on [£*, #**1], then the gradient of
the discrete problem (4.6) approximates the Fréchet derivative of the continuous problem (4.5).
In more detail, let e*/ € L be supported on [, #71] and /(1) = ¢/ € RM*+M with & =1 if
j=1iand 0 else. If we denote by 4 =L, o W(x,, -) the data fit using the ODE solution (1.7) and
A=L,o W(x,, -) the data fit with the ResNet (1.5), then

s
A(0)H = / (00 Gal0), 0O) a1, () dit @.7)
~ (30 ), 6N P, &) = 9, A(6). 48)

In other words, in this case of piecewise constant functions, discretise-then-optimise is the same
as the optimise-then-discretise.
4.1.2 Method of successive approximation

Another strategy to train neural networks has been recently proposed by [88] and is not based
on the gradients of the reduced formulation (4.1) but on the necessary conditions of (4.2) also
known as Pontryagin’s maximum principle [109] instead. Given an initial estimate of 6°, each
iteration of the method of successive approximation has three simple steps. First, solve (4.2b)
with & which we denote by 2, i.e.

#=fE,0(), Z0)=x,, n=1,...,N. 4.9)
Then solve the adjoint equation (4.4) with ¢/, 2, and denote the solution by p/, i.e.
Ph=—0fCE0, ) P, PUT)=L,(Z(T), n=1,...,N. (4.10)

The third and final step is to maximise the Hamiltonian (1.9) given p/, 2. That is, for any 7 €
[0, T the update is defined as

N
01 0) = argmax | HE0,p0,0)= 1 D (0,1 (0.0) | (@.11)
n=1

Note that this algorithm is potentially well-defined also in the non-smooth case, i.e. if f is not
differentiable with respect to 6. If £ is indeed smooth, R =0 and #*! = ¢/, then

1 & . _ _
5 2 0. 60) Pl =0. (4.12)
n=1

and the Fréchet derivative of (4.1) vanishes. Analysis, extensions and numerical examples of the
method of successive approximation are presented in [88].

4.2 Regularisation

The training of a neural network (1.4) may include explicit regularisation and several different
regularisers R have been proposed in the literature, e.g. [12, 122, 60, 103, 111, 49], which we
want to discuss in this section. Before we dive into the specifics of these regularisers, we would
like to answer the question if regularisation is necessary for training neural networks.
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Example 4.3 In order to shed some light on this, we consider the most trivial example which
is taken from [122]. To this end we use ResNet (1.5) and let N=1, K=1, M =1, Li(z) =
(z—1)%,x; =0 and o = tanh. When no regulariser is present, R = 0, the training problem (1.4)
simplifies to
: 2

Aéﬁ%ﬁn@ {E(A, b) = (tanh(b) — 1) } . (4.13)
Since tanh(R) =(—1, 1), there are two possible problems here. First, (4.13) does not have a
solution, so the task of training does not really make sense. Second, even if we ignore the first
problem and just apply a descent algorithm on (4.13), then we encounter another problem: min-
imising sequences are not bounded. For example, let 4 := 0, :=, then lim;_, o E(4,5)=0
but (4, b)jen is unbounded and does not even contain a convergent subsequence. Thus, we
cannot expect our training algorithm to converge.

The key problem in the previous example was that the range of the neural network W(x,, -)
was not closed. The non-closedness of the range is a characterisation of ill-posedness for linear
inverse problems in infinite dimensions, see, e.g. [30, Theorem 3.7]. While this may never be the
case for finite-dimensional linear inverse problems, the non-linearity in (4.13) results in exactly
this property.

In order to overcome this problem, we can either pose constraints on the data fidelity (network
architecture, link function, etc.) or we cure the ill-posedness by regularisation as is classically
done when considering ill-posed inverse problems [50, 73]. To overcome the problem in (4.13) it
is sufficient to add a regulariser R which is coercive, meaning that for any sequence of parameters
(¢/)jen it holds that

lim |¢/| =00 = lim R(#)=oo. (4.14)
J—>00 J—>00

This condition implies that minimising sequences, which are sequences (6/)jeny such that
lim;_, o E(¢/) = infyce E(6), are bounded. In reflexive Banach spaces, this is sufficient to guar-
antee at least a convergent subsequence. For more information on regularisation of non-linear
ill-posed inverse problems, we refer to classical textbooks [50, 73].

In the remainder of this section, we discuss a couple of specific choices for the regulariser R.
In finite dimensions, due to the equivalence of all norms, any norm is coercive. In addition, the
regulariser may impose additional properties on the estimated parameters. By now, it is standard
to use the 1-norm ||0]|; =), |6;] or the squared 2-norm ||0||§ =) |6;]> for regularisation in
deep learning to promote solutions, which are sparse or have small coefficients, respectively,
[103, 111]. The interpretation of a deep neural network as a process that changes with time
naturally calls for other norms. For instance, the next section relies on the squared H'-norm as a
regularisation. For 0 : [0, T] — RV it is defined as

T
16117, = 116¢0)]> +/O 19:6(0)11* dr. (4.15)

This regularisation and its discrete counterpart will promote solutions which vary smoothly
across the layers [60, 122].

Finally, the connection of deep neural networks to discretised ODEs motivate other non-
standard regularisers, too. To this end we consider ResNet with time-varying discretisation
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M =2 ko (A* 2+ b5 (4.16)

and extend the parameters to 0 = (4%, b¥, #)¥_!. Then it is natural to ensure that the time steps
h:= (hk)lkto1 are non-negative and sum to 7. More precisely, we regularise the time steps with
R: R - R,

0, if >0 k=0,....K—1, Y h h=T,

R(h) = .
00, otherwise.

