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ANALYSIS ON ROOT SYSTEMS
AMEDEE DEBIARD AND BERNARD GAVEAU

Introduction. A great part of mathematical analysis relies directly on the
methods of separation of variables and on the successive reduction of
several variables problems to one-dimensional equations and to the theory
of classical special functions; for example, the theory of elliptic or
parabolic equations with regular coefficients (even with non constant
coefficients) can be done because we know explicitly the fundamental
solutions of the Laplace operator or of the heat equation; these
fundamental solutions are functions of one variable; pseudodifferential or
parametrices methods are thus basically small perturbations of an
explicitly known problem in one variable.

On the other hand, there are many problems which are not of this type:
they are related to the questions of operators with singular coefficients
and to the global behaviour of the solutions; in that case, the local model
cannot be reduced to a one variable problem but is fundamentally a
several variables problem which cannot be treated in a detailed way by
one variable methods or perturbation analysis of a one variable problem.
Although a precise definition of what should be “regular singularities” for
a partial differential operator is not yet understood, we can imagine that
the singularities of the radial part (in the Cartan decomposition) of the
Laplace-Beltrami operator of a symmetric space in rank greater than 1,
should be typical examples of regular singularities. Moreover these
operators present certain symmetries due to the action of a finite group,
the Weyl group, and to the underlying root system. In fact, once we have
fixed the root system on a euclidean space, and once we have fixed certain
numbers called the multiplicities of the root, we can determine, in a
unique way, a second order elliptic operators having its singularities on
certain hyperplanes of R” bounding the so called Weyl chamber (which is
a cone in R"). This operator comes from the Laplace operator of a
symmetric space for very precise values of the multiplicities of the roots
(for example
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S T
ar ror

comes from a euclidean space only if « is an integer). Our purpose is to
study such operators and in particular the fundamental solution of their
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heat equation. We can do this only in very few cases. Moreover, even in
the symmetric space cases, we think that representation theory or Harish
Chandra theory does not give explicit results and we have treated the
problem directly. We shall concentrate only on the 4, and BC, root
systems (leaving aside D, and the exceptional systems). Here is the content
of the paper.

Section 1 gives general definitions on root systems, Laplace operators,
volume element and their relation to symmetric spaces.

Section 2 studies the root system A, (with the usual technical difficulty
associated with the choice of coordinate). We obtain for SU(p + 1) the
invariant operators, their eigenvalues and eigenfunctions. From this,
Section 3 deduces the heat kernel in term of ® functions. Section 4 begins
the study of the root system BC),, their eigenfunctions, eigenvalues and
heat kernel for certain compact spaces. The non compact case is treated in
Section 8.

Section 5 gives several formulas for the analysis on a symmetric space in
horospherical coordinates and Section 6 deduces an explicit expression for
the quantum propagation of the open Toda lattice (a problem which was
posed to us by the late Professor Mark Kac). Section 7 gives explicit
recursion formulas for the heat kernels of ordinary hypergeometric
equations. Section 9 treats the case of the rank 2 spaces with root system
B, (or C,) and symmetric spaces of rank 1. Section 10 applies the
preceding analysis of Section 5 and Sections 7 and 9 to fundamental
solution on solvable groups and to the quantum mechanics in the
exponential potential or in the Morse potential.

1. Root systems and radial parts of Laplace operators.

1. Root systems on a euclidean space. a) Let E be a euclidean space of
dimension p and R a root system on E. If x, y are points in E, denote (x, y)
the euclidean scalar product and if « is a root in R, we identify a with a
vector in £ so that we can define (x, a).

b) Call it , the set of positive roots for a certain order and call A the so
called Weyl chamber

(1.1) A={x€ E/(x,a) >0 fora € N_ }.

¢) Toeach a« € R, we associate a number p, > 0 called multiplicity of
the root and we define on E the volume element

(1.2) ) = I (sin (e, x) ).

aeN,

d) Let also ey, .. ., e, be an orthonormal basis of £ and x;, = (e, x) the
corresponding orthonormal coordinate. Call
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n

- a ad
(13)  Af =) 2 —-(VP(X)— )

j=10x; ax;
Definition. This second order differential operator is called the

Laplace-Beltrami operator for (E, R, p).

2. Relation to the symmetric space of negative curvature. Let X = G/K be
a symmetric space of negative curvature, with G a semi simple Lie group
with finite center, K a maximal compact subgroup. Call & and § the
corresponding Lie algebras, B the orthogonal complement of & in & for
the Killing scalar product and 2, a maximal abelian subalgebra contained
in *B: g 1s a euclidean space of a certain dimension p (for the Killing
scalar product) and we shall denote it by E. Now Ay, = E can be obtained
as follows: consider a complexified Lie algebra & of ¢ and 9 a maximal
complex abelian subalgebra in & On ¢, there is a natural system
of complex roots defined as follows: for any # € $¢, we have a linear
map

X € Gc—[h X] € O

We can diagonalize these maps simultaneously, because - is abelian,
and the eigenvalues are denoted a(h): they are linear forms on $¢; as
eigenvalues they have complex multiplicities equal to 1, and we denote
by @5(5) their eigenspace (of dimension 1). We denote by Rt this root sys-
tem. Now E = Ay is just ¢ N P (so it is a real abelian subalgebra of *B).
We can then restrict the linear form a to E, to obtain the so called
restricted root system 9. Each root a has then a multiplicity p,, which can
be greater than 1, and in this manner, one obtain a triplet (£, R, p).

3. Radial coordinate on X. Now the symmetric space X = G/K has a
natural system of so called radial coordinates: if o is a given origin in X,
then

(14 X=K-4-0

where K (resp. A) are the subgroups of G with Lie algebra § (resp. )
and then any point m € X can be uniquely written as

m =k -(expx)-o

where x belongs to the Weyl chamber A of Ay, for a given order R. x is the
generalization of the radial coordinate in usual euclidean space but: it is
here in general a p-dimensional vector belonging to a kind of cone A.

Now, the riemannian volume element of the space X can be decomposed
into a part depending only on K and a radial part depending only on x and
this radial part is

(L.5) v(x)dx, ...dx, (v, given by (1.1)).
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We call radial function a function f on X which depends only of x in the
decomposition (1.4): this means that fis a function on X such that

fk-m) = f(m) foranym € X, k € K.

Then using the radial coordinate system, f can be viewed as a function ]
on A (or as a symmetric function on ¥ for the action of the Weyl group W
generated by the reflections through the walls of A or by the adjoint action
of K on Ay) and the integral of fon X is

(1.6) /;f(m)dv(m) = Vol K fA SOy xv(x)dx, . dx,,

Moreover the action of the usual Laplace Beltrami operator A(ZX ' of X on
such function fis exactly the action of the operator A, defined by (1.3)

on f:
(1.7 Af(x) = M f(x).

In particular 4, is self adjoint with respect to v, which is obvious by
(1.6) and the formula (1.3).

Remark. In the first paragraph we have considered general positive p,;
in fact, for the symmetric spaces, the allowed p, which come naturally
from the structure of symmetric spaces are extremely special (see below
for the examples that we treat).

4. Higher order Laplace operators. On X, one can define other Laplace
operators as differential operators on X which are invariant by the
isometries G. One can prove that there are p algebraically independent
such operators (including the Laplace-Beltrami operator A(QX )); because
these operators are invariant by isometries of G, they transform radial
functions into radial functions, and one can define for them a radial part,
which is a differential operator on A; we denote by Ay, ..., 4, these
radial parts and A(3X b, A!(,A;) | the corresponding operators on X.

One can prove that the higher order terms of these radial parts are

S 0 . . . .
polynomials in (8_) - which are invariant by the action of the Weyl
Xk ]
group W and conversely, any polynomial in (a——)/__] ) which is invar-
X Ji=1..
iant by the Weyl group W is the higher order part of the radial part
of a Laplace operator in X. Moreover this polynomial defines the
Laplace operator in a unique way (up to additive constants). Finally these
operators commute with one another; very few things are known about
these operators and it is one aim of this work to give rather explicit
formulas.

5. Weyl alcove and compact symmetric space. a) Let (E, R, p) be as

before. Then, there is a maximal root «,,,, for the order. Call C the set
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(1.8) C={x€E/xe A and 0 < (x,a,,) <7}

C is a simplex of dimension p and is called the Weyl alcove. We can then

define
1.9 ) = II Gsina, x))
acsR
and
R . . n 9 . 9

(110) A,/ = @) 2 — 00— f

j=10x; dx;
which is also called the Laplace-Beltrami operator for the triplet

(E, R, p).

b) If X = G/K is a compact symmetric space; one can do the theory
developed in 2, 3, 4. We associated to X a triplet (E, R, p) as before and we
can define the radial function and radial coordinates x, except now that x
is restricted to the Weyl alcove C and that Op(x) given by (1.9)
iAs the volume element of X in these coordinates; in the same manner
A, given by (1.10) is the radial part of the Laplace-Beltrami operator A5
of X.

6. The Weyl group and the spheres in X. a) Let E be a euclidean space, iR
a root system; the Weyl group W is the group generated by reflections
through the hyperplanes (R, x) = 0 for R € R. It is also generated by the
reflections through the walls of the Weyl chamber. The Weyl group
permutes the set of all Weyl chambers; this means that for any w, w’ € W,
wA N wA is empty if

w#w and U WA = E.
weEW
In the case of a symmetric space, W is also the group AdKly . Once a
Weyl chamber A is given, this induces an order on E by saying that x = 0
if and only if x € A and x = y if and only if x — y € A. We also say
that x > 0 if and only if x € A.

b) Let us now take a non compact symmetric space X = G/K. Let
m € X; then we can consider the orbit Km of the compact group (which is
the analogue of a sphere in the euclidean case). Then the set of all Km is in
bijection with the closed Weyl chamber A. In the case where X = G/K is a
compact symmetric space, we have the same situation, but for the Weyl
alcove, namely the set of all Km is in bijection with the closed Weyl alcove
C.

We shall call “spheres” the orbits of the compact group K. The set of
spheres is indexed either by A or by C.

¢) The affine Weyl group w© is the group of affine isometries in E
generated by the reflections through the walls of the Weyl alcove C; it
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contains the Weyl group as a subgroup, but also translations. It permutes
transitively all the Weyl alcoves C, i.e., if w, w € WO wC n wCis
empty when w # w’ and the wC induce a paving of E.

References. For general information and notation about symmetric
spaces and root systems, see [15], [17], [2] (in case of complex space)
and [1].

2. Invariant operators and their eigenfunctions for the root system A4, in
the compact case SU(p + 1).

1. The root system A, and its affine Weyl group.

a) The root system A,. Let E be the euclidean vector space of dimension
p, (X, Y) its scalar product and R the root system of type A4,. A basis of
this system is given by the vectors {R, ..., Rp} in E such that

1
(R, R) = 1 (Ri, R 1)) = _5
(R, R) =0 ifj#i— 1Lii+ L

2.1

The Weyl alcove is defined here by
p

22 C= [X € E/(R, X)>0,1 =i=p X (R, X) < 77}.
i=1

The orthogonal symmetries with respect to the hyperplanes {X € E/
(R;, X) = 0} generate the Weyl group W, of this root system which is
isomorphic to the symmetric group S, of order p + 1.

b) The affine Weyl group. Call T, the group generated by translations by
vectors 27R; in E (considered as an affine space if one wants to be very
formal) and let W;,O) be the semi direct product of W, and 7,; it is the
affine Weyl group of A,. By the action of W;,O) into C, we obtain a pav-
ing of E by simplexes which are isometric to C

¢) Description of the paving. Let © be the neighborhood of 0 in E given

by
23) Q= oeuwp a(C).
We also denote Iéi = 27R, so that
14
T, = X IR,

Call 7,; the translation by vector G. Then the paving is

(24) E = oYy ().

Moreover if G # G, then 7,(2) N 7,(Q) is empty.
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We shall take as a basis of E the fundamental roots {R,. ..., R,}; then
any vector X € E has coordinates x; on this basis namely

(25 X = > xR.

Let Q be the hypercube
(2.6) Q={Xe€E/Ix|]<m foranyi=1...p}.
Because {2 is a bounded neighborhood of the origin, there exists an integer
K, such that
+K,
0 c UK Tzﬂlnlﬁl(ﬂ)
0

=
and we have thus a partition of Q
+K,
2.7) 0= uU_
7 0
with
Q(,nl...n,,) =0nN TE,”_In,é,(Q)

(it can happen that some ' are empty).
Now we can also make the action of T, 0n Q to get an obvious paving of

E and we also have
+K,
Q < U 'TE‘P lI’lél(Q)

n=—K,

and a partition of €
+K,
(2.8) Q= u Q-

n=—K, ey
where
Qn,...n,, =en 72{’,.,,1,13,(Q)-
But it is clear that
Qn,H.HI, = T(E,”_,n,lé,)['r(—Ef:;lizllé')(ﬂ) N Q]
so that we obtain
(2.9) Qn,. -y, = T30 ln,lél(ﬂ(’fnl

2. A change of coordinates in E.

a) E as an hyperplane in R” "' We consider R”*! with its euclidean
structure and ¢, ...q,,, the orthonormal coordinates in R’ Let
E be the hyperplane of Rt with equation
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In this coordinate system, the roots are given by
1 (g — q)
\/i ql q/

for X € E with coordinate (g, ... g, ), and the basis for roots is given
by

(2.10) (R, X) =

1
(2.11) (R, X) = %(‘L‘ ~gi+) I=1....p

We use here a normalization by 1/1/2 so that ||[R]| = 1. Let us denote by
7, ;+ the transposition of the ¢, and ¢, ;:

Tt Grs oo s i Gigts e v e s flp+1)
=G i1 G- - ’qp+|)‘

It is clear that 7, , | | is exactly the element of the Weyl group W, which is
the reflexion through the wall (R;, X) = 0

b) Changing the coordinates from E 10 R"*! from &, 1o g Let(ey,....¢)
an orthonormal basis of £ and (¢, ... ,S,,) the coordinates of E in this
basis. The roots in this basis can be written

r R =¢ (R, X) = §
R — - 1 _ 1 " 1 R X 1 1 N 1
, = ztl 2¢2 \/j(3 (R X) = 551 Egz %gi
Ry = ¢ (Ry, X) = &
1 1 V5 1 1 5
Ry = ——ey — €3 + T € (R4v X) = 7"52 - &+ \—['54
(2.12) 4 2 22 2V2 2 2V2 2V2
V2 V3
Ry = ———¢4 + ——e4
V3 V5
and for S =k =p
R [k —1 N k + 1 (Re. X) //«—I)g 4 A+I§
= — ¢ e . - — A
i 2% k-1 2 A k m A1 " At

Because ¢; — ¢;4, = V/2(R,, X) we have the matrix changing the &’s
coordinates into the g’s coordinates given by the matrix on the next
page.

It is easy to check that

pt+1
2 q;, = 0.
i=1
If € ...€, is the canonical basis of Rt (with respect to which the
coordinates are g, ... g, ), we have

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

—
€
— = 1
g i
' V2
i

92 \/5
93 0
s 0
qs 0
éu 0
Gk +1 0
0
W 0
dp+1 0

€l =

(2.13) ey =

6'3 =
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<
<
<

. K+
0 0 0 : 0 -
: : k+2

0

<
<
<

<
=]
(=3
=1

1 1
—€ — —<€
vZ©ioov2t?

1 1

LI
VRN
ro1 1]
—€ T -6 — -6 — —€
2] 7 2 7 3 4

andfor4d = k=p

(2.13) ¢, =

€k+1-

1 L [k
Vk(k T D) E] “ Vit

We shall denote the preceding matrix relation by

(2.14)  (9) =

M(é)

where M is defined above.
c) Changing the coordinate from & to x; recall also that in E, there is a
third coordinate system
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0 1 1 1 1 1
2025 T VEKF D ik + Dk +2) NITER)
N 1 1 1 : |
Y G P T
| [ 1 :
N R P
1 [ 1
2o =
2 1
0 0 ——= T
Vs Vk(k ¥ 1)

=1 1 T
00 0 ...0-\—

K VEEFD Vi + Dk + )
) % ] !
o~ \/ \V—— .V
. k+1 Vi + Dk +2 plp 1

/ [
pip + 1)
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P
X=2 xR,

i=1
Define

(2.15)  (§ = A(x).
Then A is computed in (2.12). We shall need 4 -

10 (VDD V2VES T V2AVEK F Iy 0o V2P (p + 1)
0 0 2AVDH ' 2V2WES T 2VAVEKR YD 2V2(Vpp F 1)
0 1 (V)T 3VAGWAEAS T 3VAWRGR F )T 3NA(Vp(p F Ty
0 0 0 4/2AVAS) T aAVKGE F )0 :
0 0 0 [ SVAVEGR 0y Do
i .
(2.16) AT = D :
0 0 0 0. 0 kV3( VEEF ) KN2(\Vp(p + 1)
0 0 0 0 ... .. 0 0 '
0 0 0 0....... 0 0 o pV2NVp(p + 1)

@ = (3%117 ’aqj+l)
©9 (azl’ a_zp)
(ax) = (aixl’ %)

Then we have
9 _ e 0%
d, 7 ¢ dq,

But
pti P
X = 2 q['ei = 2 f_,-e_-,
i=1 j=1
so that
pt1
§ = I_% q,(€ )
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and

a .

ﬁ — (([’ e].)

9, '
and (e, ¢;) is given by the element of the jth column and i™ line of M, so
that

(2.17)  (dq) = M (3¢).

Moreover from (2.15) we have

(2.18)  (3%) = 4 '(0x)

and combining (2.17) and (2.18) we obtain
(3g) = M4~ '(9x).

A routine computation gives us the matrix M4 ~!and the expression of
vector fields by Lemma 1.

LemMa 1. For 1 = r = p + 1, we have the following formula
2 (& 'S 0
219 > =—\[—(E (p + 1 —k)— - > /—)
P"‘l k=r

dq ox, /=1 0x

r

3. The L? space of the Weyl alcove.
a) Symmetry and antisymmetry. Let f°E — C be a complex function; we
define the action of the affine Weyl group W( on fby

(2.20)  (of (X) = f(6 (X)) for X € E.
We say that f'is invariant if

of =f foranyo € W[(,O)
and that it is antiinvariant if

of = (—1)° f foranyo € W,(;O)

if (—1)? is the determinant of o.
We begin to work in (x,, . .. 2 X,) coordinates.

LEMMA 2. f(x,, ..., x,) is invariant by the affine group if and only if fis
periodic of period 27 in each x; and if

of =f fori=1,...,p

where o, is the reflexion through the wall (R;, X) = 0. fis antiinvariant by
(0) if and only if f is periodic of period 2 in the x; and

of = —f fori=1,...,p.