4.17)

Note that R is non-smooth and convex and since its proximal operator can be computed effi-
ciently [43], proximal algorithms can be efficiently employed. This regulariser has been used
for deep learning in [12]. For residual neural networks, it has also been proposed to penalise the
‘weighted path norm’, which takes into account the ‘effective’ depth of a network [49].

It should be noted that the ‘problem’ of non-existent solutions is usually ignored in practice
since most optimisation algorithms do not converge (or at least not in reasonable time) and even
if they converge, they may not converge to the global solution. For some neural networks, one
can prove that even if the iterates do not converge, an associated quantity called ‘normalized
margin’ still converges [94].

4.3 Deep limits

Let 6% denote a minimiser of (1.4) with a ResNet (1.5) with K layers and by #> a minimiser
of (1.4) with the ODE constraint (1.7). In what sense and under which conditions do discrete
solutions #%) converge when the number of layers K tends to infinity? If these converge, do they
converge to a solution of the optimal control problem 6°°?

In order to answer these questions one needs a topology in which we can compare 6% ¢
(RM*+M)K and 92 : [0, T] — RM*+M With the discrete measure u&) = L S Sk we make
the identification (RM*+M)K = 12(;,® [0, T], RM*+M) =: [2(1K)) where by abusing notation,
we associate the discrete object 0 with the piecewise constant function 8K : [0, T] — RM*+M
with 0®) (1) =) if £ € [*, #+1). It turns out that H' := H'([0, T], R**M) is a suitable solution
space for the optimal control problem, so that L? := L*([0, 7], RM +M ) is a natural candidate for
the convergence of #%) to 6> since both L?(1X)) and H' can be embedded into L.

The following theorem is a special case of Theorem 2.1 in [122] which answers the question
of deep limits for ResNet (1.6). Its proof relies on the equivalence of convergence in L? and a
certain transport metric [55], see [122] for more details.

Theorem 4.4 Let EX : [?2(u®) - R
1 N K—1
EQ©) =1 ) LW, 0) + 4 (uem)n2 +K Y o) - e(tk>||2> (4.18)
n=1 k=0

with W being the discrete ResNet (1.6) and E® : H' — R

1 & T
E¥(©0)= 5 D LW, 0)) + (ne(O)n2 + /0 13,611 dr) (4.19)
n=1
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with U given by the ODE (1.7). Let o be Lipschitz continuous with o (0) = 0 and L, be continuous
and non-negative foralln=1,...,N. IfA > 0, then

(1) minimisers of EX) and E* exist for all K € N,

(2) minimal values converge, i.e. limg_, oo min 2, ), E® =ming E* and

(3) any sequence of minimisers of EX), (§®) ey C L?, is relatively compact, and any limit
point of {8} ken is a minimiser of E*.

4.4 Open problems

Connecting deep learning to optimal control has opened up new avenues to advance the field of
deep learning. In this section we discussed algorithms motivated by this connection which are
based on derivatives and necessary optimality conditions. We discussed the need and potential
for variational regularisation of deep learning and understanding the behaviour of deep neural
networks as we increase the number of layers. All of these routes have natural extensions, which
will pave the way for better understanding of deep learning and even more powerful tools.

4.4.1 Algorithms with built-in errors

Using ODE:s as a network architecture and computing gradients via the adjoint, i.e. Theorem 4.1,
is theoretically appealing. However, in practice, both the forward and the adjoint ODE have to be
solved numerically which induces errors into the gradient. When using off-the-shelf first-order
methods like SGD, it is assumed that the gradients are computed exactly, which may either hinder
performance or require prohibitively accurate computations, see, for instance, the discussion in
[56]. That being said, state-of-the-art algorithms like SGD and Adam are stochastic and the
updates are not guaranteed to decrease the objective so the impact of discretisation errors is
not clear. Since the numerical solution of the ODE can be computed to any given tolerance,
this naturally poses the question how to use such knowledge and control over the accuracy in
optimisation algorithms. Some algorithms have been extended to include such errors, see for
instance [35, Chapter 8] and [133].

4.4.2 Algorithms without gradients

The method of successive approximations and its extended version have been proposed for deep
learning [88, 89], but potentially more development is needed to fully exploit this direction
including stochastic updates with respect to the data points and efficient maximisation of the
Hamiltonian.

The method of successive approximations exploits the structure of deep learning only to the
point of optimal control (4.2) but is generic in terms of the architecture, e.g. the choice of f.
For discretised system, a more tailored algorithm has been proposed in [119] but without any
theoretical guarantees on its convergence.

4.4.3 Architectures, rates and topologies for deep limits

The question if the ResNet converges with increasing number of layers was satisfactorily
answered in [121], but these results still leave a number of questions unanswered. First, do other
architectures also have deep limits? The most likely candidates here are discretisations of ODEs.
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Second, are these results tightly linked to H'-regularisaton or can they be extended to other
topologies, e.g. the one induced by the total variation? Third, are there convergence rates for
these limits?

Another work on the convergence of discretised ODEs with finer discretisations is [61]. In
particular this work not only proves convergence but also convergence rates. It utilises assump-
tions on smoothness and coercivity of certain Hessians but it is not clear if these are met in a deep
learning context. It would be interesting to verify or falsify the assumptions for relevant learning
problems. In case these are not met, a different architecture or regularisation might be a way out.

5 Equivariant neural networks

In recent years, the use of convolutional architectures in deep neural networks [84] for imaging
tasks in machine learning has proven to be an extremely fruitful idea. A particularly well-known
example of this is the work of Krizhevksy et al. [82], where deep convolutional neural networks
(CNNs) were used to achieve state-of-the-art performance in the ImageNet contest (a challenging
image classification task), outperforming other approaches by a large margin. Another striking
example of the power of CNNs is given by Ulyanov et al. [124], where it is shown that even an
untrained CNN can be used as an effective prior for natural images. It is commonly understood
that the effectiveness of CNNs in imaging tasks is in large part due to them being in some sense
right for the problems at hand. CNNs combine the flexibility of neural networks (in the form of
many learnable filters) with the known symmetries of images: both convolutions and pointwise
non-linearities commute with translations of the underlying domain, so that the outputs of a CNN
transform in a predictable way when their inputs are translated. By constraining the search space
in a principled way (in theory, fully connected networks are at least as expressive as CNNs),
CNNs can make efficient use of training data to learn to perform tasks to a higher standard than
fully connected networks and it is easier to interpret the action of a CNN on its inputs than it is
do the same for a fully connected network.

Given the success of CNNs in machine learning, it is natural to ask whether the concept of
convolutional architectures can be generalised to incorporate other symmetries into neural net-
work architectures. One current line of research in this direction is the study of group equivariant
neural networks, which has been gaining considerable traction since the work on group convo-
lutional neural networks by Cohen and Welling [33]. A neural network can be thought of as a
function taking inputs from a feature space X' and returning outputs from a feature space X.
We will call a function F : X! — X? G-equivariant if there are group actions of G on X! and X
(denoted by 7% "and 7Y’ respectively to emphasise that the group actions need not be of the
same nature) such that

F(T;flx) —T}[F()] forallxeX',geG. (5.1)
To elucidate this definition, let us note some examples of behaviour covered by it:

e if G acts trivially on X2, i.e.T; gX P = id, we recover invariance of F to group transformations of
its input, which is often a desirable property of an image classifier;

e whereas if X! = X2 and T¥' =T¥ 2, the output of F' transforms in exactly the same way
as the input does, which is a useful property to have in many image-to-image tasks such as
segmentation.
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If we are given two G-equivariant functions F;: X! — X2, F,: X? — X3 (with the same action
of G on X for both functions), their composition is easily seen to be G-equivariant:

Fy(FI(TY %) = B(TE [F@)]) = T [Fa(F ()]

Appealing to this result and noting the usual structure of a neural network as a composition of an
alternating sequence of affine maps and non-linearities, there is a promising way of designing
G-equivariant neural networks: design G-equivariant linear maps and G-equivariant non-
linearities, add biases as appropriate to get affine maps from the linear maps and compose the
affine maps and non-linearities as you would in an ordinary neural network.

As it turns out, when the group actions considered above are in fact group representations (i.e.
they act linearly), the problem of finding and characterising G-equivariant linear maps reduces to
the well-studied problem of finding and characterising intertwiners in representation theory. This
insight has recently been used to unify existing approaches to G-equivariant neural networks and
to show that G-equivariant linear maps necessarily take the form of a type of group convolution
[31]. Let us describe this work in some more detail here.

5.1 Equivariant transformations of feature maps on homogeneous spaces
5.1.1 Homogeneous spaces

It has been observed [31, 81] that there is a common setting unifying many of the existing
approaches to G-equivariant neural networks. We are given a topological group G, which acts
continuously and transitively on a domain X (X is a so-called homogeneous space of G). With
this assumption we can cover the cases where X = R and G = SE(d) := R? x SO(d), the group
of rotations and translations, and where X = S9~! and G = SO(d), which are two commonly
studied cases. Fixing a point p € X as the origin and denoting by G, = {g € G | gp = p} the sta-
biliser of p, we can identify X with the quotient space G/G,: since G acts transitively on X, for
any g € X there is a g € G such that gp = ¢g. On the other hand if g1p = g»p, then gz_lglp =p, SO
that g5 g1 e G,, or g2G, = g1G,. Hence, there is a well-defined bijective map X — G/G, map-
ping g to gG,,, where g € G is such that gg = p. Conversely, given a closed subgroup H < G, G
acts transitively on the quotient space G/H by left multiplication, making it into a homogeneous
space of G. From this reasoning, we see that the homogeneous spaces of G can be identified
precisely with the quotient spaces G/H as H ranges over closed subgroups of G. Henceforth,
we will consider two arbitrary subgroups H;, H, < G and the associated homogeneous spaces
G/H,,G/H,.

5.1.2 Equivariant linear maps

Scalar-valued features on these spaces can be modelled as functions G/H; — R and these
can be arbitrarily stacked to get feature maps x: G/H; — R that transform under the action
of G according to [1(g)x](p) =x(g”'p), but in this setting one can also consider more gen-
eral features: given a representation (V;, p;) of H;, we can consider signals to be fields of
Vi-valued features on G/H;, which are strictly more general than the stacks of scalar-valued
fields since their components are mixed under the action of G. This is mathematically formalised
by noting that G is a principal H;-bundle, constructing from this the associated vector bun-
dle P; with fibre space V;, the sections of which, I'(P;), are the signals of interest. Under the
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action of the group G, these signals naturally transform according to the representation of G
induced by H, 7. To put this in the notation of (5.1), we are taking X' =T'(P), X* =T'(P;)
and T gX ' = ngl (2), T ng = ngz(g) and we are asking what the general form is of a linear map
F: X' — X? that satisfies (5.1) in this case. There are multiple ways in which I'(P;) and ngl_ can
be modelled, but for this purpose it is easiest to consider Mackey functions: we identify x € I'(P;)
withx: G — V; satisfying x(gh) = p,(h~")x(g) for all & € H;, in which case the induced represen-
tation is just given by [ngl_ (2)x](g") = x(g~'g’). With this notation in place, the following result
on equivariant linear maps can be proved (see also Theorem 6.1 in [31]):

Theorem 5.1 Assume that G is a locally compact unimodular group and that Hy, H, < G are
closed subgroups. Suppose that F : X' — X? is an integral operator (with respect to the Haar
measure on G):

F)(g) = / K(g. ¢)x(g) dg.
G

Then F is equivariant, in the sense that
F(rf (gx) =7, (QIF(x)] Vxe X' geG,

if and only if F is given by convolution with a kernel k : G — Hom(V1, V3)
Fe) = [ ke g ) dg
G
satisfying the additional constraint
k(hzghl) = ,Oz(hz)k(g)pl(hl) Vhl S Hl,g S G, hz [S Hz.