The proof is obvious because the translation by 27R,; and the reflexion o;
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generate W(,O) and precisely we consider the coordinate system of the x; in
the basis of R,. Moreover it is clear that

(—1)" = -

b) Antisymmetrisation operator A. If fis a periodic function, of period
27 in the x;, we define

Q21) (AN ..x) = 2 (=D (o(x, ... x,)).

(S
ocW,

It is clear that Af is an antiinvariant function by Wlﬁm. If fis already
antiinvariant A4f = (p + 1)!fand so 4> = (p + 1)'4.

¢) The f,, function. Define (n) = (ny,...,n,) where n; are integers
and

n
(222)  fi(xp..oix,) = exp(i 21 n/x/)
j=
LemMA 3. If one of the ny is 0, then Af,, = 0.

Proof. If n, = 0, let W, (k) be the subgroup generated by o, so that it is
{1/, 0,}. Then

W, = gg(; W, (k)-8

for a suitable subset G C W. Then

(Af(n))(-x] - X, 2 (— 0 '(0n~X)

ceW

_ 2 (_~l)q(ei(gX,Idn) _ ei(gX.oAn)).
Y

But o;n = n = Idn.

LEMMA 4. The func tlons Af il (where n, > 0 for any k) give a complete
orthogonal system on L(C, dx, ...dx,) and

(2.23) A4S ll2can) = (2w>"/2.

Proof. We take a function f, and recall the definitions of m and Q(n)
given in (2.7) and (2.8). Because of (2.9) and because fm)f(m) is invariant
by the translation 3 n.R,, we have

I &

,/s‘zm JowtrJom©)dx = 2, Jowrfim(x)dx
and so by (2.7), (2.8) and (2.9)

(2.24) Lf:mf)f;m)dx = fQﬁm»f(m)dx

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

ANALYSIS ON ROOT SYSTEMS 1293

But now Q being the hypercube (2.6) in the x; coordinates, the second
member of this last relation is 0 if (m’) — (m) # (0) and so the f(m) are
orthogonal on .

Let § be the Hilbert space of the 27-periodic functions in the x; which
are square integrable on Q with the L? norm on Q and A the subspace of
antiinvariant functions (which is meaningful because of the definition
(2.3) of ©

Q= ogw a(C)).
If g is a function defined on C, it has a unique antiinvariant extension
in E.

It is clear that if g is antiinvariant, we have

Lo g(x)g(x)dx = fC g(x)glx)dx
for any ¢ € W and so the mapping
_ A
Vip + 1)
gives an isometry between LA(C, dx) and A9. It is also clear that if f, g are
n o
(2.26) (Af |8)L2(Sz) = (4f lAg)LZ(C) =(f IAg)LZ(SZ)

because by definition of £

(2.25) g e LXC, dx) — € A

Af18)120) = LAf(x)g(x)dx = 3 o, ARG
cEW
and because Af is antiinvariant

= 3 -1y fCAf(x')g(ax’)dx' = (Af148) 3¢y

ceEW

Let now ,, be the subspace of $ generated by the function of(ny Where
o € I/I{); it is clear that

Oﬁn) = f;u(n)'
It is also clear by (2.24) that
Omy N Oy = {0} ifn, n, =0 and (n) # (n).

We shall write (n) = 0 if all n; = 0. It is also clear that for any (n;) € Z7,
there exists a unique (n") = 0 such that

S € D)
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because (n) = o(n’) for some 0 € Ifi{, So we can deduce that we have an
orthogonal decomposition

:,3 = 2 "‘:)(n)

(n)=0

o

B

227) A9 = 2 Ay

(n)=0

and A9, is generated by the only function Af,, which is 0 if one of the n;
is 0 and is not O if all n, are not 0. Moreover using (2.26) and because
A> = (p + 1)!4, we have

Al )iy = (P + DUA )l A )12
so by (2.26)
= (p + DA )i
and because A% = (p + D4
= ((p + DY) 120
=((p+ DY 2 (=D,

06%

)[‘2(9),

o(n’)

But if (n) # (), for all 6 € W), we have ‘o(n’) # (n) ((n) > 0, (n’) > 0,
so that o change the “order”) and so the
il

because of (2.24).
This means that the 4/, for (n) > 0 are a complete orthogonal system
in A. Moreover by (2.26)

”Af(.n)H%Z((‘) = (Af(n)lf(.n))l.z(ﬂ)
= 2 (—D,

(S VZ,

)ig) = 0

|f{n))1_2(9)~

a(n)

But ‘o(n) is in a different Weyl chamber of that of (n) (i.e., at least one of
the (‘o(n) ), is < 0), so that ‘o(n) = (n) if and only if ¢ = Id and so the
integral is (27)"8, 14 (using (2.24) ), and

-2
HA_/(n)”],Z((*) = (277)11-
As a corollary, we can prove.

LEMMA 5. Let

f(x) = % a(n)f;n)(x)

be a trigonometric polynomial (a,, € C). If f is antiinvariant we have
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fx) = 2 apm(Afi)x).
(n

)>0

Proof. Because f'is antiinvariant, we have

Af = (p + DIf
and also

of = (=D
so that

a, = (—Day,.

o(n)
But also by Lemma 4, f can be decomposed on the basis of the 4f,
with (n) > 0 which gives

/= 2 b(n)Afm)'
(n)>0

But
Af = 2) iy Af iy
(n

2 ( 2 (‘l)oarmm Af(n)

n)>0 ‘oW

f

(p + D! Z)am)Af('n)

(n)>(
and this is equal also to (p + 1!, so by = () for (m) > 0.

4. Differential operators with constant coelfficients on E.

a) Action of the affine Weyl group. If P is a differential operator of order
k on E, and if o is an element of the affine Weyl group W,‘,O), then o acts
on P by an action denoted do

(2.28)  do(P)(f) = o(P(s" f))

where o6 acts on f by (2.20). P is said to be invariant if
do(P) = P forany o € W;O)

and antiinvariant if
do(P) = (—1)°P foranys € W

To investigate the invariant or antiinvariant differential operators, it is
better to use the coordinates g, ... g, described in n° 2, although the
coordinates x|, . . . . X, were better suited to investigate functions (because
these coordinates are adapted to the translational part of the affine Weyl

group).

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

1296 A. DEBIARD AND B. GAVEAU

b) Invariant operators and their action on antiinvariant function.

LEMMA 6. Let P(Y)... Y be a symmetric polynomial in the
indeterminates Y, ... Y, .. Then
a a )
aql’.”’aqp-*-l

is invariant by the Weyl group W,.

Proof. The Weyl group W, is generated by the reflections o; in the walls
(R;, X) = 0. But we have seen in n° 2 that this reflecuon is the
transposition exchanging g; and ¢, ,; this means that W, is the symmetric
group S, acting on the ¢s and the lemma is proved.

LEMMA 7. Let P(Y,, ..., Y, ) be a symmetric polynomial in the Y, Then,
for (n) > 0
a 9
(2.29) P Ty e . Aﬁn) P(pl’ EECEEETY pP+l)Af(n)
aql aqp-f—l

where

k—1
(2.30)  p((n)) = —\[—1(2 (p+1—Dn — /§ 1n,).

Proof. P being invariant by W, and A4/, being antiinvariant, it is clear

that
d a
A at
aql aqp +1

is a trigonometric polynomial which is antiinvariant by W,. Moreover by
Lemma 1, (2.19), it is obvious that

f(n) p,((n) )f(n)

so that
P(—ﬁ—, . L m = P (M) ...p, 1 ((M))fn)
g, a‘Ip+1 g
Now Lemma 5 implies the result.

c) Example: the usual Laplacian. Let

p+1
P(Y,...Y, )= 2 Y}
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Because the basis of the ¢ is orthonormal on E, we have
ptl a2 p
d 9’
231) > — =
(2.31) v _§ 5

k=1

In fact we have seen in n° 2 that

d d
— e
4 E 8§ — (& ¢)
so that
¥ o2
€., e )., e > —.
ani kﬂagagl(k e €) = 0
We obtain that in coordinates (x,, . . ., x,) the Laplacian is
2 (& e
2.32 A=—( rp+1—r)—
(2.32) p+1 r§| ( )8x3

82
+2 > r(p+]—l)a )

1=r<i=p x,ax,

and that Af, is an eigenfunction of A of eigenvalue
p

2
0 _ _ _ 2
(2.33) Q) = o EI r(p+1— rn

+2 > r(p + 1 — Dnn).

1=r<i=p

5. Differential operators in radial coordinates for SU(p + 1).
a) The function J(X). Let

J(X) = Afa,...

((1,...,1) corresponds to the smallest element (n) in the Weyl chamber
which is not on one of the wall). It is easy to see that

XY — iRX) _ —i(RX)
@34 X =0 (e e (RN
R>0

because if we denote by Y(X) the second member of this equality, then

— i(6R,X) _ _—i(oR.X)
WoX) = 0 (e e~k
R>0

but oR is a positive root if and only if (—1)° = 1 so that

YoX) = (— D)'YX);
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then i is antiinvariant. Moreover let 2p(X) be the sum of the positive

roots:
(2.35)  2p(X) = RQA,, R(X)=x +...+ X,
R>0
Then
_ f _ 7 2(RX)
UX) = fo. . H(X) RQO (1—e ™ )

and if we use Lemma 5, we see that

b) The differential operators Q, and their eigenfunctions. We denote

. Af, (X)
2.36 X) = (2)ypth/2m+h
( ) P(n)( ) (20) Af(l)(X)

where (1) = (1, 1,...,1) and
m+1)=(@mn+1...,n+1 and (n) > 0.

These are trigonometric polynomials in x, .. ., x, which are invariant by
W,(,). Moreover they are orthogonal in

2
2 37(x)dx
- (C’ (2;’)"‘!’“))

because

5
_ ¥)dx S ,
/; p(n)pm’)ai)p—(piﬁ = /; Af(n+|)Aﬁn'+1)dx = 6(n).(n’)(277)l

(Lemma 4 and (2.23)).
Then we define the following differential operators. If P is a symmetric
polynomial in ¥}, ..., ) A

1
(2'37) Qp(i, DEEEREPY a ) = :/- P(/i.’ ey a )A\\s
94, aqu 3 \0q, aqp+l
- P(pl(l)’9pp+](1))

Then we obtain the following theorem.

THEOREM 1. The operators Q, are invariant by the affine Weyl group
W,(,O), and they have the following properties.

(1) Qp (constant) = 0

(i) O = “”xwp(n) where
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2.38) PN = Pey(n + 1).,....p, . \(n + 1))
= P(py(D). ... p, 4 1(D).

(iii) They commute with each other.

Proof. 1t is clear by the fact that ¥ = Af(l) and by Lemma 7. More-
over because the P, is a complete orthogonal system in the space
LA(C, ‘\”sz(x)dx), and because they are joint eigenfunctions of all the Q ,
these operators commute with each other.

¢) Particular case: the Laplace operator. We take for P = A as in (2.31).
Then Pmy 1s an eigenfunction of O, with eigenvalue

2.39) O, =D, — AD ALY, given by (2.33)).

Taking into account the explicit form (2.33) of }\Eg)) we obtain

2 4
By == E r(p + 1 — rn?
() p+ 1l (r n;

p
+ 2 2 r(p+l—l)nrn,+22r(p+l—r)n,
r=1

l=r<i=p

+2 X Hp+1-Dn +n)

1=r<i=p

2 'd 2
- (1=
<

p

+2 2 r(p+1 Al)n,n,) —22 r(p +1—r)n,.
1=r<i=p r=1

A direct computation gives also

2 P
(2.40) )\g‘};:——(zr(p+1~r)+2 > r(p+1—1))
p+ 1\, 1=r<i=p

A0 _pp + D(p t12)
1) 6 b

6. The group SU(p + 1) as a symmetric space. We can consider
SU(p + 1) = M as the symmetric space M = G/K where

G =SU(p + 1) X SU(p + 1)

and K is the diagonal identified to SU(p + 1); Gactson M = SU(p + 1)
by

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

1300 A. DEBIARD AND B. GAVEAU

(8, 8) m = g 'mg.
Any m € M hasp + 1 eigenvalues % 1 =k = p + 1 with

At the level of Lie algebras we have the Cartan decomposition
G =Q R

The maximal abelian subalgebra in *§§ is the matrices which are diagonal of
trace 0. Let g;/7/2 be the diagonal elements. The roots are
4, — 4
R(@) = — Y
(@) 7
and they have multiplicity 2; we are exactly in the situation of n° 1 and 2.
Moreover

¥A(x) 4
—_(2i)p(p+l) Xy ... dx,

is exactly d(x) defined in (1.9) with the p, = 2. By [2], one knows that
the radial part (in the Cartan decomposition) of the invariant operators
are exactly the O described in n° 5 and Theorem 1 describes exactly the
radial eigenfunctions and their eigenvalues.

We could have also obtained the same result abstractly because we
know that the radial eigenfunctions are central functions on SU(p + 1);
but the characters are a basis of central function and are given by Weyl
[32]; they are just the pg,; but the invariant operators on M are
the operators which are biinvariant on SU(p + 1); so the p,, are
eigenfunctions of these operators. Here we have obtained, by our explicit
procedures, the eigenvalues which will be useful in the next section.

References for Section 2. The study of eigenvalues and eigenfunctions on
SU(3) has been done by Koornwinder [18, 19]. For general multiplicities
of the roots, it was done completely in [6]. See also [32] for another
presentation without using root systems.

3. The heat kernels on SU(p + 1) and SL(p + 1, C)/SU(p + 1).

1. The heat kernel on symmetric spaces. Let X = G/K be a symmetric
space (compact or not compact). We can consider the heat equation

¥ w
3.1) ;o f
f'tz() = ﬁ)
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where f; is a given function (say C° with compact support) and A(QX ) is
the Laplace-Beltrami operator. This solution can be written as

@, m) = (Bfo)m) = /X pi(m, m") fo(m')dv(m")

where p,(m, m’)dv(m’) is the heat kernel, dv(m’) being the volume element
of X. It is clear that p,(m, m’) = p,(m’, m) because A‘ZX) is self-adjoint with
respect to dv(m’) and
dap,(m, m’)
3.1y t
p(m, mdv(m’) = §,(m’) ift—0

X /
= A p(m. m')

where §,, is the Dirac mass at point m.
Moreover let g be an element of G such that m = g- 0 (0 being a chosen
origin in X); the heat equation is invariant by action of G, so that

60 [ a0 m vy = [ p O mfgy - oo

But p,(0, m”) is invariant also by the action of k& € K, so that finally
p,(0, m”) depends only on the radial part of m” and we can write

3.3) p,(m, m) = q,(0, x)

x € U, being the radial coordinates of g
that g - 0 = m.

' m’ where g is such

In the case of a non compact symmetric spaces, (3.2) becomes

B4  f(t,g 0 = j;\ q,(0, x)(fk folg- ke"‘O)dk)vp(x)dx

where v, (x) is defined in (1.2) (and is the volume element in radial
coordinate), and in the case of a compact symmetric space

34y f(.g-0) = /C 4,(0, x)(ﬁ folgke* - O)dk)fzp(x)dx
where Gp(x) is defined in (1.9).

In both cases dk is the invariant measure on K of mass 1. Now ¢,(0, x) is a
function on % which is naturally p,(0, ke* - 0); so it is invariant with
respect to the action of the Weyl group in the non-compact case. In the
compact case it will be invariant by the action of the affine Weyl group.

Moreover if t — 0, we have by (3.1)’ that

4,0, XYy, (x) dx = 8,(x).
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Finally, p,(m, m’) is symmetric in (m, m’) and satisfies the heat equa-
tion with respect to both variables, so that ¢,(0, x) satisfies the
heat equation for the radial operators A, or A, (defined by (1.3) or
(1.10) ). Our problem is to find ¢,(0, x) in the non compact case with the
properties

1) q,(0, x) is invariant on Ay by the Weyl group W
(3.5) 2)% = A%Yg, on A

3) 4,0, x)v,(x)dx —> 8y(x) if 1= 0" on A
and in the non compact case

1) ¢,(0, x) is invariant on %y by the affine Weyl group W
: 9, _ A
35y ot =AY,

3) q,(0, x)¥,(x)dx — 8y(x) if t—0" on C.

In the non compact case, ¢,(0, x)v, (x)dx is a kernel acting on functions on
A (or on functions on Ay, invariant by W), and in the compact case, it acts
on functions on C (or an functions on 2y, invariant by WOy,

2. The heat kernel on the Weyl chamber or alcove. We can generalize
the problems (3.5) or (3.5) by asking for a kernel g,(x, x"),(x")dx" or
q,(x, X'),(x")dx" such that

f, x) = A q,(x, X') fo(xW,(x)dx"  or

St x) = fC q,(x, X') fo(xX)o,(x")dx’

solves

of of A
— =A = =A
ot 2f of ot 2f

and fis invariant by action of W or W' respectively and

@, x) = fix) ift— 0.

A . . .
Because A, and A, are self adjoint with respect to v, and Gp, we see that

g, or g, are symmetric and we can ask the problem of finding

1) ¢,(x, x") symmetric in (x, x’), invariant in both variables by
the Weyl group W
9q,
at
3) q,(x, X'W,(x)dx’ — 8 (x') if 1 = 0" on A.

3.6 | 2L = Ay,
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(Or the analogous problem (3.6)" in the compact case.)

Remark. The interpretation of this problem in the symmetric space
is that we start at r = 0 with the uniform mass on the sphere K - ¢* - 0 and
we let this uniform measure diffuse by heat diffusion until time ¢; then
q,(x, X)W, (x") is the fraction of this unit mass uniformly distributed on the
sphere Ke* 0 at time z.

Now, in general, we shall obtain a formula for g,(x, x’) for x, x" in (or in
C), but we want to obtain ¢,(0, x") (recall that 0 is not in A or C but on the
boundary). We prove the following lemma.

LEMMA 1. Suppose that q,(x, x') is obtained on A X A (or C X C) and
satisfies (3.6) and that q,(x, x') has limit when x and x or x’ tends to the walls
of A (or of C) and we denote this limit by q,(x, x’) also. Then q,(0, x)
satisfies (3.5) or (3.5).

Proof of Lemma 1. We shall do it only in the non compact case. First of
all the condition 1) is trivially satisfied at the limit and 2) also if x” stays in
A. To prove 3), we take a function f continuous with compact support,
invariant by W, on g and we want to prove that

Lng [\ J(xg,(0, X'y, (x)dx" = f(0) or

lim lim | f(x)q,(x, X', (x)dx" = f(0).
t—0 x—0

Fix ¢, such that for € << ¢,

1 f(x) — f(x)|| < h foranyx, x’ € B(O0, e).

Now fix such an € and fix x in the ball B(O, %) then
[\ JNg (x, Xy, (x")dx’
= f(x) + L(WA () = [(x))g,(x, Xy, (x)dx’

+ f(w(w)m (S = f(x))g,(x. X, (x)dx’

because

fA q,(x, x’)vp(x’)dx’ = 1.