Derivation. As alluded to in the statement of the theorem, given the assumptions on G, there is
a unique (up to multiplication by a scalar constant) Haar measure on G that is both left invariant
and right invariant. Writing F as integration against a kernel K: G x G — Hom(V, V), the
equivariance condition tells us that

/ K¢ g g (g dg’ = [, (€ )F](e)
G

= F([rg, (2)x])(Q)

= f K(g, &g 'g") dg".
G

The final expression on the right-hand side can be rewritten using left invariance of the measure
to give

/ K@ 'g.¢") — K(g, ¢ M) dg =0 VxeT(Py),
G

which is the case if and only if

K 'g. g )=K(g. gg") Vg.g.g €G.
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This final condition tells us that K(g,g)=K(e,g 'g)=:k(g"'g’), so we find that F is
equivariant and only if it is given by a convolution-type operation:

Flx(g) = / kg~ g (g dg. (5.2)

G

Since we have assumed that F(x) € I'(P,) is a Mackey function, we must have

f pa(hy Ye(g ¢ 1x(g') dg’ = palhy HF((g) = F(x)(ghy)
G

- / k(ghy) "' gw(g) dg’

G
- / khy'g g (g de.
G

Hence p2(h2)k(g) = k(hyg) for all h, € Hy, g € G. On the other hand, x € I'(P;) is also a Mackey
function, so for any /, € H,

f kg~ g)x(g) dg' = / kg™ g )or )y (') dg’
G G
= / k(g 'g")o1(h)x(g'hy) dg’
G

_ / ke~ gh™)oi(h)x(e') de.
G

Here we have used right invariance of the measure. This implies that k(gh;) = k(g)p1(h;) for
hy € Hy, g € G. Taking together the above results, the condition for equivariance of an integral
operator F': I'(Py) — I'(P,) is that we perform a convolution-type operation against a kernel k&
satisfying the linear constraints

k(haght) = pa(h2)k(g)p1(h1) Yhi € H,g € G, hy € Ha. O

Note 5.2 The assumptions on the group G are immediately satisfied for compact groups such as
SO(3), which is the case that is considered in rotationally equivariant neural networks for spher-
ical image data [32, 51, 80] (if G = SO(3) and H; = SO(2), then S? = G/H;). It is not necessary
for G to be compact though; much of the work on equivariant neural networks has been focused
on the case where G is a group of rigid motions of a Euclidean space [33, 34, 128, 129, 132]. In
that case G="T x R where T =R or T = Z? and R is a group of rotations and reflections (such
as SO(d), O(d) or finite subgroups thereof). With any of these choices G is a locally compact
unimodular group.

The constraints on the convolution kernels stated in Theorem 5.1 can be solved once the type
of features V; have been chosen (so before training time) to find a basis for the convolution
kernels that give rise to equivariant linear maps, and at training time we can learn equivariant
linear maps by learning the parameters of an expansion in this basis.
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5.1.3 Equivariant non-linearities

Having established the general form for a large class of equivariant linear maps, the ques-
tion remains how to choose equivariant non-linearities. If we are to propose a non-linearity
F:T'(P1)— T'(P;), we cannot in general just apply a pointwise non-linearity as in ordinary neu-
ral networks: this will only work if the chosen representation of H; does not mix components, as
is the case for instance if the representation of H| is trivial (which is always the case if H; = {e})
or if the regular representation of H; is chosen [129]. One way to make this work, in general, is
by having the first layer of the network be a linear layer mapping feature maps defined on the
base domain X = G/H, to feature maps defined on the group G = G/{e} and letting all feature
maps after that be defined on the group [33, 11]. If the chosen representation does not work well
with pointwise non-linearities, another thing that can be done is to take the pointwise norm of the
feature map (which is a scalar-valued feature map), pass it through a pointwise non-linearity, and
multiply this by the feature map: F(x)(p) =f(||x(p)|)x(p), as is done for instance in [132, 121].
Note that f/ could include a learnable parameter such as a bias parameter. Another option is to
combine features of different types in a tensor product [80], which is particularly convenient
when working in Fourier space: in Fourier space the convolution operation becomes a point-
wise multiplication, but it is not immediately obvious how to apply equivariant non-linearities,
so other methods performing the convolution in Fourier space have to transform back to ‘real’
space (which is computationally expensive) before applying the non-linearity [32, 51].

5.2 A numerical demonstration of the use of equivariant neural networks

In this section, let us consider an example that demonstrates some of the advantages that can
be gained by using equivariant neural networks. We will use a supervised learning approach to
learn a denoiser: we assume that we are given pairs of random variables representing clean and
noisy images (x*, x) and attempt to solve the following optimisation problem:

1
min 2E[ [W0) = x13 + 1IV(¥0) =31 | (5.3)

Here, C is a class of functions, A > 0 is a small constant, V is a finite difference image gradient
operator and || - ||1 . is a smoothed version of the 1-norm. In this specific experiment, we let the
clean images x* be of size 60 x 60, containing random rectangles with sides aligned to the grid
and with random colours and we let the noisy images be generated from clean images by adding
Gaussian white noise (as shown in the top right row of Figure 6). It is natural to ask for the
denoiser to commute with rotations and translations, that is, for the denoiser to be equivariant
with respect to rotations and translations. We compare two choices of C in Problem (5.3), which
we will refer to as the class of ordinary and equivariant denoisers respectively. In both cases,
the functions in C the form of a ResNet (as defined in (1.5)) preceded by a learnable lifting
layer and succeeded by a learnable projection layer. The distinction between the ordinary and
equivariant denoisers, is that the ordinary denoiser uses ordinary convolution operations and a
pointwise ReLU non-linearity (resulting in translation equivariance), whereas the equivariant
denoiser uses the rotation and translation-equivariant versions of these operations as defined
in [132]. To give a fair comparison, we fix the same width and depth in both classes. In this
case, the equivariant denoiser has a number of degrees of freedom that is less than 10% of the
number of degrees of freedom of the ordinary denoiser (62,994 vs. 741,891). The denoisers are
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FIGURE 6. A demonstration of the use of equivariance in a denoising task. On the left, we have plotted
training errors for five runs of each denoiser. On the right, we have displayed the outputs of the denoisers
on an example (the ‘on-grid’ example) similar to the ones used for training and on a rotated version.

trained by performing 1500 iterations of Adam [77] on minibatches of size 64, decreasing the
step size when validation error stagnates, and for each denoiser, we perform 5 training runs.
The results are shown in Figure 6: as we see in the plot of the training errors, the equivariant
denoiser consistently converges in fewer iterations than the ordinary denoiser and achieves a
better objective function value. Besides this, we can be confident that the equivariant denoiser
will generalise to rotated examples despite not having seen them in training, whereas it is hard
to say anything about how the ordinary denoiser generalises to rotated examples.

5.3 Open problems
5.3.1 Sample complexity bounds

One of the main motivations that is given for the use of equivariant neural networks is that they
should be able to use training data more efficiently than neural networks that are not designed to
be equivariant. This is particularly important in applications in which training data are in short
supply, as is often the case in inverse problems [6]. In the machine learning community, the
number of samples needed to estimate a given object is known as the sample complexity. There
is recent work [42] establishing sample complexity bounds for some simple CNN models, and
showing that these bounds compare favourably to the corresponding ones for fully connected net-
works. In a similar vein, it would be interesting to establish rigorous sample complexity bounds
for equivariant neural network models that guarantee their data efficiency.

5.3.2 Approximation properties

When applying existing group equivariant neural network architectures as in the framework
described above, there are a large number of choices that need to be made: the domains on
which the feature maps are defined, the choices of the types of features (the representation of
H that is used), the choice of non-linearity. While there is a vast amount of literature on the
approximation properties for ordinary neural networks (including older works such as [37, 69]
and some more recent works that apply to CNNs [15, 108]), there is not yet the same theoretical
guidance on how the choices of the various aspects of group equivariant neural networks can be
made to guarantee that the networks are sufficiently expressive. There is some theoretical work
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on hypothetical equivariant neural networks and approximation results relating to them [136],
but it is not yet of practical use in choosing an equivariant architecture.

5.3.3 Approximate equivariance

Many of the symmetries we would like to work with in equivariant neural networks are continu-
ous, but when we implement them in practice it is necessary to discretise them. Generally in the
literature, one of two approaches is taken: the group is discretised and exact group convolutions
are taken with respect to the discrete subgroup (in which case we have exact equivariance to the
discrete symmetry), or the group convolutions are derived in the continuous setting and even-
tually discretised (so that we have approximate equivariance to the continuous symmetry). In
either case, it has not been studied in detail how much of an error we make when we make these
discretisations and whether there is an optimal discretisation to use. It would be of great inter-
est to provide bounds on the equivariance error, as these could be used to decide, for example,
whether a theoretically invariant classifier is actually invariant in practice.

6 Structure-exploiting learning

The training of neural networks amounts to the numerical optimisation of typically smooth, but
high-dimensional and highly non-linear objectives as in (1.4), and as discussed in the optimal
control framework in Section 4. The most widely used numerical method for (1.4) is Adam [77].

As before let ¥ : X x ® — X be a (deep) neural network that depends on the data and the
parameters 6 € ®. The training of W amounts to the optimisation over the parameters 6 with
respect to a loss function

fe®

N
1
min { £(0) = — L(noW(x,,0),y,) +R0O)¢ ,
©) N; (10 W, 0), yu) + R(O)

as in (1.4). While the loss function L usually is a convex function, the dependence of the
parameter 6 on the network W is in general highly non-linear which makes the overall optimi-
sation problem in (1.4) non-convex. For what follows, let us denote by /() = ﬁ Y nesi@mo
W(x,,0),vn)+ %R(G)), for j=0,1,..., where & is a randomly chosen set of indices from the
N training samples. For fixed positive parameters « and 81, 8; < 1, and for appropriate initiali-
sations for the parameters and the auxiliary moment functions m, and vy, Adam amounts to the
following iteration:

= — (B + (1= VL),

(1-8)

viz;i (B '+ (1= p)VL(@@ Y- VI ), (6.1)
=g

o—6 —a

\/J +eé ’
for a small & > 0 and where +/1/ is taken component-wise. Stochasticity, in the form of choosing
subsets &’ randomly in every iteration, is crucial to deal with high dimensionality of the problem.