Let us now fix ¢; if x stays fixed in B(O, %), then
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./(;‘,B(o,e)mA () = ), (x. Xy, (x)dx’
tends to 0 if £ — 0" because
q,(x, x') = 8, (x")

and because the distance from x to x’ is bounded from below by €/2; and
so for h given, there exists #, such that if 1 < 1, this integral is less than A.
Moreover by the definition of ¢, for any ¢, we have

.[3(0,() () = f6)),x, XY, ()

< h fq,(x, x’)vp(x’)dx’ =h
because g, is positive of total mass 1 which proves the lemma.

3. The formula for the heat kernel for SU(p + 1). We shall now treat the
problem (3.6)" in the case of SU(p + 1). We can forget about SU(p + 1)
and treat the problem on the euclidean space E (of dimension p) with the
operator A, = Q, given by (2.37) (where we take

pt1 82

P =2 —).
i§l aq%)

The volume element is just

JH(x)dx
(2,’)P(P+l)

(see part 6 of Section 2) and A, is self-adjoint with respect to J2(x)dx.
Moreover we look for a function g,(x, x") which is symmetric in (x, x") and
1s invariant in both variables by the action of the affine Weyl group w O,
which means that it is periodic of period 27 in the x;’s coordinate and
invariant by W. Then ¢,(x, x’) defines a symmetric kernel on
5[ JA(x)dx
L (C’ (2i)P(p+l))

and has a natural decomposition on the orthonormal basis of the

1
(277_)p/2p(n)

(given by (2.36) ) which are eigenfunctions of A, for the eigenvalues
(), given by (2.39): so we obtain

, 1 () ,
0o x) = Qn)? (n)zzo e " Py ()P y(X)*
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e —AQ op(p+1

QY Af (N Afp (X))
X X MAS AL (X))

(n)>0

B7 g x) =

(where in the last summation we have changed (n + 1) with (n) = 0 in (n)
with (n) > 0 and

(8 — 0 (V)
A(n) - }‘(n+l) )\(1)‘

In (3.7) we can also extend the summation in (n) to (n) = 0 because
we know that 4f,,, = 0 if one of the n; is 0. But we also know that any
(n) € Z7 is the 1mage by some 0 € W of an (n) € A and if 6 # Id
(or (n) & A) one of the n, is negative. Suppose that (n) is in Z” and
n, # 0 for all k; there exists a 6 € W unique such that o(n) is in A; but
then
(3 8) Af;n) = (_l)oAfo(n)‘
Also Afn)) is exactly )\f,?:,). On the other hand if one of the n, is 0, then
Afmy = 0. So we can extend in (3.7) the summation to all Z” if we divide
by the number of elements of W,:(p + 1)! and using (3.8) and denoting by
A, A, the action of 4 on x or x’ variables:

oM p(pF1)
q (X7 x/) = ’
' QmP(p + DA (o)A (X)) )*
(0)
X2 WAL OAS (X))
(n)eZ’?
3.9
G2 , e NI X 2P D x4 4,
q,(x, x') = —

Qm¥(p + 1)!Af(1)(x)(Af(1)(x’) )*

x 3 A O oK) )

(n)&

Now the series on the left side of (3.9) is a generalized theta function. By
(2.33) we have

(3.100 A9 =

O — —'m)M(n)

where M is the symmetric matrix of Hilbert type:

ki
3.11) M, =2|Inf(k,[) — ——| 1 <k I=p.
p +1

Now if S is a complex symmetric (p X p) matrix and X is a vector in
C?, we define
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3.12) %S, x) = ZZ exp(i7'(m)S(n) + 2im((n), (X)).
ez’

Here we have

2P (p+ 1), A

3B.13)  g(x, x) = QP (p + 1)1

. _ t x — x
X (A AT (07 4,4,0( —Lwr
i 2
M being defined in (3.11).
We have now to go to the limit x — 0. Let us fix x’ # 0 in C; we have to
compute

i Ag(x)
m
x—0 Af“)(.\’)

for some given function ¢; it is clear that the numerator and the
denominator of this quotient tend to 0 when x — 0. Now A4f;, = J has
been computed in (2.34) and it is equivalent to:

Afy(x) ~ II 2i(R.x) whenx—0

R>0
Re4,
and
. Ag(x) ( )
(3.14)  lim —~=L — ———— (A p)(x) |, o
=0 Af(x) >0 2id(R, x) (A9)(x) le=o
ReA,
Call
3.15 L= ]I (~——a——)
’ R=0 \2id(R, x)/’
REAp

this is clearly an antiinvariant operator for W, (this is the one of least
order); then

(LAg)(x) = ZW (—1)°(L(og) Xx) = 2 (Lg)(ox)
o ;, oe W//]
and for x = 0 thisis (p + 1)!(Leg)(0), so that when x — 0, we obtain from
(3.13), (3.14)

2P(p+ 1), =N

qz(O~ X) = (27]’)”
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X (Afy)(x)) 4,

L\.,@(—LM, XX )
0 —- .

X

We can now simplify slightly this expression; call

p(x — X)) = @(—.—I—M,x _ X );

i 2

we have to compute

AJLog(x — x)yey = 2 (=D TLog(o % — x) 1oy

1307

= 2 (—1)[Lye(o” ' (x — 0x)) ] lv_g-

But by antiinvariance of L

Logo ' (x — ox')) = (—1)’Log(o”'(x — x")) lygye

= (= D°L(elo "' (x = x"))) Lirgn

so that

AfLeg(x — x)11y_g = 2 Lo(e(o 'x))

= J(—1)(L)o 'x)
and finally

PP+ D, — A

.1 =
(3.16) 4,0, x) Gy

X

(Afm(x))_'AxLX@(—_iM, =)

THEOREM 1. The heat kernel of SU(p + 1) in radial coordinates is given
by formula (3.16) with L defined in (3.15) © in (3.12) and M in (3.11). The
heat kernel of the Weyl alcove C (or the heat kernel on SU(p + 1) between 2
regular spheres of SU(p + 1) is given by formula (3.13) for x, x’ € C.

4. The heat kernel on the non compact symmetric space SL(p + 1,
C)y/SU(p + 1). SL(p + 1, C)/SU(p + 1) is the non compact dual of
SU(p + 1). This means that it has the same roots with same multiplicity 2
and it can be formally obtained from SU(p + 1) by taking purely

imaginary variables. The volume element is

2
G17) vy (x)dx = ( IT sinh(r, x)) dx
ReA
R>({

and we define as usual

(3.18)  J(x) = I 2 sinh(R, x)
REA,
R>0
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so that the volume element is

JA(x)
valx) = ap(pth:

It is known from [2] (and in fact it is easy to check directly using (1.3) ),
that the radial part of the Laplace-Beltrami operator on (E, 4,, (2...2))
is then

1
(3.19) A, = —A(i,..., i )J(x) + A9
J(x) \dq, G, +1

with Ai(l); given by (2.40) (the + is due to the fact that J involves now real
exponentials) and where

ptl A2
A(ipﬂL) -y
94, aqp+l i=1 aq,2
We want to find the heat kernel of problem (3.6) and then (3.5). As

usual, it is inconvenient to work in the g; coordinates (because they have to
obey the relation

pt1

2 q; = 0).

i=1

We have then to work in x; coordinates, which are not orthogonal. But we
know from (2.32) that

P

. 2
(320)  A/EY = - ? r(p+1—né&

+2 X Hp 11— l)g,g,).

1=r<i=p

Call p(,e)(x, x") the heat kernel (with respect to the measure dx’) of the
operator A given by (2.32): we have

A= —(t,,)M(d,)

and thus

1
3.21 (x, x') =
(-2 P x) (4mt)P*(det M)T1/?

X exp —4it(’(x — x’)M_l(x — X))

where M is the matrix (3.11), and so
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a
Epge)(x’ X’) _ Axpgﬂ(x’ x/)

Px, x)dx’ — 8(x — x').
Now if we define
e+}‘z(1);fp§€)(x, x/)zp(p‘ﬂ)

J(x)J(x)

r(x, x)y =

it is easy to see that

Six) = ffo(x’)r,(x X Fn p(57+)1)

is a solution of

Yo _ A f (A, given by (3.19))

ot
fi—= 1 ift—>0"
provided that supp f;, C A (and so does not touch the walls of A). We now
define
exf?;f 9p(pt1)

N o (e) ’
(322) q,(x,x) - (p + 1)' J(x)J(x,)Ax \pt (’C’ X )

It is clear that
q,(x, X)adv(x’) = 8(x — x')

in A X A because in the summation

T 1), S 2 2 DR, )

only the terms o = 7 give a §(x — x’) for functions defined only on A, so
on functions with support in A, this double summation tends to 8(x — x’)
because we have divided by (p + 1)!.

Moreover g, satisfies the heat equation in A

a
(3.23) 54 = Ay,

because A, commute with the action of W, so that

A P (ox, X))
J(x)J(x")

satisfies the heat equation in x, (3.23), for any x” and any ¢ € W.
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Finally it is clear that g, is smooth on 2y, is symmetric in x, x" and is
invariant by action of W.
We now have to compute the limit when x — 0. Then by (3.18)

J(x) ~ 11 2R, x).
RE A,
R>0

We can do the same computation as in part 3; we call now

9
324 L= 1] ——
R>0 20(R, x)
Re4,

and we finally find
(0)
m?
(325) 4,0, x) = 2"“’“’%/1,\»1«;1)?”(0, x)

and

THEOREM 2. The heat kernel SL(p + 1, C)/SU(p + 1) is given by
Jormula (3.25). On the Weyl chamber A, the heat kernel is given by formula
(3.22) for x, X' € A (this represents the heat diffusion between two spheres
SU(p + 1)- e -0and SU(p + 1)- & - 0 in the symmetric space).

References for Section 3. The heat kernel for SU(2) was given by
Schulman [28] and for the general SU(p) by Dowker [9]. One method is
slightly different because we proceed through the eigenfunctions. More-
over we stress the importance of the matrix M which will be very useful in
a later publication.

The Laplace operators for non compact SL(P + 1, C)/SU(p + 1) are
given by Berezin [2] and their expressions are used by Dynkin to obtain
the Green’s kernel [10].

4. Invariant operators, their eigenfunctions and heat kernels for the
root system BCp and certain related spaces.

1. The root system BC, and its affine Weyl group.
a) The root system BC,. We start with a euclidean space of dimension p;

g will denote a point in E, (g, . . ., g,) its coordinates with respect to an
orthonormal base e,..., e, of E. The root system BC, contains by

definition the following roots
@) Rf.l)(q) = g, and their opposites —g,
(i1) Rf-z)(q) = 2g; and their opposites —2g;
(ii1) Rf:/.l)(q) =q — g and Rsz)(q) = ¢, + g, with their opposites.
Wz;/le é:}l::r(l)’s;earlsisposnlve roots the g;, 2g;, ¢; — ¢;and g; + g; fori <. The

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

ANALYSIS ON ROOT SYSTEMS 1311

4.1) A, ={9€E/N<qg <gqg ,<...<q}

We must also associate to each root a a multiplicity p,; we shall choose the
following multiplicities:
(1) the Rﬁ”(q) = g; have equal multiplicities p, (and also their opposite

roots)

(i1) the REz)(q) = 2q; have equal multiplicities p,

(1ii) the Rf.jl) and Rﬁjz) have equal multiplicities ps.

Here the p; are positive or 0 numbers.

b) Related symmetric spaces. For example, let us consider the case
p = 2; we have two non compact symmetric spaces with the root system

BC, namely
Sy(2, R)
——p; =0,p, = 1,p; =1
UQ2) 0 (%) 03
SU(Q2, 2)
Wpl :0,p2 = 1,p3 :2.
S(U@xUQ2))

c) The Weyl group. As usual, the Weyl group is generated by reflexion
through the walls of A. It is the semi direct product of the group S, of
permutations of the ¢,’s and p representatives of the group Z/2Z operating
on g; by q; = =g,.

d) The affine Weyl group. We define the Weyl alcove by

4.2) C={4eEN<qg<¢q ,<...<q <m}

and we define also the group 7, generated by the translations of vectors
2me; (s0 q; = q; + 2w fori = 1...p). The affine Weyl group W is then
the semi direct product of the Weyl group and the group T,. The images by
the elements of W of the Weyl alcove C, generate a paving of E.

2. The space of functions on C, and volume element.

a) Invariant functions by the a]j’ine Weyl group. Let f(q) be a function on
E. Then fis invariant by the affine Weyl group wO if and only if

(i) f'is periodic of period 27 in each of the coordinates g;

(i) fis symmetric with respect to all permutations of the g,

(iii) f is even with respect of all coordinates g;. Such a function is
known, when its values on Cq are known.

b) The volume element and the associated Laplace operator. On C,, we
shall define the following volume element

A 4 .og:\P
(4.3) 4V (Prpap3) H (Sln 51) (sin q]_)Pz

i=1

4 — 4\ . (4T g\\» L
X H (sin( 5 j)sm( 5 ’)) qu,.

I=i<j=p i=1
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We call W2 the function appearing in front of [[7_, dg. We can
define an associated Laplace operator
1 59

— ( I;\V(Plvpz‘lh)_a_

4.4 AlPr-p2p3) > )
(4.4) 1A/ (P1:P2:P3) 21 9g, dq;

It is clear that A2 gives a self adjoint operator on L*(C, dV/(#1#f).

Remark. We remark that in (4.3) and (4.4) we have divided the roots
appearing in the sine functions by 2. The formulas are not exactly the
same as the general formulas of Section 1 (1.9) and (1.10). This is only a
question of tradition.

3. The change of coordinates x; = cos g; (algebraic variables).

a) Definition of the “algebraic” variables. In the case of BC, root system,
it is very convenient to use the so called algebraic variables x; = cos g,.
Then the Weyl alcove becomes

(4.5) C,={x=(x....,x,) €R’
-l <xn<...<x,<Il}

Moreover if fis a function on E , it becomes a function (still denoted f)
on [—1, +1}” and f(x|,..., x,) is invariant with respect to the affine
Weyl group if and only if it is symmetric with respect to all permutations
of the x; (the periodicity and the evenness of f'is taken into account by the
cosine function). It is also clear that the passage from x-variables to
g-variables induces a bijection from functions defined on C, to functions
defined on G,
b) The volume element in algebraic variables. We call

(4.6) pp =2a — 2B, pb=28+1, py =2y + L
Then
weip2py) W(OIBY) W, W2

with

W,

I

4~ g\ . (4 T g\ P!
w, = 11 (sin( 5 j)sm( ’)) .

I1=i<j=p 2

2a—28
(sm —) (sin q,.)ZBH

This can be rewritten as

—2”B(H sin’ 2) (Hcos 2) Hsmq,

i=1 i=1 i=1
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_ 2n(ﬂ—a)(ﬁ (1 - xi))a(ﬁ a + xl.))B fI sin g;

i=1 i=1 i=1
and

W, = 2_[D(D—|)/2](2‘/+|)( H (x; — x;)
! J

)2y+|
Isi<isp

Moreover
p
dq, ...dq, = (—1)”(H sin q,-)dxl ... dx,
i=1

and we obtain

LEMMA 1. In coordinates x;, the volume element is
p
@7 aveBy — cTTa - x)a + x,)8
i=1

x II - xj)zyﬂdx, co.dx

14
15/<i=p
where

C = 2D(ﬁ_ﬂ'[(b—|)/2](2Y+1))~
We denote
p
@8  m =Tl —xpa+x)f II & —x)7"
i=1 15j<i=p
¢) The Laplace-Beltrami operator in algebraic coordinates.
LEMMA 2. We have in'algebraic coordinates

a 1 &L 0 2 a 0
(4.9) A@BY _ 2 —(a - xi)m( By Y

m @B Z 5, Ax;

or by expanding
p by
ABY 3 {(1 - x%)a—2 + [B —a— (a+ B+ 2
Xi

i=1

(4.10)

L 1

+ Qv+ D1 - X)X
JEX X
j=1 '

)
ax; )

Proof. This follows by direct computation.
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Remark. We see that the variables x; are separated if and only if
2y + 1 = 0, but this does not correspond to a symmetric space of type
BC, (it can correspond for certain values of a and B to a product of
compact symmetric spaces).

4. The case where 2y + 1 = 0.
a) Jacobi polynomials in one variable. Let a, B > —1. The Jacobi
polynomials Pf,“’B)(x) are orthonormal for the weight
pB — (1 = )% + x)f on[—1, +1];

they satisfy the differential equations

D

N - A\ )
4.11) (1 X )dxz +[B—a—(a+ B+ 2)x]a’x)P"

= —n(n + a+ B+ HPP

and also the ladder equation:
d
@12 L) = e ),

The preceding differential equation is

1 d ( +1.8+1 d
4.13 R I G BV My N ) I HPEB
( ) p P dx : dx " ( B e

We suppose also that

a.p)2
“Pfl “1.3([4.“]‘#““3’4{\) = L

b) The case y = —1/2. In case y = —1/2, the operator AP/

appears to be a sum of identical independent operators in one variable of
type (4.11). It is clear that

)4
(4.14)  A@B=WD) T plaby)
=1

P

14
- —(Z nn + o+ g+ D] LT PP

/=1 =1
and the products
,)
IT PPx)
=1
are orthogonals for the weight m( @B =(/2) o5 the cube [—1, +17°. If we
want to obtain an invariant function, we just have to symmetrise with

respect to the symmetric group S,. We define an order on the p-uplets of
integers by
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< < <
n]:nzz...znp.