Adam is being used for almost all of neural network training because of its easy implementa-
tion, its robustness to rescaling, its computational efficiency and small memory requirements and
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for its suitability for problems which are large-scale in terms of training data and parameters. On
the other hand, its theoretical convergence properties do in general not guarantee convergence to
a solution of (1.4), cf. [112] where the authors propose a convergent variant in the convex setting
and [137], which provides convergence guarantees in the non-convex and stochastic setting.
The literature for optimising smooth (non-convex) objectives is, however, much richer than
Adam alone. It is tightly linked to developments in convex analysis and operations research, as
well as the numerical discretisation of dynamical systems, ODEs and PDEs as discussed in parts
in Sections 2 and 4. In the context of neural network training other optimisation schemes have
also been investigated recently. Here, we will mainly focus on those that have some structure-
preserving property such as Hamiltonian descent [95, 105], which are guaranteed to dissipate
a Hamiltonian energy, optimisation approaches when the features or network parameters are
elements in a Riemannian rather than Euclidean space [1, 87, 123], and — as a special case of the
latter — information geometry approaches that describe optimisation on statistical manifolds [4].

6.1 Conformal Hamiltonian systems

The most classic approach for minimising E(-) over R’ is gradient descent, i.e. to seek a
stationary point of £ by evolving

6 = —VE®). (6.2)

Several optimisation methods for £ can then be derived through different discretisations of (4.6),
with the simplest one being explicit gradient descent and its stochastic versions [114]. Another
route for the derivation of optimisers for £ is obtained by replacing the gradient flow (6.2) with a
Hamiltonian flow as in (1.10) with dissipation, for example, a conformal Hamitonian system, i.e.

p=-VE@®)—yp,

. 6.3

i_P. (6.3)
m

with y, u > 0. Rewriting the system (6.3) in one equation gives
.. . 1
0 +y0=——VE®),
m

which is gradient descent accelerated by momentum, cf. also [118, 90]. More generally, (6.3) is
a special case of a conformal Hamiltonian system of the form

p=—VoH(p,0)—yp,

. (6.4)
0=V,H(p,0),

for a separable Hamiltonian function H(0,p)=T(p)+ E(0) as in Section 2.1.2. Taking

T(p)= ﬁ Ipll3 we get (6.3). Taking T(p) = /||p||* + & we get a new optimisation approach for
E which is called relativistic gradient descent [53]

p=—VE®)—yp,
p (6.5)

Ve+lpl?
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FIGURE 7. Optimisation of V(x,y)=2x* — 1.05x* + 1/6x® + xy +1?. Comparison of gradient descent,
Hamiltonian descent and Adam iterations, initial guess [—0.5, 0.8], global minimum at [0, 0]. Methods and
parameters: Gradient descent (GD) learning rate 2= 0.01, Heavy ball (HB) © =10.9, #=0.01, Nesterov
Accelerated Gradient (NaG) = 0.012, 2 =10.01, Relativistic Gradient Descent (RGD) [53] 2 =0.0001,
n=0.9259, Adam g, =0.9, 8, =0.999, e = le — 8, « = h=0.1. Left: value of the loss function versus
number of iterations. Right: trajectory of approach to the optimum (NaG 4 = 0.01 yellow, RGD 4 = 0.0001
magenta, Adam 4 = 0.1 green).

While the gradient system (6.2) dissipates £, for a conformal Hamiltonian system (6.4) the
Hamiltonian H is dissipated as

d Y r
—H(p,0)=—=—-p" p.
o (»,9) P

For separable Hamiltonians with the kinetic energy T chosen so it has a global minimiser in 0,
limit points of (6.4) recover stationary points of £. More precisely, for H = T'(p) + E(0) being
separable the equilibria of (6.4) fulfil

y p=—VE(0),
0=VT(p).

If T is chosen so it has a unique global minimum in p* =0 (e.g. in the case of (6.3)), we have
that (0, 6*) is a zero of VH(p, 0) if and only if «* is a zero of VE(0), i.e. 0 is a stationary point
of E(0). Moreover, we have that (0, 0*) is the solution of the conformal Hamiltonian system as
t — oo. Then, using a numerical integration method that preserves the property of Hamiltonian
energy dissipation (such a numerical method is called conformal symplectic scheme [13]), we
get an approximation of (6*, 0), where (6%, 0) is an equilibrium of (6.4) and 0* a stationary point
of £ [99].

In recent work, Frang et al. [53] take advantage of the connection between optimisation
schemes for £ and conformal symplectic Hamiltonian schemes for H =T + E for the design
of new optimisation approaches for £ — similar to the connections we have seen before, e.g.
between Adam and conformal Hamiltonian descent. See also Figure 7 for a comparison between
different optimisation methods applied to the camelback function.
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6.2 Learning in Riemannian metric spaces

After identifying the dissipation of an appropriate Hamiltonian as a structure worth preserving for
numerical optimisation of neural networks, as discussed in the last section, explicit conditions
on the parameter matrices themselves, such as orthogonality, seem to impose structure on the
optimisation that can be of advantage and in particular lead to better (at least empirical) conver-
gence rates, better generalisability and accuracy [87]. Such conditions usually pose a parameter
optimisation problem within a Riemannian metric space rather than Euclidean space. Moreover,
there are several important applications, cf. in particular the next subsection, where the training
data and the parameters naturally lie in a Riemannian space.

While in Section 2.3 we discussed the case when the training data and features lie on a
Riemannian manifold, in this section, we consider the setting in which the parameters belong
to a manifold. This in particular means that ordinary gradient descent a la (6.2), i.e. with the
gradient V being the ordinary gradient in R”, does in general not describe steepest descent of
E in such a Riemannian metric space. Instead descent with respect to a metric-induced gradient
needs to be considered [5]. In what follows, we consider some representative examples of how
Riemannian optimisation can arise in the context of deep learning.

6.2.1 Network parameters evolving on manifolds

The parameters to be learned evolve on a manifold when additional structure or constraints are
imposed on the parameters. This is done to improve stability of the training algorithm and of the
trained model. Pioneering work advocating the use of Riemannian gradient and orthogonality
constraints can be found in [2, 3, 17] and there is an extensive follow-up literature. Examples of
this procedure in the context of deep learning have recently appeared in [91] and earlier in the
context of CNNs in [8, 28]. It is crucial to implement the Riemannian gradient descent efficiently,
making good use of the tensor structure of the data and of the layers of the neural network. One
way to proceed is to introduce an evolution equation for 8 and replace (1.7) by the extended
system of ODEs

z=f(z,0), (6.6)
6 =g(6). (6.7)

Of particular importance is the case where the second equation evolves on a Lie group G or on
a homogeneous manifold M = G/H.* In [3] G is simply the general linear group, while orthog-
onality constraints have been adopted in [71] in the context of independent component analysis.
Other concrete examples that we have in mind include the affine group, the special Euclidean
group SE(n), the special orthogonal group SO(n), the Stiefel manifold V,,, = SO(n)/SO(n — p)
and the Grassmann manifold G, , = SO(n)/(SO(n — p) x SO(p)) including the n-sphere.

For matrix Lie groups G (and homogeneous manifolds) (6.7) can simply take the form of a
linear matrix differential equation

6=M(®)0, 6eM

“Here, H is a closed Lie subgroup of G, and M := G/H the quotient with the manifold structure turning
n: G— G/H, g+ gH into a submersion. Then M becomes a homogeneous space for G with respect to
the transitive Lie group action induced by left multiplication.
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and M(¢) € g, and the optimisation can be performed in terms of the variable M. To preserve the
manifold structure one can consider a discretisation of this equation of the form

Ok+1 = exp(h M;)0,

where exp : g — G is the matrix exponential. This discretisation can be seen as the prototype for
constructing local coordinates® on the manifold of parameters. Alternatively, any approximation
of the exponential map ¢ ~ exp (e.g. by a rational approximant) preserving the property ¢ : g —
G, can be used to construct local parametrisations of the manifold®. On homogeneous manifolds
such as V,,, and G,,, additional structure on M(¢) can be exploited to reduce the computational
cost of matrix exponentials and similar mappings [20].

After time discretisation, this approach guarantees that the parameters at each layer of the net-
work belong to manifolds which are all naturally equipped with Riemannian metrics and some of
which are compact. In particular, a metric on G that is H-right invariant (i.e. the right multiplica-
tion R, with 4 € H is an isometry) descends to a Riemannian metric on M = G/H [54]. Gradient
descent techniques to train the network should then exploit the Riemannian structure [2, 91]. A
sufficient condition for convergence of Riemannian gradient descent is that the manifolds are
geodesically complete [130, 123]. All Riemannian homogeneous manifolds as well as compact
Riemannian manifolds are geodesically complete [79, IV .4].

6.2.2 Information geometry

A special case of the Riemannian structure discussed in the previous paragraph arises when
taking into account the inherent statistical properties of the underlying unknown distributions of
training pairs and, connected to this, statistical properties of the network parameters 6.

Treating the parameters 6 as probability distributions, they can be modelled as elements on a
statistical manifold with an appropriate metric. A statistical manifold is a Riemannian manifold
whose points correspond to probability distributions. Gradient descent on statistical manifolds
is studied in information geometry. Here, the so-called natural gradient is the proposed notion
of gradient on a statistical manifold [2]. For an L-dimensional parameter space, equipped with a
Riemannian metric tensor G = G(6) = (g;;(9)) € RE*L that depends on 6, the natural gradient of
E(6) is defined as

VE@©)= G (0)VE®),
where VE(#) denotes the ordinary gradient of £ in R”. The natural metric considered in this
context is the Fisher information, with G being the Fisher information matrix of the parameters

6. Natural gradient descent then reads

6 =—G 1 (9)VE(®). (6.8)

>Otherwise called as retraction maps [1].
¢ An example for the case of SO(n) and Sp(n) is the Cayley transformation, which is used in the context
of invertible networks in Section 3.1.3.
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In the case of E(0) = ﬁ Zivzl | W(x,,0) — yull* a squared error loss and G being the Fisher
information matrix, we have

[RA.
GO) =~ ;Jn I
where J, is the Jacobian of W(x,, 6) with respect to 6, cf. [96]. Note that in this case natural
gradient descent, discretised with forward Euler, is equivalent to Gauss—Newton iteration [104].
This connection between natural gradient descent and (extended) Gauss—Newton methods can
be extended to more general losses as well [107]. In the continuum limit, (6.8) is a gradient flow
with respect to the Fisher-Rao metric, see [102, Definition 3.1].

Several works [2, 4, 107] have demonstrated advantages of using the natural gradient over
the ordinary gradient in (6.2) for neural network training. The Riemannian structure seems to
guard against the gradient descent being trapped in flat areas of the loss function’s surface [134],
and as a result, the network to feature better generalisation capabilities, cf. [66, 76] for different
characterisations of flatness of the loss function’s surface.