If ng < ny <...<n, we define

P
(4.15) p(ﬁﬁ (|/2))(x) _ 2 HP(aﬁ)(xk)

n
oes, k=1 ®

where as in Section 2 (n) = (n,, ..., n,).
In the case when some integers n; are equals, we need only to sum over a
subgroup of S, We obtain easily

LEMMA 3. The polynomials pgg;ﬁ’*“/z))(x) for (m) = (n,...,n)
(ny, = ny, =...= n,) are an orthogonal basis on C, for the volume
dV(@B.=(/D) of eigenfunctions of A@-B-—(1/D) with the eigenvalues

p
(4.16)  A@A1/D) —§ nin; + a« + B+ 1.
1
5. The case 2y + 1 = 2(0ry = 5)

a) Notations. Let us define

@17 o) = II (- x)

1=i<j=p

0, = Il (< —x)
1=k<I=p
k and [#i

(so 0; does not contain x;)

‘Pi:g

1

weP — (1= x)¥a + xp)P.
It is clear that, from (4.10) or (4.9) we obtain

(a.By) _ SR 0 (a+18+1) 2 0
(4.18)  A@BY _ 3 —plat B2 — )

i=1 ,uf‘ﬁ 2 ox; " 0x;
b) The polynomials p(“'Bl/z). For (n) = (n,...,n,) (m =n =
. = n,) we define the antlsymmetric polynomials (with respect to S,)

I_:E PEI +/*l(xa(/))

4.19) P2y =
4.19)  pia; u)ag( s

It is easy to see that the ¢ - pfﬁ;ﬂ‘l/z)(x) are orthogonal on C, for the

volume
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14
IT a — x)*0 + x,)Pdx

i=1
so that we obtain:

LEMMA 4. The pfﬁ’B’l/z)(x) are invariant polynomials orthogonal on C.

for the volume dV(«B.1/2)(x),
Proof. We have

p
dv @By = TT (1 = x)%(1 + x;)Pe(x)*dx

i=1
from (4.8) in the case y = 1/2, using the definition (4.17) of ¢.
Remark. See also [16].
We now want to prove the following result.
THEOREM 1. The invariant polynomials
p}‘,’,‘;ﬂ'l/z) () =@,....n) np=nm=...=n)

are an orthonormal basis on C, for the volume dy(@h1/2) of eigenfunctions
of ARV for the eigenvalue

)4
(4200 AGPD = =D, + a+ B+ 20 — 1.

i=1

6. Proof of Theorem 1. We abbreviate A®#1/? by A; we have to compute
ApP1D. Define

p
@2 o = TP )
P

jEi

p
1128 )
“422) A=A]—-—-—-—+—
P
Then we obtain from the expression (4.18) for A

(a.B)
_3 Qﬁ""”(x)_a_( @iy o 2 @ Putio()

A
i1 pf“"g)ﬂfqziz ax; "' dx @

i
V4
Let us compute each term in the sum > giving A4:
i=1
.B)
d ( (_a+1./3+1)q)2i Psli‘fi—l(x"))

~ M i
ax; 0x; ®;
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(@r1p+n| 0 .
! ox; 0X; ¥;

1 {

a (“§a+l,ﬁ+])( P(afl)—l( )))I

i

2,201

X —P<“f>_,(x) + ¢ —

]

d d 1
4o ax (H(a+lﬁ+l)(p2ax _)1)£1a+,~1(x)
i Y
We have (p,-zai(pi = _a,"P,‘
d
1B+1
== % P (x )[ AP (Ii(wr ” )8x Pflafl)*l)

(ﬂﬁ)

+ n+1-l(x) 8 (a+1,8+1) zi —1

(@,B) i b

PilL; a)Ci axi

But, by equation (4.13)

19 ((a+lB+l) d P(a )
”‘B)ax a ax, mHiT

=, i~ D, +a+ B+ i)

X

d F18+0 20
o 2 [ersengd
ax; 0x;

0 ( (at+1,8+1) d )
Ty ox, "

, 9%
— f"ﬂ)(a - B+ x(a+ B+ 2)? + (- 1)F¢,)
X

X i

and so finally

p

I-Ilp(nljfj)fl(x,)

A= S m+i-Dn+a+B+0)
P i=1

21 a(p,- 2 82"’1’
+2~a—B+xi(a+B+2)a—+(x,~l)82 .
X

i=1 %

i i

But we have by definition of ¢,

a - )4 )4
—q =" I = %)
ox

i J=1 k=1
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P i—1
—g X —— - X ——
k=i+1 X; — X k=1 X, — X;

and so

S 1

i=1 9 ax,

zixi(_iil_l__+ O ):p(p~l)

k=1 X = X;  k=i+1 X; — X 2
1%, & & 1
P, 8x12 k=1 1=1 (x; — X )(X; — X3)
ki p#i
S18_ 53 :
= ax DS S Xy — X))
i*=k#*1
because the terms (i, k, /) and (k, i, /) are of opposite sign.
Finally
)4 (az(p)/ axz )4 14 4 B
S OD 33 3 2 - xo — x) !
i=1 Pi i=1 k=1 [=1
i#k#l
_plp — Dp —2)

3
In fact, we have

14

62 /(3 2 1 4 14 14
3 ) 23 3 S e~ xt — )
- ' T
_9
e

and it is clear that Q is antisymmetric of degree p(p — 1)/2; so it is of
minimal degree (to be also antisymmetric) and it is then a multiple of ¢.
To evaluate the coefficient we compute the coefficient of

p—1 _p—2
X9 X5 ...xp,]
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to obtain p(p — 1)(p — 2)/3.
We put together all the formulas obtained

p
IT P80
j=1

P

p
I=I] PP (x)
=j—q)—[—2  +i— D +a+B+i)
i=1
plp =1  pp = Dp = 2

+(a+ B+ 2 2 3

the eigenvalue obtained is

p
—Eni(ni+a+,8+2i—l).

i=1

Now it is clear that if 6 € Sp, we have
P
2 Mgy + @ + B+ 20() — 1)
i=1

P
=2 +a+p+2—1

i=1

so that
B.1/2 B.1/2) (a.B.1/2
M) = NP P )
with
p
)\ﬁﬁ;ﬁ’ln) = =X n(n +a+ B+ 2—1)

i=1

which proves the first part of Theorem 1.
We want to compute the norm of

PSPPIy in LX(C,, dv BV,

Let us denote by 4 the operation of antisymmetrisation with respect to the
group S, acting by permutations on X, ... X ; then

p
6,172 8
PSP (x) = 4 I1 PO )
-

and because of the expression (4.8) for v @B1/2) and 4.17) of ¢
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(423) HPE::SBJN)(X) )”1 X, dV(aB I/7))
p

IA(HI P}Z;ﬁ),-*”(x,))
=

As in Section 2, we have

LA(C TPy

(Af]g)Lz( [— 1A+ 1]P TP,

= (Af148) > 11 y=Bax,)

= (J1A8) 2 1.+ 1.1
because

S e T e,
o(C,)

= 29 L @N0g) TT u*Pxax,

- ES (—1)° [ S)glox) TT w*Px)dx,

= (Af7AZ) 12 1P,y
Then

)4
(4.24) l ‘A ( IT:I] Piﬁ;@,-~ n(x; ))

LHC TPy

- (A(fI P8

J=1

(n+j— l)(xj)) L[ =1, + 11700 Pyyty

If 0 # Id, a term like

)
(4.25) f[ Ly H P ko)

p P
(a. ) \
x Hl P<g,ﬁj—l>(x./) Hl W Px)dx; = 0
J= J=
because for every j, one has to compute

(4.26) f PR, ()P
and this 1s not 0 if and only if for every

(*) n; = ng;y + o(j) — J.

o o) 1% )”(a'ﬁ)(xj )dx;

o(j)
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But if o # 1d, there exists at least one j such that o(;) > j; then n = = gy
and we arrive at contradiction with (). This implies that if o # Id for at
least one j the mtegral (4.26) is 0 by orthogonality of the P aB)(x,) with
respect to ,u (x ) and so for o # Id, (4.25) is satisfied.

Using (4.24), (4.25) and (4.23), we deduce

1/2 2
”P(a P12x) e avesi,
_ I I (a.B) 2 _
= - I ”Pnj+j~l”L2([4l,+l],u(a'ﬁ)d.\') =1

if the Pff‘f}_, are normalized with L? norm equal to 1.
J

7. The heat kernel for APV on E.
a) The Cauchy problem on E. We want now to find the fundamental
solution of the Cauchy problem on the symmetric function f(x):

gf_f — A(a.,B,l/z)f
4.27) ot

flt=0 = fO
We write this solution as
(4.28) f(1, x) = fc So(xg,(x, xX)dV @B D(x7y

where g,(x, x’) is the fundamental solution of

KN YAV
ot

with respect to the volume element dV*#1/2
b) But the pf,”,‘)ﬁ ' are an orthonormal basis for

LA(C,, V@ PV2(x));

we can write

A‘“ﬁ”z" 172 172
429 g x)= X S e €
(n)
0=n=n=... =n,
o 1 2 N(g)ﬁl/’)r
o(x)p(x") ™

= =n=.. =
0=m=m=...=n,

XAx(.ﬁ E,“f}_l(x)) (Jli[ PEE(x)

j=1

where, as before, A, and A4, denote antisymmetrisation in x and x’
respectively. But by (4.20)
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p
NP = Doy tat prYy -
j=r

4
2l +j— D +j—1+a+p+1
Jj=1 ‘

—jF+a+B—jl@+p—1]

so that
1/2 S
@30 AP = DN+ K,
j=1 7
where
+ 1 <
K= @+ B+ @+ p— Dy 5

! 2 j=1

is a constant depending only on a, B, p and where
AN — —kk +a+ B+ 1)
is the eigenvalue of P}:’"B)(x) for the operator (4.1).
Let us define k;, = n+j— 1L then we can rewrite (4.29) as
ert

4.31) gq,(x,x) = eEfZIA;‘Tﬁ)’

o(x)e(x") (k)
0=k, <ky<...<k,

4 P
X AV( 11 Pﬁ.‘”m(xj))Axr( 11 P‘k“‘ﬁ’(x;)).
j=r =r 7
But
p
A( I1 P?,“’”(x,-)) =0
j=1 '

if two of the /7 are equal, so that we can extend the summation to the case
0=k =k =...=k,

Now let us take any p-uplet (k) = (k, ..., k,) € N”. Then there exists
a unique 6 € S, such that

U(k) = (kd(l) ... ko(p))

satisfies 0 = ky;) = ... = Kk, ,); then
p P
A [TT Ao = = vea (1T A
j=1 ’ J= ‘
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and in the summation (4.31) we can extend the summation to all (k) € N”
provided that we divide by p!, so that

)= — a4 S ] (0
g,(x, xX) = ———— , e
! Plo()e(x) " wenr ;21
% Pg:;tﬁ)(xj)ngﬁ)(xll_))

432 = ——FKL- A A {ﬁ (+2 AL ﬁ)'P(“B)( )P(a B)(X’))}
T pleaet LS W

Kot
q,(x, x') = —'———~—— A {Hpta B)( ]
Plo(x)e(x’) j=1
where pﬁ"’ﬂ)(xj, xj) denotes the heat kernel of the operator (4.11)
(with respect to p("‘"g)(xj)dxj).
Recalling Lemma 1 of 2 of Section 3 and the definition (4.17) of ¢(x),
we see that when x — 1 in C, (1 corresponds to all ¢; = 0), we obtain

(a,8)
K0 A, II A CA
q,(1, x) = lim
’ Plo(x) x—1 #(x)
K t P
e’r
_ a.B)
= ) LA A, jl=|1 PG X)) Lo

where

a a
L= I (Z-2)
1=i<=p axi axj
is the simplest antisymmetric operator for the action of S, and this is

Kt

e ’
) [ ¥ Hpam(x/’ xj)]-x}=1\1./

(4.33) 4,0, x) =

and we thus obtain

THEOREM 2. The heat kernel of problem (4.27) is given by formula (4.32)
if x,x € C,and by (433) if X = 1, x € C,.

We see that the computation of the heat kernel for the operator
on a euclidean space of dimension p is reduced to the computation of the
heat kernel for the operator L'*P in dimension 1 defined by (4.11).

A(O(,B, 1/2)

5. Analysis on symmetric spaces in horospherical coordinates.

1. The Iwasawa decompositions and horospherical coordinates. a) We
started in Section 1 with a semi simple Lie algebra & and its complexified
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form ®¢; then we defined for any complex root a in R a one-dimensional
subspace (Si(c") of & and we defined a nilpotent Lie algebra

Gy v = X 6@

asRE
and its real part
N =@ N e,
Then & is decomposed in
(5.2) G =nMe Ap © {  (Iwasawa decomposition).

b) Then the symmetric space X = G/K (of negative curvature) is
X = NA - O where O is as usual the origin and N the nilpotent Lie group
of the Lie algebra %™, Any point m € X can be uniquely decomposed in
(n, a) where n € N and ¢ € A4 and (n, log a) are the horospherical
coordinates of m € X.

2. The Laplace-Beltrami operator in horospherical coordinates. a) The
Laplace-Beltrami operator 1/ 2A(2X ) is the generator of a diffusion process
on X, denoted m_(t) (w being in some sample path) and so, we have only
to compute the infinitesimal increment of this process in time dt to find
172059, As we want to write A(zx) in horospherical coordinates we shall
denote

m(t) = (nf1), a1)).

To be self contained we redo here the computation of [22] (in fact we do a
slightly simpler computation because we do not need their full result).
b) We suppose that m_(0) = m, so that

(n,(0), a,(0)) = (ny, ap)

(so that my, = nya, - O). The tangent space at O of X is exactly the space
and it has an orthonormal basis ¢, . .., ¢, (where n = dim 8 = dim X)
that we splitin ¢, = e|,...,¢, = e, which is an orthonormal basis of 2
and €,,,...,¢, which is an orthonormal basis of the orthogonal
complement A+ of A inside R. Then it is well known, by [22], that the

stochastic process m (t) is exactly
m(1) = gt) - O

where g (7) is the so called horizontal process on G so that the logarithm
of its increment is a white noise inside 3, i.e.,

(3 s+ dng ! = exp 2 €, G, Vi + o)
P

where the G, are gaussian random variables of mean 0 and variance 1. We
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can assume here that
(5.9) 8.,(0) = nyay.

¢) We want to find the processes (n(t), a(t)) for t = dt so that
(5.5) g (di)- O = ny(dr)adr) - O.
We write
(5.6) n(dt) = ny exp(An) a (dt) = a, exp(Aa).
Call A'n = (Ad q; ")An, so that

exp(An)a, = a, exp(A'n).

Then (5.5) becomes, after a simplification by nya,, (we take (5.6) and (5.4)
into account)

(5.7)  exp(A'n)exp(Aa) - O = exp( > €,G,\/dt + o(dt)).
g=1

But

(5.8) exp(A'n)exp(Aa) = exp(A'n + Aa + %[A’n, Aa])

(up to terms of order o(dt), we shall from now forget o(dt) once and for

all). Now

(5.9) 2( (EeG+ Z €G, + E "Gq)\/E
g=p+1

where € (resp €;) are forqg =r + 1,. - n the orthogonal projection

of cq € %[ into ETEH) and ® respectively. AT is exactly ) @ @ by Iwa-
sawa’s formula (5.2) and so we have

(5.9y exp(qé‘ quq\/%)

n

(2eG+ E eGq)\/aJr( > e;;Gq)\/E]

g=ptl g=p+tl

where we have separated the A © N part and the & part. But for any
k € & of the order of O(\/dr)

(5.10) exp( 21 quq\/E)O
g=

= exp

= exp(qél G,\/dt ) exp(k) O
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n 1 n )
~ e[ X GV + k45| 2 oGV k]) o
qg=

g=1

Now we come back to (5.7) using (5.8) and (5.10) and a k such that the
term inside the exponential in (5.10) has a projection into & equal to 0. We
deduce

n l n o
(A X eGNdi + Kk + EIE ¢,G,\/d. kl
g=1 g=1

1
= An + Aa + E[A’n, Aal].

We can then identify the term in & of order\/dr in (5.11): it is, using
(5.9),

H

2 €GN\ di+ k

g=p+1

and we impose this to be 0 mod O(dr); so

k = —E] €GN\/di + O(dr).

Then identifying the %™ and A projections of the equality (5.11)
mod O(dt) we have

,

2 G /di + ny(dt) = An

p+1

P
(5.12) § X e,G\Vdi + aydt) = Aa
1

— 2 €G\di + ky(dt) = k

L pt1

where n,(dr), a,(dr), k,(dr) are of order dr in '), A and K respectively.
We put (5.12) in (5.11) to obtain

0 = n(dt) + a,(dt) — k,(dt) +

1 S el $
> p;l €0y, El e,G, |dt
1 n n
-3 S GV — 3 €G,/di|(mod o(dr)).
1

g=p+1
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Now take the expectation: because the G, are independent the fourth term
is of 0 expectation and in the fifth term only

EEQ,

pH+1

survives: so

(5.13) 0 = E(n(dt)) + E(a(dt)) — E(k,(dt)) — 2 ¢

pt1

L €E(G ).

But ¢/ is in R and €/ is in &, so0 [¢, €/] is in 9. Identifying the N "), &

and U parts of (5.13), we obtain

q’

k(dt) = 0 mod O(dt)
(5.14) ! i
a,(dt) = - e, e’ldt

so that by (5.12) and (5.14) and the fact that A’n = (Ad a\.)_‘)An

n

14
1
Aa = X e,Gdi + = 2 e, €ldt
T T 2 4=p+1 1
(5.15)

n

= (Aday)| 2 €G,\di|.
+1

q=p

d) We now obtain from (5.15) the analytic expression of A(ZX) in co-
ordinates (n, log a) as follows:

+Z+ 2 ((Ada))y
g=p+l

(5.16)  AY) = Al

eucl

with the following notations
P 82
M A= 2
eucl = alez
is the usual euclidean Laplace operator on the euclidean space I = E.
(i1) Z is the constant vector field on A = E

n

(517 Z= 2 [€.¢€)l

g=ptl

(iii) At the point (n, log a) € N X A ~ X, we define the vector field
(Ad a)e; for g = p + 1, ,n and
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2 ((Ad o))y

qg=p+1

is the differential operator of second order which is the sum of the squares
of these vector fields.

(iv) €, and ¢ are the projections of €, on N and @, €, being an
orthonormal basis of * and in particular €, generate in N a left invariant
vector field denoted €.

3. Algebraic structure of the nilpotent algebra W), We want to obtain a
more explicit expression for the last operator appearing in (5.16). For
a fixed a € A, this last operator is a second order left-invariant operator
in the nilpotent group N.

a) Coming back to the complexified Lie algebras. We have seen in (5.1)
that

ne = X 6P,

ae?Ré

Moreover @5(('5") is a 1-dimensional complex vector space and we define

G = CX, - X, € G

We define §:&- — & the complex conjugation in & with respect to
the real part & of &¢. It is known (see [22], Lemma 4.3) that (?llygg)c
(i.e., the complexified space of the orthogonal complement in B of )
is generated by the elements X, — 6X, Then it is easy to see that
the projection of X, — 60X, in NG is 2X,.

b) Computation in the real nilpotent algebra ™). Now, two roots of
the maximal abelian subalgebra $ of & may have the same restriction
to the Agp part. Recall that here R is the restricted root system of R.
We can then split ‘") in the eigenspaces of the roots

(5.18) D = ¥ @

ach”
NHI@ being the space of all X such that
(5.19)  [h, X] = a(h)X forany h € .
Then N(@ jg the vector space generated by the
{Xp/B € R and Bly = a}.
We have
dimg N — p

It is also known (see [15] ) that
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(69, 381 c GEP ifa + Bis a root in R
=0 if « + B is not a root.

From this it follows that

(5.20) RO QOB ¢ I if o + Bis a root in R
' =0 if not.

¢) Decomposition of W) We call a fundamental root a positive root
a € N which is not a non trivial linear combination of other roots. It is
known that any positive root is a linear combination with positive or 0
integers coefficients of the fundamental roots and this decomposition is
unique. We call &7 the set of all fundamental roots.