6.3 Optimisation of two-layer ReLU neural networks as Wasserstein gradient flows

Continuing our discussion on the mathematical structure of training deep neural networks, we
now consider using such structure to analyse optimality and generalisation properties of trained
networks. More precisely, the inherent gradient flow structure of training neural networks also
appears when studying global optimality and generalisation properties of trained networks. Bach
and Chizat [26] pick up the gradient flow formulation of neural network learning and study con-
vergence of the learning problem (1.4) to a global minimiser of E for two-layer ReLU neural
networks @ in the co-width limit. In particular, their analysis makes use of the structure of a
Wasserstein gradient flow formulation of (6.2) over the space of probability measures in the
oo-width network limit. Proving convergence to a global minimiser of £ also allows the study
of optimal generalisation capabilities of the trained two-layer ReLU neural network by charac-
terising the limit (for a certain class of loss functions with exponential tails) as a max-margin
classifier [27].
In [26] they consider a two-layer neural network of the form

1 J
®(0,x)=~ ) _f(6,%), (69)
j=1

where
fO,x)=¢; max{aj’-x + b;, 0},

for x € RM and 0; = (a;, bj, ¢;) € RM*2. The weights 6 in (6.9) are learned by minimising a loss
function such as (1.4) with optional regularisation R(6) =% jLzl ||9_,-||§. In this setting, they
investigate the performance (generalisation capabilities) of the learned network & by studying
the associated gradient flow of the loss function £ for initial weights 6(0) =6y ~1i.i.d.uo €
Py(R™)

6 = —mVE®,x). (6.10)
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In particular, they analyse convergence of (6.10) in the co-width limit, which they prove can
be written as a Wasserstein gradient flow. More precisely, they parametrise the network ® with
probability measures u € P,(R*?) as

(i) = f B(0,2) duu(6),

and the associated loss function as
1
()= D L®GL3).70) + f 16113 dpa(6). (6.11)
n=1

In this setting they prove the following results.

Theorem 6.1 ([26]) Assume that

spt(eo) C {lel” = llall3 + 1b).
As L— 00, pyp = % ;:1 8¢;(t) converges in Py(R™YY to p,, the unique Wasserstein gradient
flow of E in (6.11) starting in .
Moreover, assuming [ is ‘diverse’ enough (cf- [26] for details). If |1, converges to | in
Py(R*Y), then oo is a global minimiser of E.

Note that this gradient flow formulation of neural network training also has connections to
several interesting works on the mean-field theory of neural networks, see for instance [48].

6.4 Open problems
6.4.1 Port-Hamiltonian optimisation methods

Generally, investigating new optimisation methods for £ by considering different instances of
Hamiltonian descent is a promising research direction. Here, different choices of Hamiltonians
or special cases of Hamiltonian systems might be advantageous for classes of loss functions and
network architectures, imposing different descent dynamics. For example, interesting schemes
arise when symplectic numerical integration is applied to port-Hamiltonian systems (with dif-
ferent Hamiltonians), cf. [125] for an introduction to port-Hamiltonian systems and [21] for
the development of structure-preserving numerical integrators for port-Hamiltonian systems by
using discrete gradient and splitting approaches. Massaroli et al. [98] design a loss function
and parameter optimisation dynamics of the network in such a way that the neural network
itself behaves like an autonomous port-Hamiltonian system. This, in turn, allows a proof of con-
vergence of the optimisation algorithm to a minimum of the loss. Taking this a step further,
port-Hamiltonian systems also lend themselves to the design of locally adaptive optimisation
schemes as the port-Hamiltonian structure is preserved under concatenation of port-Hamiltonians
with orthogonal input—output relation.
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6.4.2 Convergence analysis for natural gradient optimisation

While several papers seem to suggest (mostly empirically or for linear networks) that natural
gradient descent helps to mitigate nuisance curvature in the neural network parameter optimisa-
tion, very little seems to have been done on this theoretically, in particular for non-linear neural
networks [138]. In general, while for particular choices of the Riemannian metric (6.8) boils
down to classical optimisation schemes, such as Gauss—Newton for G being the Fisher informa-
tion metric, analytic results on convergence properties of natural gradient flow discretisations are
generally open. Indeed, the study of (6.8) for different choices of G could be very interesting.
For instance, if G is a BFGS approximation to the Hessian of £, then a stochastic method was
proposed and analysed by Wang et al. [127].

6.4.3 Studying generalisation properties of neural networks by metric gradient flows

As the example of the Wasserstein gradient flow in Section 6.3 has shown, metric gradient flows
can serve as a useful tool for studying convergence of the network training and for the study of
generalisation properties of the minimisers [26, 27]. It would be interesting to see if other metric
gradient flows would also lend themselves to such an analysis. In connection with information
geometry in Section 6.2.2 we have seen the gradient flow with respect to the Fisher-Rao metric
appearing. Could this be used to study convergence properties for other network architectures,
beyond two-layer ReLU? Are there other metrics that could be interesting to investigate for that
purpose?

7 Conclusion

Structure-preserving approaches to deep learning are a means to design neural networks with
guaranteed mathematical properties, to derive optimisation schemes that improve their train-
ing and to analyse their global optimality and generalisation capabilities. In this paper, we
discuss some recent examples from this emerging topic of structure-preserving deep learning.
These include ODE and PDE parametrisations of neural networks for improved stability prop-
erties, an optimal control formulation for neural network training that gives rise to systematic
training and regularisation procedures, invertible neural networks for large-scale deep learning,
equivariant neural network architectures for the design of neural networks that preserve group
transformations and structure-preserving training of neural networks by means of Hamiltonian
descent and Riemannian metric gradient flows. Together with the discussion of state-of-the-art
results, we also suggest a range of open problems that we identified as interesting mathemati-
cal avenues that could help to shed light on the systematic design and training of deep neural
networks.
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