We can decompose ™) as follows:

G2) N =B, OB, 0B, ...

where the %, are vector subspaces defined as follows

(8, = @, wHe
aER
N ()«
B, ae(?e'ﬁ%"mm* N
(522) Y oo
_ op(+).a
S ae(;;++ﬂ$+;‘§+)mn+ L

s times

where (3% + ...+ &) N R (FT taken s times) is the set of positive
roots which can be written as the sum of s fundamental roots (not
necessarily different). Then for i, j > 0 we have by (5.20)

(5.23) [, 8] C B,
4. Structure of the nilpotent part of AS.

a) Coordinates on N. We shall define exponential coordinates on N
as follows. For any a € R, the subspace NP jg generated by X,
j=1...,p, (these X, ; are the Xg's in ®¢ such that Bly = «). Then any
element in N can be wrltten as

o 3 3¢, x,

aeR” j=1

where (£, ;) is the set of exponential coordinates.

Among these coordinates, we distinguish a special subset that we call
Jfundamental coordinates which are the &, ; for a € Xt J=1...,p,4
(they are the coordinates on %B,). The multiplication law in N can be
expressed as
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(g;/) : (ga,j) = (é;’,)
where
(524)  exp(Z &, X, ) exp(2 &, X, ) = exp(2 & X, )-
By Campbell-Hausdorff, the first member is

(5.25) exp E(sa, +E )Xy, F - 225 Al X Xpad +

where the dots in (5.25) denote terms containing at least two brackets of
the X, .. In particular, if « is a fundamental root, X, «,j Cannot appear in the
bracket or in the dot in this last expression (5.25). So we obtain by
identifying to (5.24)

(526) &, =&, +¢&,; ifaeF .

Then if a € (§‘§+ + 3T n R T and is of the form a« = B + y where
B,y € §§+, we define

[Xg, Xyul = Z Xy,

(where we use (5.20) ) and C'By are constants. We can identify (5.25) and
(5.24) fora € (3" + )N R to obtain

(527 Eags = Eys T &y
1
3 @ Bt ) for By &
J-

(because the higher brackets denoted by dots in (5.25) do not give
contribution to the computation of these terms).

b) Left invariant vector fields on N. Let X, «,; De the left invariant vector
field on N associated to X, ; if fis a function on N and if (§, D= isa

a]’
point in N, we have by definition

X, N0 = ol
( a,/f)(g) ag,a /f(g g) Ig
If a 1s a fundamental root, we deduce from (5.26), (5.27)
- a
528 Koo =L+ 2 (5 — cpe, =L+
aga] a‘ga+y,l

where the dots in (5.28) involve derivatives 09/ dép, where B 1s a
root which is a combination of three or more fundamental roots. (i.e.,
Xp, € B3 © L, ©...). We have also that if @ = f + y where B, y are
fundamental roots
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of

8€B+Y,

(5:29)  (Xpiy, )& = ® +.

with the same meaning as before for the dots in (5.29) and in general X B.j e
involves only derivatives of f with respect to the £, , where X, € T, and
s = s, and Xp,; € % (1 e., 0 is a root which is longer than ,8)

¢) The vector fields g' for q = p + 1,...,n und the mlpotent part
of A Recall that the (X 0XDacn, glve a basis of %I‘B S8 (orthog-
onal complement of g in ). They are not orthonormal, (but see [22],
Lemma 4.3 of Chapter II); also we have that the orthogonal projection on
N of X, — 0X, is 2X,; finally the §, appear as linear combinations of
the 2X, and the £’ as the same Comblnatlons of the 2X . Now the action
of Ad a on Xy 18 0bV1ous in fact

Ad a = exp(ad log a),
and so
(530)  (Ada)(X,,) = expl (@ log )]+ X,
because

(ad log a)X,; = [log a, Xg il = (a, log a)X,

by definition of the root a.
Let us write now

63D E = andZ’-’Xa’ ;

where the d;'j are constants. Then by (5.30),
(Ad ), = 2 dif expl (. log a) 1X,
@

and so
n n ) - 2
(532 2 ((Ada)E) = X (2 dY exp| (a, log a) JXa,,)
g=p+1 g=p+1 ‘a,j

and when we compute the squares in (5.32) we can consider the
df;j exp| (a, log a) ]
as constants with respect to the differential operators Xp .

5. Restriction of the nilpotent part of A° 10 a speczal class of func-
tions. Suppose now that we want to compute A( ’f on the function f
on X = N - A4 - O in the horospherical coordmates Then f becomes a
function f(n, h) where n € N, h € A (so that the corresponding point of X
ism = né"- 0).
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We define the following class of functions on X. We say that a function
fin X is a fundamental function if, in horospherical coordinates on X, [
depends only on the I part and on the fundamental coordinates

EaDacst j=1. p,

of the exponential chart of N.
In particular, we see that on such fundamental function we have from
(5.28)

(533 (Ko /) h) - ag—f(s, By ifaegt

a,j
and from (5.29) and its obvious generalization
(538)  (Xg, /)& h) =0 ifac R N
In that case the nilpotent part in (5.32) becomes extremely simple
namely

n

(5350 X (AdaE)f

g=p+1
n Pu 9 \2
- 2 E 2 d% lloga) f
= + =4 ot 17
g=p+1 ‘a€F ;=1 @, j
In particular, we take a fundamental function

f = f( (ga,j)aeg+,j=l...pu’ h)

and we define its partial Fourier transform with respect to the
fundamental variables (£, ),cq+ as

(5.36)  f(G. ). h)
A A pd
_ / ecn Sk, ) my 11 1T a,
asF j=1
Then we obtain if a = exp & from (5.35)

(5.37) ( > (Ad a'é’q)zf)((%;, Do h)

q=p+
n Pe N 20 .
== 2 | 2 2 dgE, f) (& . b,
g=p+1 \aeFt j=1 47 “J

Remark. 1t is clear that the class of fundamental functions is
intrinsically defined; we could have defined such a function f by saying
that
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fng - m) = f(m)
for any m € X and any n, € exp(B, @ L; D...) C N;
in horospherical coordinates, this means that
f(ngn, h) = f(n, h) for any ny € exp(B, ® By D...);

this implies that f(n, h) depends only on the fundamental coordinates of
n. It is also clear that the operator A(X) transform a fundamental func-
tion into a fundamental functions and that the heat semi-group e’
leaves also invariant the class of fundamental functions.

6. The volume element in horospherical coordinates and the vector Z.
a) We shall need in the next chapter an explicit analytical expression of
the volume element of the symmetric space X in horospherical coordi-
nates. Let m = (n, log h) the horospherical coordinates of a point m in X
here n is in the nilpotent group N, and 4 is in the abelian group 4 and log A
is an element of g. This means that if O is the fixed origin of X,

m=mn-h-o = n-exp(logh) - o.

We start with a volume element dv(0) at point o; then dv(m) at point
m is obtained by transport of dv(0) by n - exp(log &). Now, let n’ =
l+»+...and " =1 + € + ... be very small elements of N and A.
Then n - h acts on n’h’o (which is very near o) by

(5.38) n-hn'Wo = (nhn’h™ ") - (hK') - o.
But
hn'h™ ! = exp(ad log h) - n’

=1 + exp(ad log ) - » +
But

y= > 21@ whereva’jeﬁi(“)

asR”
and then by definition
exp(ad log h)yy = E elologhy,
acR” j=1
This means that the jacobian of the mapping
n = hn'h”!

at n’ = 1 is exactly
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P
H H exp(a, log h)

ach’ j=1
and this is

(5.39) exp( > . logh).
aG?RJr

It is then clear by (5.1) and (5.2) that the jacobian of the translation by
n - h at point o is given by (5.2); this implies immediately:

LEMMA 1. The volume element of X at point m = (n, log h) in
horospherical coordinates is

(540) dv(m) = exp(— Z+ p,o, log h)d(log h)dn
ach

where d(log h) is the usual Lebesgue measure on WAy and dn is the invariant
measure on N.

b) We can also compute the measure dn in the exponential chart given
previously. Foranya € R, anyj = 1. .. p, the multiplicative law of N
in exponential coordinates (§, ;) 1s given by

§hj =6, T &, Tt

where the dots indicate expressions in the g, and £}, involving only roots
which are strictly smaller than « (i.e., roots 8 such that « = 8 + other
positive roots). This implies that the translation (left or right) by a fixed
element of N has a jacobian matrix (in these exponential coordinates)
which is upper triangular with entries 1 on the diagonal, and then dr is the
Lebesgue measure

Py
G4y dn= 11 114,

acR’ j=1
in the §, ;.

c) We can now come back to the Laplace-Beltrami operator A(ZX). We
know that A(ZX) is self-adjoint with respect to the volume element. In
particular, the abelian part A + Z must be self-adjoint with respect to the
abelian part of the volume element, namely

p(l
exp(~ 2 2 P log h)d(log h).
acRt j=1

This implies that Z must be necessarily

(543) Z=— 2 pu

acsNf
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so if we compare to the expression of Z given in (5.17),

LEMMA 2. —Z is the sum of the positive roots counted with their
multiplicities. In particular we see that we obtain the following identity:
if (€ )k—p+1,... n IS an orthonormal basis of the orthogonal complementary
%I(Ilg of g in B, then

h

2 opa=— 2 g ¢l
acR” k=p-+1
where ¢, = €, + € and ¢, € N, ¢ € Q.

References for Section 5. Information about Iwasawa decomposition is
given in [15]. Karpelevic gives expression for the abelian part of the
Laplace operator [17]. M. P. Malliavin and P. Malliavin give the complete
expression of the Laplace operator in horospherical coordinates [22].

6. Quantization of the open Toda lattice.

1. The structure of the Lie algebra ¥ (p + 1, C). a) ¥¥(p + 1, C) is the
Lie algebra of complex (p + 1) X (p + 1) matrices with trace 0. If M, M’
are two such matrices, the Killing scalar product is

62) (MIM) = Tr M'M.

A Cartan subalgebra of £¥(p + 1, C) is the abelian algebra X
of diagonal matrices of trace 0.
A maximal compact subalgebra is the algebra & = %%(p + 1) of
antihermitian matrices of trace 0 and we can write
SAp + 1,0 =D
where B is the vector space of hermitian matrices of trace 0. Then the
algebra g, is the set of diagonal matrices of trace 0 with real elements on
the diagonal.
The nilpotent algebra %" is the algebra of upper triangular matrices
with 0 on the diagonal
a) If 4 is an element in X, 4 has diagonal elements denoted g,//2
with
ptl1

2%:0-

i=1

The roots are the linear forms on X

1
62)  Ryh) = —=(q, — ¢) G #))

V2
such that if M; is the matrix with 1 on the i line and j‘h column and 0
elsewhere, we have

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

1336 A. DEBIARD AND B. GAVEAU

(h, M;] = (9, — 9)M;;.

1
V2
The positive roots are the one with i < j and they correspond to the
nilpotent algebra N *; we have the decomposition

N = B Gp

i<y

where (%(R  is the vector space CM; considered as a two dimensional real
space. The roots are of multiplicity 2.
¢) B is considered as the tangent space at point 0 on

X=SL(p + 1,C/SU(p + 1);
its metric at point 0 is given by the Killing form so that for M € 3, we
have with M = (m;)

IMI? = Tr M = 2 mym,; = Sim, |’
LJ

because M is hermitian. This has to be considered as a real scalar product.
An orthonormal basis of B is then given by the following elements: the
matrices B, Qy

k /

(V2)™!

(6.3) ) (zeros elsewhere)

; k(
Kl = _
N(v2)™!
k /
0 k( iV~
ki = , -
—i(v2)™!
and an orthonormal basis (¢,) of Ay, k = 1...p. Because of the
computations given in the preceding chapter, we need to compute

the projection of the B, and Q, on N, which we call P}, and @},
in accordance to the notation of Section 5. We have trivially

(6.4) Py =\2My Qp =V2iM,
because B, — Pj; and Q,, — Qj, are antihermitian matrices and are
in Q.

) (zeros elsewhere) for k < /

2. The Laplace operator acting on fundamental functions on SL(p + 1);
C/Su(p + 1). In our case the fundamental roots are the roots R; ;. for

Jj =1, ,p; for each i, the fundamental coordinates of an element of
mlpotent group N are 2p real coordinates & Wthh define the general
element of the corresponding root space Qi(R ) (as a 2- dimensional real

vector space) by
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¢ + mM; ;.
Now we take the orthonormal basis B, and Q,, (k << /) of ‘. The only

P}, and Qy, corresponding to the fundamental variables will be P}
and Qi+ because of (6.4) and they correspond to the vector fields

a

V2— + ... and \/ii + ...

0§; a;

respectively, where, as usual the dots are derivatives with respect to non
fundamental variables. Finally the Laplace operator in horospherical co-

ordinates acting on fundamental functions f will be

P 2 2
65 A=A+ Zf+2 D e2<%*%+1>/\/2‘(a_2 + a_z)f
j=1 9§ Om;

and by Fourier transforming the fundamental variables we obtain

A A A 14 A A
65y AN =Af +2zf -2 2 2B0E + S
j=1
Here, as we have seen in Section 5, —Z is the constant vector field on A
which is the sum of the positive roots. We can write

@+ 2)f = ez fy — Lyzp
4

and the heat equation

V| =k
(6.6) ar 11=0 -
flt=0 = Jo
becomes
a§ A £ 2 A2\ A
= = A2 — 2 2 exp(V2g — q+))E + DR
6.7) ot j=1

A A
8li—o = &
A .
where f denotes, as in Section 5, the Fourier transform of f with respect
to the fundamental variables and where

3 = AVZ Tz S

(6.8) ° .
8 = e(l/z)(z"’)fo.

3. The fundamental solution of the problems (6.7) and (6.6).
a) The heat kernel on X. We call, as in Section 3, p(m“), t]m(o)) the heat
kernel on
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X=SL(p+1,C/SUGp + 1)

with respect to the volume element dv(m) of X. This means that the
function

©9)  fit.m) = fx . ™) fo(m )y (m'®)
satisfies the heat equation

d
Gy | o@D =@
SO, mP) = fy(m©).

We also know by Section 5 that this heat kernel respects the class of
fundamental functions; this means that if we take a function

5@, M), @)

on X depending only of the abelian part of the Iwasawa decomposition
and of the fundamental variables (£/(m) and (n}())) of the nilpotent group,
then its transform by (6.9) is a function ’

f(t, ¢V, M), My)

depending only of the coordinates (q(”, (£“)), n™"y) of m),
We also know that the volume element is in horospherical coordinates

©
dv(m') = %1 dq O gn

where dn is the invariant measure on N, and in our case it is easy to see
that dn is the Lebesgue measure with respect to the exponential chart. For
fundamental functions, we can rewrite (6.9) as

6.11) (1, ¢V, "), @)
= Aw Kg", ). ). g, €0 ) fi(g . €0 )

(0)
5 247 g0 g O g ©
with
0 L 0 0 £ 0
d© = [T & an® = 11 an”
=t j=r

and

©12)  K(g", €00, dg®, €@ 0" = f P dm )N ™)

where d)\(m(o)) is the Lebesgue measure with respect to all the
non-fundamentals exponential coordinates on N.
The function (6.11) satisfies
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Y a+of+23 ew(vag - ))(ﬁ+32—)/
(6.13) ar 5 TPVEG T g g o

Ji
fli—o = fo(@®, €90, 4.

If we do the Fourier transform in the fundamental coordinates and
define

Ft, ¢M, 20, 40

= _[f(t, q(l)’ g(l), n(l))ei(zfz1§§I)2;|)+"/('|)ﬁj(l))d£(1)d,n(|)
we see that fA satisfies (6.6) and 1s
6.14)  f(1, ¢V, £, {0y

- ‘é e RgD, 80, 40 140 £© 0

X fAO(q(O), 20 50247 10 g0 gy (0)

where

6.15) K@ 20, 50, d4g®, 80, 40)

1

)4

. D2 DHa(l 0)2(0 NAO
Xexp i 2 (EVED + il — gVED — nPa)

j=1

D% dE(l)dn(l) % dg“”dn(").
b) Let us now suppose that
©616)  fud”, £, 4) = a(d®)
depends only on q(O). Then the corresponding f, is
6.17)  fy (q(O)’ g(O)’ 17(0)) - mo(q(o))S(ﬁ(O))ts(n(o))
and from (6.11) (or (6.14) ) we have
©18) /(4" &), G"))

R £ A (0) 0
= '[a K(q“), 5(1), 7'(l), t|q(0))«p0(q(0))e(z~" )dq( )

where

(6.19)  K(g", £D, 4, 11y
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= f K@, ¢, @), 449, 0, 0)
% ei(Ef:‘)51('1)2/(1)4'"1(1)’?1(”)41'&(‘)dn(l).
¢) Finally the solution of problem (6.7) is given by

THEOREM 1. The solution of problem (6.7) is the integral formula

(6.20) §(t, q(l)) _ /)‘IGU’ q(l), g(l), A(l)lq(()))§0(q(0))dq(0)
with

621) G, ¢V, &M, 4147

= R(gD, D, 40, g0y 17D+ DT 121

and K is given by the Fourier transform (6.19) of K defined by the integral
(6.12).

Proof. We use (6.8); this formula converts problem (6.7) into problem
(6.6) for which we have the solution given by formula (6.18) (in which
we take q)O(q(O)) = f O(q(o)) ). Then

A 1 2. N A A

31, V) = LVD@ANTADIZIPE £y LD EDY Dy
_ (1 Zg™D) (1211 S D 2D A (0)
=e€ a € A K(q ) g ) "l ) t|q )

—~(1/2XZ g 4 (O (Z.4D) ; (0
X e~ WDZ4NG (042 gy,

4. The hamiltonian of the open Toda lattice and its propagator. The open
Toda lattice is a system of p + 1 point particles on a line with coordinates
4> ---,4,+1 and momentum p,,...,p,,, interacting via the pair
potential

p
(622) V(g) =2 21 & expV2q — g+1)
J=

where the 2/2 are given coupling constants. The interaction is exponential
through nearest neighbours. The hamiltonian of the system is
p+1
H(p, q) = El P} + V()
i=

and as a classical system, it is a completely integrable system which has
been integrated in explicit form by Olshanetsky and Perelomov in [25].
The hamiltonian H(p, q) can be quantized and gives the operator

pt+1l A2
623y —H= 2 — — V(q).

j=1 aq}
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Because the interaction is by pairs, the total momentum is conserved;
it is

p+1 9

i =

j=1 aqj

and we can suppose that it is 0 by changing the reference frame. The wave
function fis defined on R” *1 and satisfies

f(ql +aa-~~,qp+l +a)=f(ql,---?qp+l)

because
p+1 a
S 2ro
j=1 9g;

We can reduce to the case where fis defined on the hyperplane

p+1
(6.24) E = {q S RP“/_Z1 q = 0}
J=

which is in the usual hyperplane where the root system A4, lives (see

Section 3). .
For fixed coupling constants éjz we want to solve the problem (6.25)
a
(L
(6.25) Gl
%li—0 = %o

where ¢ is a function on q(o). We can solve (6.25) by a kernel

o, ¢ = ), P, &), 1d™)e(qV)dg®.

If we write explicitly — H in (6.25) using (6.22) and (6.23) we see that the
problem (6.25) is identical to problem (6.7) with all ﬁj = 0:

1% & »
— =Ap — 2 " ex 2(qg; — q:

67 5, ~ e E] £ exp(V2g — g+1)) @
‘P|z:0 = 9

and, by Theorem 1, this is solved by the kernel
6260 P, &), 1¢”) = Gt 4. &). 0l¢”)
and we obtain

THEOREM 2. For fixed coupling constants (%-), the Cauchy problem for
the Schréodinger (or heat) equation
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10

—= = —Hy
(6.25) i ot

‘p|t=0 = %

is given by the formula

(6.27) dnqm)=.éqﬁ¢mﬂ%¢W(%Lm¢mM¢m

where

©.28)  P(q", &), itlg®) = L@ D@z

X/HW%WM%MW&@
5 o E-0EE" g (D) gy ()

and K(q“), 5“), TI“), t|q(0), 0, 0) is given by

(6.29)  K(q"", £V, 4V, 44, 0, 0)

= Jorr—r 2D, 1g?, 0, 0, XA ®

D is the point of X with horospherical coordinates

mD — (gD, €D, 4 AD _ )

where m

A being the nonfundamental coordinates on N (so they belong to R’ 2_”) and
p(m“), tlm(o)) is the heat kernel on X which depends only on the radial
coordinates of m'V with respect to m® in the radial decomposition of X (so, it
depends only on p variables). p(m(l), lm ) has an explicit expression given
in Section 4 in term of radial coordinates.

5. Transforming the radial coordinates in horospherical coordinates. a) If
we want to obtain slightly more constructive expression for the kernels, we
must first take the heat kernel p(m(l), im®) in radial coordinates, and
then do the two integrals involved in (6.28) and (6.29). For this, we need to
change radial coordinates into horospherical coordinates. In our case
where

X = SL(p + 1, C)/SU(p + 1),

X can be identified with the space of hermitian positive definite
matrices of order (p + 1) X (p + 1) with determinant 1. The action of
age SL(p+1,Conx € Xisjust

g x=gXxg"

where g* is the adjoint matrix of g. Moreover any matrix x positive
definite hermitian of determinant 1 can be represented as the product
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x = gg*

for a g € SL(p + 1, C) which is defined uniquely up to the right
multiplication by an element k € SU(p + 1). The radial coordinates of x
are very easy; they are just the eigenvalues of the matrix x.

b) To find the horospherical coordinates, we write any x as the
product

x = z(x)h(x)z*(x)

where z(x) 1s an upper triangular matrix with 1 on the diagonal (in
particular it is in N), and A&(x) is a diagonal matrix

hy, 0
h = .
0 ..'°hp+1
The expression of the h; are given in term of x by
h —i,h2 :—Ap—h :&,h v = 4
A, A, L VR

where the Aj(x) are the lower principal minors of the matrix x of order j:
this means that

Xibr 41 oo Xit+ip+1
A = :
: _ Xpp+1
Xpt1j+1 - Xptlp Xp+ip+l

(in particular A, is 1, because x is of determinant 1). Then \/A(x) is the
abelian part of x in the horospherical coordinates.

References to Section 6. Olshanetsky and Perelomov [25] give the ex-
pression for the classical motion of the non periodic Toda lattice
using the horospherical decomposition of SL(p + 1, C)/SU(p + 1).
In [26] they study other quantum systems with potential sin h‘z(qi = g,
sin-z(qi —q) ... but they do not give the time dependent propagator. We
cannot obtain these systems using the symmetric space we study here.

7. The heat kernels on the non compact symmetric spaces of rank 1.

1. The symmetric spaces of rank 1 and their root systems.

a) General notations. Let X = G/K be a symmetric space of rank 1. In
the Cartan decomposition G = KEK, E is a commutative group of
dimension 1 with a natural euclidean structure coming from the metric
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of X. Let E be a euclidean space of dimension 1, ¢ will denote a point in E
and also its coordinate with respect to a half length vector. The root
system contains at most two positive roots

an RY(g) = ¢ with multiplicity p,
R%(q) = 24 with multiplicity p,.
We give below the possible lists of multiplicities and corresponding
symmetric spaces.
b) Real hyperbolic spaces. The real hyperbolic space is
SO(n, 1)/SO(n).

Its compact dual is the sphere SO(rn + 1)/SO(n) X SO(1). In this case

{pl =n—1

p2 = 0.

¢) Hermitian hyperbolic spaces. The hermitian hyperbolic space is
SU(n, 1)/SU(n).

Its compact dual is the complex projective space SU(n + 1)/SU(n) X
SO(1). In this case the multiplicities are

{Pl =2n—1
py = 1.

d) Quaternionian spaces. This is Sp(n, 1)/Sp(n) X Sp(1) with compact
dual the quaternionian projective space Sp(n + 1)/Sp(n) X Sp(l). The
multiplicities are

{Pl =4n — 1)
py = 3.

The projective Weyl chamber is, in all these cases, ¢ > 0. The Weyl
group is just ¢ — ¢ and ¢ > —gq.

Remark. We leave aside the exceptional space of rank 1.

2. Volume element and Laplace operator. We can treat these spaces as
particular cases of BC, spaces with p = 1 and we have just to look at the
computations of Section 4, 2.

a) In q coordinates. The volume element on the euclidean maximal
algebra E is

A p
(72)  aveee) — (sin g) (sin q)Pdg

in the compact case and

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

ANALYSIS ON ROOT SYSTEMS 1345

o
AV ere) _ (sinh g) I(Sinh q9) dq.

Calling W) the function appearing in front of dg, we have for the
radial part of the Laplace operator

A(Phpz - 1 J (W(P| NV d )
Wiee) dq dq
in the compact case and
(7.3) AP ! d (W(Pl 0 Y d )
W(P| P7) aq aq

in the non compact case.

b) In algebraic coordinates. Let us define x = cos ¢ in the compact case
and x = cosh ¢ in the non compact case. Then —1 < x < +lorx > 1
in the compact case or non compact case respectively. We define as in
4.6)

pp =20 — 2B
py =28 + 1.

Then we have as in Section 4, 3
dVered) — (1 — Y1 + x)Pdx

in the compact case and in the non compact case we have just to change
1 — xtox — L. Call f*P this function (1 — x)%(1 + x). Then the
Laplace operator in th1s coordinate is in the compact case

. 3
(a,B) _ _ ANa,B)
L= ““ma ((1 i ax)

(7.4) and in the non compact case;
,u,(‘x"B) =(x — D% + 1)

and:

1 0 A
(a.B) _ (a.B) — —f(aB)
L e B o ((x D 8x) = — L%
If we develop this computation, we obtain

(1 *xz)—ai+(B—a—(a+,8+2)x)i
ax* dx

(1.5  L*P =+

with the sign + in the compact case and — in the non compact case
(remember also that the interval of definitions are [—1, +1] and [1, +o0|
respectively). We can summarize this by the table
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spaces of rank 1 Py [ a B

n—2 1

SO, 1)/SO(n) n— 1 0 -

2 2

(7.6) SUn. 1)/SUn) X SO(1) 2An — 1) 1 n— 1 0
Sp(n, 1)/Sp(n) X Sp(1) 4n — 1) 3 2n — 1 1

Remark 1. With these conventions, the hyperbolic distance from the
origin to a point ¢ is

The Laplace-Beltrami operator acting on function of r is

5

d d
— + (n — 1) coth r—
ar ( ) dr
for the hyperbolic real space

5

d
e + 2((n — 1) coth r + coth 2r);a;

for the hyperbolic hermitian space.

Remark 2. The spaces SO(2, 1)/SO(2) and SU(1, 1)/SU(1) X SO(1)
coincide with the hyperbolic space of real dimension 2. Their multiplicities
are (1, 0) and (0, 1) respectively, but it is clear that this means a change of
coordinate ¢ — 24 to identify them at the level of their radial parts.

3. Action of (1 + x)° on L'*®_ Let us denote by L“P) the hyper-
geometric operator

A 1 d d
faB _ ( 1 — Daehd )
ﬁ(a"B) dx ( XM dx

dZ

= (1 — xH)—
( )dx2

—|—(,8—a—(a+,8+2)x)i.
dx

Let u(x) be some test function and v(x) = (1 + x) u(x); we have

(l+x)p@=ﬂ— Py
dx  dx I + x
v dv 2 dv P +

(1 +xypsy -2 2 2, 02 TP,
dx dx 1 + xdx (1 + x)

so that
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a+ x)pLA("“B)u

d’ d
=(l~x2)d—;+(ﬁ—a—(a+ﬁ+2)x~2p(l—x)):{—)vc-

1 — x X
+ oo+ DS pa B DT =
1 x 1 + x

The term in v can be rewritten as

1
’1 Qp(p+ 1) —pla+ B +2)— p(B— a))
+ x

+ ((a+ B+ 2)p — plp + 1))]V-
Choosing p = B makes disappear the term v/(1 + x) and gives
d*v

1+ )PPy — (1 — x2
( ) ( 2

+(—,8—a—(a~,3+2)x)ﬂ
dx

+ B(a + D).
LEMMA 1. We have the exchange property
(1.7) (A + x)PLePy
= LB + x)Pu) + Ba + D + x)Pu).
4. The Riemann-Liouville integral.
LEMMA 2. We have the exchange property

d LN
7.8 (—) LB
(7.8) e

n
= [L@TBTD oy + B+ 2) — n(n — 1)]0?‘{—7’

To see this it is sufficient to prove it for n = 1 where the property is
almost obviously by direct computation.

Let us now introduce the Riemann-Liouville integral (see [27])

(79 (IPf)x) = fﬁ f fx = of .

If fis a C® function, I'”)f can be analytically continued in all the
complex plane in p and it is well known that
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Identity = 1

i — 7D

dx
1P — plete)
LEMMA 3. We have the exchange property
(7.10) 1@ of@B) _ fla=pB=p) 10 | pla + B — p — DIV,

Proof. For p = —n (n a positive integer) this is Lemma 2; so Lemma 3 is
obtained by analytic continuation. Another way is to compute directly,

d -1 . . . .
replacing T by I¢ Din L*A) and using the identity

I(P)(xg(x)) = Xl(p)(g(x)) _ I(p-H)(g(x) )M
I'(p)

We can now combine Lemmas 1 and 3: let us compute firstly:
a + x)pl(b‘)ﬁ(m/i) =+ x)pﬁ(a*f’./?—ﬂ)l(ﬂ)
+ (14 x)0a + 8 — 6 — DI,
Then using Lemma 1 with p = 8 — 6, we have that this is
[ 00=Byp 4 x)B=07®
+ (B = O0)a— 0+ D1+ x)fr®
+ (14 x %a+ -6 DY,

In particular, if we now want that 8 stays constant after these operations,
we must choose B = 6/2, p = —0/2, and we obtain

LEMMA 4. We have
(711 (1 + x) PICA [(«h)
= L@2BB 4+ x)PICB) 4 B — (1 + x) A1
(1 + x)f OrOf«p
= L@ B + x)fO 4 (0B + B — 261 + x)F O

CoOROLLARY 1. When B = —1/2, we obtain

(7.12) (1 + x)l/zii(“"l/z)
dx

A _ d 1 d
(I + x) I Sl = A A X7

This relation means that, when we put x = cosh 2r, we obtain

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

ANALYSIS ON ROOT SYSTEMS 1349

COROLLARY 2.

2
(7.13) 1 d(d + (n — l)cothri)

sinh r dr \dr* dr
d’ d\ 1 d 1 d
=(—+(n+1)cothr—) — n— —.
ar’ dr/ sinh r dr sinh r dr

5. Application to the heat kernel of hypergeometrtc equations. Let us now
consider the hypergeometnc Eerator LB on [1, +oof; it is formally
self-adjoint with respect to p(*®). We want to study

ou

B _ _[fla=pB-p),
.14y { o
ul,_og = ¥.
(Recall L*B) = — [P Define
y = e PeFTB=et b, X,
Then
—2—: = —flrbm, ola + 8 —p + 1y
Vo = ¥

Let p(“ B )(x Ix) be the heat kernel for +L*" with respect to the volume
element ,u(“ B)\(x)dx. Lemma 3 proves that

v(t, xp) = I“”( f pﬁ“B’(xolx)w(x)mm’”(x)dx)
wx) = I "Y(x)

(here 1 ﬁ(p ) denotes 1" acting on the variable x), so that we obtain:

(7.15)  u(t, xp) = 1“”( f PP gl P)¢)(X)u(“ﬂ)(X)dx)
X e+p(a+B—p+l)t.

Now the kernel I” depends on the origin a of the integral (7.9) (except
when p = —n, n positive integer). But if ¢ is compactly supported in
[1, +oo, the solution of the heat equation tends to 0 at co. This forces us
to choose a = oo in the definition of I‘?). Finally we obtain the following
theorem.

THEOREM 1. Suppose that we know the heat kernel p\* B Yxolx) of LB
on [1, +oo[ (with respect to the volume element p(“ )(x)dx) with boundary
conditions 0 at co. The solution of the problem (7.14) vanishing at co for
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L' PB=P s given by formula (7.15) with 1P given by (7.9) where we have
done a = oo for the origin of integrals.

Let us also use Lemma 4: we obtain

THEOREM 2. The solution of the heat equation

W pamvs-p,
ot
ul[:(} = 4/

is given by
(7.16)  u(t, x) = (1 + xo)ﬁ"’l_(f))( f PP (x,1x)

< 10 + x)! Pyx) ),u(“"B)(x)dx)e(“B+B_20)’.
We can also prove the following result when the source is at point 1.
THEOREM 3. The heat kernel
p£a+],*l/2)(l|x)
with source at point 1 is given by
(7.17) p§a+l ~UD(11x)

—(W)"

(1 + )1/2 (p,‘x—l/z)(llx) )e+(l/2)(a73)r.

Proof. The heat kernel is symmetric (because we take it with respect to
the volume element

I'L(a+l,~!/2)(x)dx).

So it has to satisfy the heat equation in x for — [t Using Cor-
ollary 1 of Lemma 4 it is easy to see that the second member of (7.17)
satisfies the heat equation. We have then to check that for any function
Y € C* with compact support around 1,

o) -1 B o d _
_(\/—) e+“/2)(a 3 f (1 + x)l/z—(P(,a' 1/2)(1|X))
a+ 1 ! dx

X Px)x — D1+ x) "V 2dx
tends to (1) if # — 0; but by integration by parts this means that

1

< —-1/2 o
+m .[1 P )(”X) (¢(X)(x — 1)* Ndx — Y1),
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The integral can be rewritten as
i 1 /oo (@—1/2) a—1/2)
@TDE AP e
X W) 4+ ) = 1) + (@ + D) + x)"Hdx.
But
AP 2(x0)dx — 8(x = 1),
which is the result claimed.
6. Heat kernels for the real hyperbolic spaces.
a) Some notations. We want to find, as in Section 3, 1, the heat kernel
P X mmydv (m')

(dv(m’) = volume element of X). Taking for m the origin 0 of X, we are
reduced to computing the heat kernel of the radial part A® ") (see (7.3))
with source at g, = 0 and with respect to dV**(¢q). We shall denote
by

PPeed(0lg)dV o) (g)
this kernel. We now change the coordinates putting
x =cosh g=1
and we define
pﬁ“’m(llx),u(“’ﬁ)(x)dx - PSP]»Pz)(Olq)dV(Pth)(q).

Then pﬁ“’B )(llx) is the heat kernel (with respect to m( %P )(x)dx) with source
at point 1 in [1, +oo[, vanishing at co and («, B) are related to the
multiplicities by

pr=2a—B) pp=28+1

b) We also remark, that one can define P\**?(¢lq’) for any ¢, ¢ > 0.
This kernel has a meaning in the symmetric space X (see Section 3, 2):
in fact, if we have at time 0 a uniform distribution of heat on the sphere
S(0, q) of centre 0 and radius ¢, then

Pﬁp"pz)((ﬂq' )dV(p”pz)(q’)

will be the amount of heat obtained by diffusion at time ¢ on the sphere
S(0, q); clearly P\P*)(glg’) is the fundamental solution of A2 with
pole g; it is also clear that if we know P*)(0l¢’), we are in prin-
(;}316 able to compute ngl’pl)(qlq’) for any ¢, ¢ > 0: in fact if we know

{Pp)(0|4') we know the heat kernel of X completely and so we
know P")(4l¢’) using its interpretation given above in term of heat
diffusion in X.
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¢) The case « = B = —1/2. In this case p; = p, = 0, dV(O’O)(q) = dg:
this is the degenerate case of R considered as a symmetric space with its
euclidean structure. The heat kernel of R is
R —(Im—m'*)/ 4t
P (mmYdm' = ————dadw'.
Now,
,

A0 _ i
dq’
g being twice the distance to the origin, say O. It is then clear that
P00l )dg = 2PR(Olq)dq’

(because we restrict ourselves to ¢ > 0 in the trivial Weyl chamber R™).
The sphere S(0, ¢') is the set {¢’, —¢’'}. Looking at the interpretation we
see that

2 _ 2
e—(lq*tll)/lét e (Iq+q!)/16r) /
q

+
\/ 4wt \ 4t

which is the heat kernel on R™ with Neumann condition at O. (¢, ¢ = 0).
Then

(7]9) p(’—]/2,*[/2)(X|x/)‘u‘(—l/2.*‘l/2)(x/)dx/ _ Pg()‘())(qh]/)dq/

(7.18)  P{"qlg)dg = (

with
x = sinh ¢, x’ = sinh ¢’.
d) The case a = 1/2, B = —1/2. By the table (7.6), this is the case of the
three dimensional real hyperbolic space Hj.

This case was treated in [8] using a series expansion; we found there
the following formula

! oy
7200 PGy = ot (T )/4r( )
( ) ' (r) (47”)3/26’ e —Sinh p

in terms of the radial hyperbolic distance. This formula can also be
checked directly. Because r = ¢/2 the formula gives

ﬂef(qz)um( q/2 )
sinh ¢/2

(2.0)
(721) P29 = G

with respect to the volume element
dV(z'O)(q) = (sinh g)dq;

going to algebraic coordinates, we obtain
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(7.22) p§1/2 lm(x)u“/z*“'/z)(x)dx _ P([Z,O)(q)dVQ,O)(q)

with x = cosh g¢.

e) The case a« = 0, B = —1/2. This is the case of the two dimensional
hyperbolic space H, with multiplicities (1, 0). But we can also consider it
as having multiplicities (0, 1) and with « = 0, 8 = 0. Then we can apply
Theorem 1 with p = —1/2, « = B8 = —1/2. The solution of the heat
equation — 299 with initial data ¢ is by formula (7.15) specialized to this
case,

u(t, xp) = ¢ ]/2)(fpf_]/2'—1/2)(X<)|X)(1,(Yl/2)¢)(x)
% M{—I/Z,-I/2)(x)dx)e*r/4.
Now we know that

712 - ](I/Z)i.
dx

we can rewrite the preceding equality as

—t/4 o) d d B ,
o= i [ S e
2

+o00
% fx :(7)—) xdnp(hl/z‘_”z’(x)dx
—t/4 (e%) + o0
= 2/, xp(n)dnfm ds
()
% f] dg( (—1/2—1/2)(51’1))
V2T

X
V(€ — xp)n — x)

and the heat kernel is then

—1/4 400
(123) "V (xlv) = f d f dn— (p,"/z"”z’(éln))
T

Xo

(—1/2,—1/2)
« ()
VI(E — xp)x — m)

where pf_l/z’*l/z)(éln) is given by the formula (7.19). We can take the
limit when x or x; tends to 1; in that case, we see that the interval of

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

1354 A. DEBIARD AND B. GAVEAU

the first integration in (7.23) is [1, x]; moreover we also have inside this
integral

= m -7
so the intermediary integral in (7.23) is of the type

1+e 0‘(71)
1 dn
Vi — DV +e—n
where x = 1 + € and @ is a C' function. This is

/”‘ am) — «(1)

dn + ol
N e T R

1+e 1
X fl dan.
Vi — D + e — )
The first term tends to 0 and the second term is «(1)7/3; so we obtain
in (7.23)

(724 p"0x) = I,

eht/4 /oo d¢ d (=172
V1S Ve x

Let us write x = cosh ¢, £ = cosh ¢’ and use (7.19) and (7.18) to get
B e 4y (oo e*(q’z)/l(utq/ p
~ (@mty? /4 \Jcosh ¢ — cosh ¢ 7

which is the formula given (without proof) by McKean in [23]. Then we
obtain

(7.26)  P{"V(g) = P{""(g/2)
(see remark 2 in 2). In particular with the radial distance r,
(127) Py = PV

f) The general Lobatchevski space. We shall obtain now the heat kernel

of L*k~V2 ang p*HV22UD gor g integer by applying recursively

Theorem 3 formula (7.17) to pf”z’ﬁl/z) and p§°~‘”2’ to get

(728) p((n+2“2)/2,"l/2)(llx)

t

/

(725 p"(g)

—-(V2)"! . d g _ _
_ (\nf) a +x)1/2a(p5(n 22212y je~ (V0= 81

2

This formula gives the passage from a real hyperbolic space H, of
dimension n to the one H, , , of dimension n + 2. Moreover, using (7.13),
we can obtain directly the recursion formula for the heat kernel in the
variable r (hyperbolic instance) by
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1 d g
— P, "(r).
sinh rdr ' )

(7.29) Py = —e™
Remark. If we want
pgk‘il/z)(xlx') and Pﬁk A/ =12 gy,
we can obtain them by two methods:
1*" method. We start with
pgfl/zﬁl/z)(x!x,)

given by (7.19) and (7.18) and apply repeatedly (7.16) with 8 = —1/2,
0 =—1,a= —1/2, to get

pﬁ”z“l/z)(xlx’)
and then again B = —1/2,60 = —1, a = 1/2 to get
p§3/2’ “1D(y|x).
Then we start from pfo’o)(x!x’) (which is equivalent to
pfo'fl/z)(xllx'l)

up to a trivial change of variable of the type
1
X, = cosh(i Arg cosh x));

then we apply to
PP
the formula (7.16) respectedly with 8 = —1/2,0 = —1, a = 0 to get
pf]‘fl/z)(xlx’) .
2" method. Knowing
(1))

we know the heat kernel of the corresponding Lobatchevski space and
then we know (in principle) how to compute

Pi(qlq)
and also

k,—1/2 ’
P J(xIx")

. . 1
for k “integer” or “integer +E”.
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7. The heat kernels of hermitian and quaternionian hyperbolic spaces.

a) The hermitian hyperbolic spaces. In the table (7.6) of 1, they
correspondtoa =n — 1,8 =0(p;, =2(n — 1), p, = 1) and n = 2. We
start with the real hyperbolic space « = n — 3/2, 8 = —1/2 and apply
Theorem 1 with p = —1/2: we obtain

—-1,0 ’
P Oxx)

in terms of

(III "3/2.*]/2)(X|xl)

through 1~ 172) and by the same reasoning as the one leading to formula
(7.23), we get

(n—1.0) e 1T/ oo
T

X0

—1/2,—1/2
)

VE = xp)x — 1)

If we want p,"_]’o)(llx) we obtain by the same line of reasoning as the
one leading to (7.24)

(731 p" M 01)x)

—(n—5/4)(1/2)t
e f*oo . d (-32-1/2

X d _ _
“ (n=3/2,—1/2)
X /, dndgp, (&lm)

ZT . ﬁ;gp, (€I).

b) The quaternionian hyperbolic spaces. These correspond to a = 2n — 1,

B = 1. We can then apply Theorem 1 with p = —1 to p(,z’“z'o)(xlx’).
But
71¢h = i
dx’
S0

pﬁln*l,l)()dx/)
o (YA, an-20 , a2
=e '(_/] ;(P, xH)Hx — HA — &)

1
X 2n—1
(1 + x)(1 — x)™

the extra factor

1
(1 + x/)(l _ x/)zn_l

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

ANALYSIS ON ROOT SYSTEMS 1357

coming from the fact that the kernel is taken with respect to the weight
u(z" D ”(x’)dx If we want to find the kernel with source at x = 1, we see
that

, d _
p§2n 2,0)( 1 Ix/)

d “
satisfy the heat equation L*"~''D by Lemma 3 (7.10); moreover if we
consider

e2m

Etl_) I dx ,(p,2"*2,0)(1|x’) WX + x)(1 — x/)Zn—ldx,

by integration by parts we get

2)1*2(1 + xl)

e f N pﬁz"‘z’(’)(ux')(xp(x’)(l — ) :

+ (1 — x/)271

S~ 1) e -(P(x)(1 + x7) ))

which tends to (1) if t — 0" because
p£2n—2,0)(”x/)(1 _ x/)2n—2dx/ —98()(’ _ 1)
so that

eznt d

(2n—2,0)
————~2< D) dx —p; (1x).

(732) A0 =
References. The heat kernels for Rank 1 symmetric spaces have been

obtained in [21]. Our method gives the general hypergeometric equation.
See also [23] and [8].

8. The heat kernels on certain symmetric spaces with the root system
BC,

1. Preliminary notations on the Laplace operators. a) We consider, in this
chapter, symmetric spaces with the root systems BC,. This root system has
already been described in Section 4, 1. We recall that F is a euclidean
space of dimension p, g a point in E with coordinates (g, ..., q,); the
roots are

RE”(q) = g, with equal multiplicities p,
Rgz)(q) = 2q; with equal multiplicities p,

RP@) =g — ¢ RP@) =4+
with equal multiplicities p;.

8.1)
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b) The positive roots are g;, 2¢;, ¢; — q; (i <j) and ¢, + ¢; (i <j). We
have also define to Weyl chamber and the Weyl alcove

:{qup O<qp<qp~)<“'<ql}
and the volume element

p
(8.2) avever — 11 (sm —) (sin g;)™

i=1

. — J: i 4+ g.\\p 2
L (el

I=isj=p i=1

and in the non compact case

! q;
(8.3) dvereer) — 11 (smh ) (sinh ¢,)*

i=1

x J1 (smh( 3 qj)smh(ql:q])) H dy;.

1=i<j=p i=1

¢) Calling WiPrP2P) and WiP1-P2PY) the density of the volume
d[/\/(Pth-P}) and dV(P]»PzJ’})

with respect to Lebesgue measure, we define the Laplace-Beltrami

operators
A 1 509 (. 0
AlP1:0203) 2 i ( W(P|-P2~P3)_)
W(Ppﬂzﬁ;) =19 aq/_
(8.4) ‘
p
A(P]»PQ-P:{) 2 _('_3_' ( W(pl P2.03) d )
W(P] 02-P3) -1 a aq/

d) We also defined in the compact case the algebraic coordinates
x; = cos g;, the Weyl alcove becoming

={xelR —l<x<x<...<x,<l}
The volume element becomes

(8.5)  dveBy — CH(l-x)(1+x)/3

i=1

X H (x; — xj)zyﬂ dx, ...dx

e P
1=/<i=p
where C is a constant (see (4.7) ) and
(8.6) pp =20 — 28 py=28+1 py =2y + L
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Call @AY the density of d V@B with respect to Lebesgue measure. The
Laplace operator is

87) Aesn _ L% i((l _ x_z),%a.ﬁ,y)i)
wl BV 2 g, ! ax,

p

2
:2{(1—x3)§;+[ﬁw(a+ﬁ+z>x,~

i=1
_}
axi '

e) In the non compact case the algebraic coordinates are

)4 1
+Qy+ D1 - x) 2

Jj=1X; = X;

J*i

x; = cosh g,.
The Weyl chamber becomes
C,={xelR I<x,<x,_;<...<x}

The volume element is

14
8.8)  dV@hn — TT (x, — )%y, + 1F

i=1
2y+1
x I - X)) dxy L dx,
1=/ <i=p ‘

with the convention (8.6) on «, B8, v and we call m'*BY the density of
dV@BY with respect to Lebesgue measure. The Laplace operator
becomes

(a.By) _ 1 SHK 2 (a.8,7) d |
89) A - > |G meAn
X

m(“»ﬁ.Y) Pyt dx,

and formally we have
(8.10) A@BY _ _ AleBy)

f) Let us alsoA recall that we have obtained in Section 4 the
eigenfunctions of A@P=12) 4nd the heat kernels of these operators.

2. Root systems Bp, Cp, BCP. The root system BCp 1s a mixture of two
simpler root systems B and C. We refer to Araki for the following
classification.

a) System B, The positive fundamental roots are

A =4 T G 0 =Gy T 43,0

= ql)fl - qp’ ap = qp
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with the Dynkin diagram of fundamental roots

ap -y — ., = a,

Let us recall that in a Dynkin diagram of fundamental roots, if a, 8 are
two roots, the notation « — B means that ||la|| = ||B]| and @ = B means
2 2
that [lal|” = 2||BII°.
b) System C,. The positive fundamental roots are

Ay =gy = G ) = Gy T 3,50,
=41 T G A =29,
and the Dynkin diagram of the fundamental roots is
@ - — 03—, S0,
¢) System BC,. BC, is a mixture of B, and C,; formally it is B, but
2a, has also a positive multiplicity, so that it is a non reduced root
system.

d) System D,,. By definition D, has only the roots *=(g; == ¢;) with equal
multiplicities: then it can be considered as a special BCp (or B, and Cp)
with p; = p, = 0 and @ = B = —1/2. The positive fundamental roots
are

A =4y T Gy 0y = 4y T 43,0,
=dp1 ~ 4y, =G, + g,

D, exists only for p = 3; for p = 2, it degenerates in a product.
e) Recall also that in general

p; = multiplicity of ¢; = 2a — 28

p, = multiplicity of 2g; = 28 + 1

p3 = multiplicity of ¢; = ¢; = 2y + 1
py = 0 for a pure C, system

py = 0 for a pure B, system

p1p, # 0 for a genuine BC, system.

3. Classification of the symmetric spaces with the BC, root systems. We
list below, for clarity, the Cartan’s classification only for BC, root
systems. (see [1], [15]).

a) Notations. & is a semi simple real Lie algebra, g = @ @ B is its
Cartan decomposition and G its complexification. X is the Cartan
subalgebra in ®C, Xq (or sometimes Ag or X ) is the subalgebra of X
contained in .
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b) Type BDI or SOy(p, q)/SO(p) X SO(q). We suppose here p = q.
The rank is p; the space dimension is 2pg; Dim X = [ (1/2)(p + g) ]. This
type splits in 2 subtypes:

Subtype D1. p + g = 2l even.
a)p =gq =1

root system D,

all multiplicities are 1

pr =py=0,p3 =1

Byp<gqgp=gq—2kl>k>0.
root system Bp
pr=20—p)p=00p; =1
Subtype Bl.p + g = 21 + 1 odd.
root system Bp
pr =20 —p)+1p=0p =1

1
a=1—p,B=——,y=0.
p. B 5 Y

¢) Type A 111 or SU(p, q)/S(U(p) X U(q)). We suppose p = q. The
rank is p; the space dimension 2pg

DmX =p +q— 1.
Subtype A1ll-1.p = q — 1.
genuine BC, system

pp=2(gq —p)pop=1p =2
1
a=1=2p+1p=0y="

Subtype A 111-2. p = q.
Cp type system
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pp = 0,0, =1,p3 =2

1
a:O,p2=0,y=5.

d) Type D III. SO*(2n)/U(n). (Compact SO(2n)/U(n)). The rank
is [ (1/2)n], the dimension n(n — 1)

Dim X = n.
Subtype D 11I-1. n = 2p.
C, type system

pIZO,P2:1593:4

3
—0.8=0y=".
« B Y =3

Subtype D 11I-2. n = 2p + 1.
genuine BC, system

p1:4,p2:19P3:4
3
a=2,=0vy=-.
B v =3

e) Type C 11. Sp(p, q)/Sp(q) X Sp(g). We assume p = gq.

Rank = p dim = 4pgq
dim X, =p + q.

Subtype C 11-2. p = q.
Cp type system

pp =0,p, =3,p;=4

a=18=17y=

|

Subtype C 1I-1. p < gq.
genuine BC, type

3
a:2(1~*2p)+1,,8:1,y=5.
f) Type CL. Sp(p, R)/U(p).
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Rank = p
type G, 0y =0,py =1 p3 =1
a=8=vy=0.

Remark. See the table at the end of this section.
4. Heat kernels for y = 1/2 and general p.

a) Root systems for y = 1/2. According to Araki-Helgason classifica-
tion, the BC, root system with y = 1/2 are

1
a=0B8=01y= ESU(P,p)/S(U(P) X U(p))

1
=l—2p+1,B=0,Y:5

SU(p, )/S(U(p) X U(g))p = q).
b) Heat kernels of A®A2_Call

o(x) = H (x,' - x,)

1=j<i=p
THEOREM 1. The heat kernel
PPl

(with respect to the volume element m( @Bl 2)(x’)d)c’) is given in the non
compact Weyl chamber C,. by the formula

Kt

8.10) pleBIDy = — 274 (@)
(8.10) p (xx') H(M,)HII_TIP (x,1x))
where
P
O K =@t B @t p- D 3

2 for

(1) p,‘x (@B )(x lx ) is the heat kernel of the one dimensional operator L(“ B
(iii) A, is the operation of antisymmetry on the variable x. In the case
where x’ — 1, we obtain

eK ol

@11 plBI(x) =

=1

P
AxLx’ Hpgawﬁ)(lex;) v
j=1 R

where

w o= I (252
’ 1sj<isp \0x]  9x]

(simplest antisymmetric operator).
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Proof. The proof is easy; in the non compact case we cannot use the
eigenfunction expansion. But we know by Section 4, 7 what is the heat
kernel of A®A1/2) (formulas (4.32) and (4.33)) for the corresponding
compact cases. If we change all the sin ER—’ZQ (R root) tol sin (_Igja_q_)

a
we can compute easily the heat kernel for real a and everything will be
holomorphic in a. Changing a = 1 into a = |, A@B1D s turned into its
non compact version A@A1/2) and the heat kernel becomes the one for
the non compact case. But the heat kernel of A@A1D) 0 the compact
case was an antisymmetric combination of the one-dimensional heat
kernel ﬁ,(“'ﬁ) of LB, By analytic continuation, LB changes into

L and p*B) into p{* which gives the formulas described.

References. The above classification is taken from [1] and [15], and

space rank Dimension of root o B
P the space system P P2 | s Y
SO\(p. 4)/SO(p) X SO(q) ) !
D, 0 01 0 —-— 10
pP=q r » ’ 2
SOo(p. 9)/SO(p) X SO(q) ! !
2 B Al - 011 l—p—= =10
pP<4qp+q=2 r Pa 4 =m 2 2
SOy p. q)/SO(p) X SO(q) _ _ _1
p<aq ptaq-2+l P 2pq B, 20—p)y+ 110 |1 I —=p 2 0
SU(p. q)/S(U(p) X Uq)) !
- 1 -2 41 ) | -
r<aq 14 2pq BC, 29 —p) 20 1=2 ( 3
) ) 1
SU(p, p)/S(U(p) X U(p)) P 2p C, 0 12 0 05
3
SO*(4p)/ U(2p) 2p dp(4p — 1) G, 0 1|4 0 0 ;
3
SO*(4p + 2)/U(2p + 1) p+1| @+ by BC, 4 1|4 2 0 3
Sp(p. RY/ U(p) P C, 0 1] 0 0o |0
5 3
Sp(p.p)/ Sp(p) X Sp(p) P 4p C, 0 3|4 1 1 3
Sp(p. 9)/Sp(p) X Sp(q) . B B 3
p<q P 4pq BC, 4l — 2p) 314 12(0—2p) +1 1 5

9. The heat kernel on the symmetric spaces of type B, and C,.

1. Notations. We shall consider below only rank 2 spaces of type B, and
C, (pure type). Our main result is to obtain an exact formula for the heat
kernels of all these spaces. We shall denote by (x, y) the algebraic
coordinates. They satisfy

1=y =x
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We shall also denote briefly by x a point (x, y). Apart from that, the
notations are exactly as in Section 8, 1 for the Laplace operators,
multiplicities of roots, etc.

2. The particular cases of rank 2 spaces: raising operators. We present
below several intertwining computations. Let us consider with Koorn-
winder ( [19] formula (5-1) ) the operator

1 0 a
9.1 DY — __—( — )Ytz
.1 2Ax y)zy_H x(x ») ay

0
+ - y)z”'—).
ay ox
More explicitly we have

e 2y+1(i__a_)
dxdy 2(x — y)

9.2 DY — i
©-2) ay dx

LEMMA 1. We have the following formula
(9.3)  DWL@BY _ jetlBHInpm — g + 28 + 2y + 5D

Proof. There are two ways to prove this formula. The first one is to
commute D with L) by direct algebraic computations (in the same
spirit as in Section 7); the second way is to use Koornwinder results;
because we are in the compact situation, we can use the Koornwinder’s
Jacobi polynomials p(“ﬁ v of degree (n, k) where n > k. These
polynomials satisfy, accordmg to Koornwinder,

ﬁ(a,B,y) (a.ﬁ,v)

—(—n(n+a+B+2y+2)—k(a+ B+k+1))Xpspv
and

DOPEED = k(n + v + 12 Y.

Using these two formulas it is easy to see that (9.3) is valid for all
P%E and so on all functions.

LEMMA 2. We have
49 (D(_Z))rli(a‘ﬁ'}') = ﬁ(a+r«3+’vY)(D(1))r
— Qrl@a+ B+ y+r+ 1)+ rnNDdYY.

2
. In that case

The particular case y =

2
©s5 pen_ Oy n7 ] (i ~ _a_)’
dxay 2(x — y)\oy dx
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Let us denote x — y = u, x + y = v: then

2 2
(95/) D(("-Z)/Z) _ g__ (8 n n_——_l__?)_)
B v’ o’ u  du

Let us also recall that u > 0 because we are working in the Weyl chamber
= y and u = x — y. Then we can interpret D'=2/2) 45 the 1-time,
n space variables wave operator

3
»
acting on radial functions f(v, u), v being the time variable, u the radial

distance to the origin in R", (n = 2). Moreover v = 2 because x and y are
greater than 1.

©6) O, =5 — Ap

3. The fractional powers of the wave operator. Following [27], let us now
define the fractional powers of the wave operator [J, , |: these are

) 0—n—
0.7 €0 INP) = n+](0)f F(Q)rpg 'do

D, denotes the forward light cone of vertex at P € RY X R, rpo is the
classical Minkowski distance from P to Q.

where

Remark. We work here with the forward light cone although Riesz
works with the backward light cone.

This integral converges (for f with compact support) for § > n — 1 and
satisfies

O [0 _ e
©8) 19,19, = ¢

for such values of 8, §’. Moreover

() 0+2r)
In+| _In+l n+1

which gives an analytic continuation in  and it is proved that
19 = Identity

and with this analytic continuation (9.8) holds for any 6, §’. Moreover

(—2r) __ r
n+1 n+1

2y _ M-
In+] - Dn-:—‘l'
It is also clear that for f'with compact support in the forward light cone
of vertex 0, 1Y ,,H /f has compact support in the same cone. Moreover, if f

(9.9)
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is a function of the time v and the radial distance u in R”, I'%., fis also

a function of v, u (and not of polar angles in R"). In particular using the
change of variables
©10) x—y=ux-+ty=v
we can define Jfﬁr] as the restriction of the Riesz operator / ff’ll to func-
tions of v, u, but read as functions of x, y for x = y.

Remark. v is evidently not the time of the heat kernel pﬁ“’ﬁ‘” that we
want to construct; but it is the time-like variable in the Weyl chamber of
the abelian subalgebra.

Now n = 2y + 2, so that we obtain

LEMMA 3. We have the intertwining property

9.11) J(Q(i,)+3L(a'B'Y) - L(ﬂ*(e/z),ﬁ*(ﬂ/z),Y)J(zgy)+3
0 [
+ (—0(a MR R 1) - E)J(z?ﬂ.

Proof. By Lemma 2 this formula is valid for § = —2r, in which case
Jéﬁ? _ (D(Z))r
by (9.9) and the definition of J(zay)ﬂ. Recall also that
(@B _ _ f(aBy)

(because of the passage of compact to non compact). By analytic
continuation we obtain the lemma.

4. The exchange property between B, and C, root systems. Our next step is
a very peculiar property of the root systems in a two dimensional space.
Consider two examples £ and E’ of a 2-dimensional space R%, E with
coordinates (q,, ¢,) and E’ with coordinates (Q,;, @,) and let us consider
the linear transformations inverse of each other:

0=q — ¢ 29 =0, + O,
O =q —q 29, = Q) + Qs

Let us now consider on E a C, root system with multiplicities
(1> Py, P3), sO that p; = 0. The Weyl chamber {0 = ¢, = q,} becomes the
Weyl chamber {0 = O, = Q,}.

We then see that the system C, transferred to £’ by the transformation
(9.12) becomes a system B, according to the following table C; — B,

(9.12)
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C, system on E » B, system on L’
9qi pp =0 /lethilh P =P
(9.13) 24, 0 20, pr =0
@t ¢ 03 0, + 0, Py = P

the multiplicities becoming p| = p3, p3 = p,. Coming back to the a, B, ¥
and o/, ', ¥/, we obtain

’

o =y
1
9.14) B = ~3 (recall that & = B for C,)
Y =B
Conversely we can go from B, to C,
C, system in F'<& B, system in E
4; o; =0 /Qi oy
(9.15) 2, Py = p3 29, py =0

\
@t g Py = Pl/ ~0, += 0, Py

’ 4 _ _1
(9.16) o =8 =y (recall that 8 = 5 for Bz)

Y = a.

Let us consider these transformation properties on the specific root
systems described in 2 of Section 8 for the multiplicities corresponding to
symmetric spaces:

C, system I corresponds to B, system
B : = B : 0
a=pf= Y=r= o = - = — =
2 2 )

3 3 1
a=p=1 Y == o = - B = — r— ]
d 2 2 2 v

1
(9.17) a=B=0 y=/—-2—-—-|a=1—-2—- ,8'=—5 Y =0
1 1 1 1
a:B:— Y = - o = — = —— Y/=_
2 2 2 # 2 2
a=B=0 y=0 o =0 B’:*E Y =0
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Now, we have to do the change of coordinates (9.12) on the Laplace
operators. We start with the C, root system in variable (g, g,),
multiplicities (p; = 0, p,, p3), so that

2

A00209) _ (01 — 2 i W(().pz,Pg)i.
W (VP2P3 i=1 aqi aq[

But
0

0 0 0 0

ad
9q, 00, 00, 0q, 00, 00,

The Laplace operator becomes
e e e e G
X {sinh% sinh %}%(é% + %))
1 2
+ (%; - %)({sinh(gl 5 Qz)l h(Q 5 Q’)]

X {sinh% sinh%}ps(é%l — 5%;))

but this is exactly twice the Laplace operator of the B, root system in
coordinates (Q,, Q,) and multiplicities (o] = p;, p5 = 0, p; = p,). We can
summarize all this by the following lemma.

LEMMA 4. By the transformation (9.12), the C, root system transforms to
B, root system; the multiplicities transform according to table (9.13); the
(a, B, v) transform according to (9.14) and the Laplace operator becomes
twice the Laplace operator of the B, system.

5. Deduction of certain heat kernels in rank 2: formal schemes.

a) What we already know. We know how to compute the heat kernel of
A“BY in the case of rank 2 and vy = —1/2 (in this case, we know
that AP 712 ig just the sum L By L("‘ ) of two independant opera-
tors and the heat kernel ¢ is just the product of two heat kernels in the
independent variables x and y). We also know how to compute the heat
kernel for y = +1/2 by Section 8, Theorem 1. So we basically know
(a, B, £1/2).

b) Deduction by change of variables. 1°) If a = B, in which case we have a
C, root system, we can treat by (9.14)

1
(9.18) (tx’ = ii’ B=—v=u«
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1
from |la = B,y = ii) by the change of variables

Q=49 —q
O =4q t g
2°) If B = —1/2, in which case we start from a B, root system, we can

treat by (9.15)

(9.19) (a’ =f = il, Y = a)

2
from (a, B = —1/2, y = #1/2) by the change of variables
_ A+
: 2
O+ O
D = ——2_

¢) Deduction by Jzy 13- If Y is an integer or an integer +1/2,
we can apply the operator ng .43 to the case (9.17) and (9.18) to obtain

0 1 0 1
sy (Dl 01y
OO\t
from (9.17) by JgY,H or
0 1
9.21 ( "= = == - ’)
(921) |a”" =8 IR

from (9.18) by JgY,H whatever 6 is. But the case (9.20) corresponds also
to a C, system and so we can apply a change of variable to (9.20)

Or=4q4 — ¢
O, =q T q
to obtain
1 6 1
9.22 ( =—M,——i~)
9.22) \|v.B > T3 F5

from (9.20).
d) Finally we can summarize this by the table

( +1)C2—»Bz(+1 1 )
o, o, —— -, T,
2 72 2
Jﬂ( 6 1 6 1 )
- - i_v -I T L.«
272 2 2
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9 1 6 1 \C,—B 16 1
9.23 (—-——,————, )__>2 2(,——,————)
(9-23) 2 2 2 2° Ty Ty T,
0
(a,_l,_f_l)L(a_B,_l_B,_?ﬂ_l)
2 2 2 » 2 2 2 >

the applications of J are submitted to the conditions that « and
—8/2 — 1/2 are integers or integers +1/2. The arrows

I

mean the operation by which we can pass from the left to the right of the
arrow.

e) The cases of symmetric spaces. We come back to the table (9.16);
in that table, we can find the heat kernel of any symmetric space with
v = 1/2. If we can find on a given line the («, B8, v) of the column, we can
find also the one of the other column by the operation C, = B,.

15! line. This can be treated easily because one of the elements in that
line contains y = 1/2.

2nd line. The left element « = 8 = 1, y = 3/2 can be obtained as

( 6 1 6 1 )
- -’ - _’ a
2 2 2 2

with @ = 3/2, 8 = —3, applying J™¥ to (=172, —1/2, ).

1
3lineea=0=8vy=1—-2— 3 can be obtained as

(0 1 0 1 )
I T o, T T .«

witha =/ — 2 — 1/2 and § = —1 applying J* D to (—1/2, —1/2,
a).

4™ line. This is trivial because it contains an element with y = 1/2.

5 line. « = B = y = 0 can be obtained as

( [/ 1 6 1 )
I R L
2 2 2 2

with § = —1, « = 0 applying J7Y to (=172, —1/2, a). We can
summarize all this by the lemma following:

LEMMA 5. It is possible to obtain an explicit form for the heat ker-
nel APV in the cases given by the schemes (9.22). In particular, all heat
kernels of non compact symmetric spaces of pure types B, or C, can be
obtained explicitly.
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6. Explicit expressions for the heat kernels: analytic formulas.

a) Transformation C, —> B, in algebraic coordinates. We denote (q,, q,)
the coordinates of a C, system, (Q,, Q,) the coordinates of the B, system
corresponding to (g, ¢,) by

924) Q1 =q —q¢ O=q T ¢

We denote x; = cosh g;, X; = cosh Q; the corresponding algebraic

1

coordinates; they are related to each other by (9.24). We proved in Lemma
4 that the Laplace operator A5 of the C, system becomes 24 Y of
the B, system by (9.24); the indices x, X refer to variables in which these
operators are written. The jacobian of (9.24) is 2. This is also the jacobian
of x = X, so that the volume element transforms according to

dV(”""’&‘pg)(Q) - 2dV("'*"2*”3)(q)
dV("‘"B/”’)(X) — 2dV(""B*7)(x).
The correspondences
p—p and (a, B, y) (. B,7)
are described in 4 and 5. Let us start with the heat equation

a
5pgﬂlﬁ,)’)(xle) - AiaBY)pga‘B‘Y)(x|x')

P xxdy By — 8(x — x).

If we perform the change of coordinates x — X we obtain

0 'B'Y) («
api”‘*‘*'”(x(X) (X)) = 28¢BYVp BN (X Ix(X7) )

1 )y
PEEP XN (X)) dVETE () = 8(X = X)
so we deduce
By 1
025) XX = 5P,

Remark. p(,“By) is always taken with respect to the volume element

dV@(x"): in the same manner, pﬁ"‘”ﬂr’yr)(X |X") is taken with respect to
the volume element dV“FY)(X"). As a corollary we deduce

THEOREM 1. We have

_ 1 +
(9.26) P(Ii]/z. 1/2.&)(X|X,) — Ep(zl;‘a‘Al/Z)(xlx,)
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with the usual correspondence X = X(x), X' = X'(x') given through the g,
and Q; coordinates by (9.24).
We have also

(927) pga,"‘1/2,(*(0/2))—(1/2))(X|X/)
1 _ _ _ _
— _z_p(Zt 6/2)—(1/2),(—(6/2)) (l/2),¢x)(x|x,).

Proof. This is the first line and second line of (9.23) and the formula
(9.25).
b) Application of the J operator. Let us consider the Cauchy problem

I _ ja—028-02,),

ot *
ul,_o = ug.
Define
) — L@t Bry=O/ )+ )=/,
Then
—2—‘; = [« OB~y _ (B(a +B8+y— g + 1) + —g)v
Vo = Uy
Define w by
v = 1(26;)+3w:

then we have

8_w
ot

— (@B,

wl—o = 1(2;3)3 Uy
using Lemma 3 (9.11); this means that
(929)  u(t, x) = Bt BHy—(B/2)+ D) +(8/2))

X JD s f PPN, 2y up)xym POy

(this is true provided v is integer or integer +1/2). The notation J f’.?+3,x
means the operator J (2?+3 acting on x variable. We shall denote by

j(z;_-z)3(x/‘x”)dxll

the kernel of J (2;@31, (with respect to the Lebesgue measure). The domain
of integration is (in the space R27+3) the light cone with vertex at a point
corresponding to x” by the rule given in 3 (which point precisely we choose
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does not matter because of rotational invariance in the space like
direction). When we write

j(z;f):;(x,,xH)dX”

the situation is here asymmetric; in fact by that notation we mean that

He !N £ " ’ —0) Frr Lo
/ng@B(x ") f(x")dx" = (15, )30, )
where £ is the space-time function rotationally invariant in the space-like
direction,

u’=x’,—x’2andv’=x’, + X5

and I y+3 has been previously defined. In the previous mtegral x" and x”
are both in the Weyl chamber with vertex at 1 in R’. With these
conventions made, it is obvious by (9.28) that we have the following
theorem.

THEOREM 2. For vy integer or integer +1/2, the heat kernel of
—(8/2),8—(6/2),v)
L&“ ( B Y
is given by the formula
(9.29) Piﬂ*(0/2)‘3‘(9/2),7)(/")(;)

eﬂ(a+ﬂ+y 0/2)+(3/2))t (0) (@ By)
o,py
m(a-(o/z).lg_(g/z)‘y)(x,) ff]2y+3(xlg)p (&lm)x
X 5, Dymlx ym PO ) dg .

¢) Remarks on the integrations in (9.29). Consider the light cone of vertex
o, 5’) e RY3 corresponding to x’. Let (v”, 5") be a generic point in this
light cone,

’.2 — (vr S 2 Ig, _ g//lz

the square of the Minkowski distance, so that rz = 0andv” — V' > 0. Let

= &, w l£”| and « the angle between 5’ and 5” then
’42 —_ ’ 14 + I2 + II
—1 =cosa = v v) " “ = +1
2u'u”

which implies in particular
P =V W —u) =0
and because * > 0, we get
vii— VvV Z W — u

Ill

This, in turn, implies that the domain of integration in (u”, v”) variable
is contained in the shadowed domain:
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/ ”

u u

This implies that the domain of integration in the x” variables is
obtained by rotating by —«/4 and is contained in the domain I'(x’):

x5

(I'(x"))

1 X x5

Conversely the point x” corresponding to a backward light cone with
vertex at x” will be contained in the following domain A(x’):

’
X3

(AxX"))

” ”
1 X X3

This means that in (9.29) the double integral is taken
1°) in £, on a domain of the type I'(x’) with vertex at x
2%) in 7, on a domain of the type A(x’) with vertex at x’.
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d) We want now to obtain more explicit expressions for these formulas. We
shall begin in the next two sections by the case when § = —2r with r a
positive integer. In that case,

Iy = (DY

and we shall have a simplification similar to the one found in Section 7,
6 and 7, if we put the source of heat at point 1.

7. The adjoint of (D). All functions are defined on the Weyl
chamber
CH ={(x,.x)I1 =x, =x,}

but they extend smoothly to [1, +oo] X [I, +oof as invariant functions
by the action of the Weyl group, which, in the algebraic coordinates
x; = cosh ¢, reduces to the permutation of x; and x,; so the

1
functions we consider are smooth symmetric functions on [1, +oo[ X

[1, +oof. The following lemma was proved by Koornwinder [18] in the
compact case:

LEMMA 6. Let
KB = (1 = x)(1 — x))%((1 + x)(1 + x3))f
and let
(9.30) D(jr’ﬂ“ = (“(“ﬁ)(x))*l o DY o ‘u(vHrl,BJrl)(x).
Then we have the following formula for ¢, ¢, C™ and defined on A,, with

compact support

(9.31) fA (DVY)(x, x)e(x, x)m PNy dx,

= fA Wxp, x)DEPe)(xy, x)m PV(x, xy)dxdxy

fory > —1/2,a > —1.

Proof. By definition of m“T"H1IM and of DY we are reduced to
proving

(9.32) /;\ (8%1 ((Xl _ x2)2y+13_¢)

0x,

d d
4 —((xl — xz)zy“,i))@dxldxz
8X2 ()xl

_ O (e yt1 92
= fA, Y(xy, Xz)(ax, ((xl x;) sz)
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a9
+ i((x] - x2)27+l—))dxldx7
aX2 ax] -
where
D(x), x;) = #(a+1'3+|)(x1’ x)e(xy, X5).
Consider the integral
(3 d
1 = _f (a—lpa— + ﬂa—‘ (Xl - x2)2Y+]dX1dX?_.
Ac\Ox; ax,  dx, Ox,

Then the two members of (9.32) are equal to I up to boundary terms. But
for @ > —1, the boundary term on x, = 1 will be 0 and for y > —1/2, the
boundary term on x; = x, will also be 0. By iteration of Lemma 6, we
obtain

CoRroLLARY. Under the hypothesis of Lemma 6, we have also for any
integer r

(9.33) fA ((DYY)x, Xy, x)m @B )iy

= [\ Y(xy, xz)(D(_‘:*B’V) o D(-‘:+I,B+l"y) o

o DETTTLBEITI X )m BY (x Xy dx dxs.

8. Reduction of the analytic expressions of the heat kernel for 8 a negative
even integer. Let us now come back to Lemma 2; this can be rewritten
as

(D(I))VL(O«B,Y) - L(f!*‘r,B'*'"‘Y)(D(Z))r
+ Q@+ B+y+r+ 1)+ r(DVY.

It is clear that the function

is a solution of the heat equation

E _ L(a+r,/3+r,y)
ot *

We want to find the singularity for 1 — 07; let ¢ be a C*° function with
compact support around 1 in A, and consider the integral:

fA, (DY, BV ALY ym BV ) dx,

By (9.33) this is
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//; p(t(X,/iY)( 1 Ix )(D(j:"B’Y) o D(f+ LB+ 1) o

X

..o DT IBEITID O ym B (x ),
But
PRIy @B (x )l
tends to 8(1 — x) if t — 07", so this integral tends to
(9.35)  (DUAM o platlBrl o o platr—1BHr =19y
Let us compute the number (9.35). First we have:
Lemma 7. Let f(x, x5) be a C function on [1, +oo[ X [1, +oo

symmeltric in x|, x,. Then

(9.36) D(Z)(u(a’%v 1‘,3’+|’y)f)

“(«1/3”.7)
= (¢ + (1 + x)(1 + x;) 0 + 2 + 2+ g
where g is a C® symmetric function vanishing at (1, 1) of the form
(I — xpg + (1 — x)g.
Proof. We compute

1
(1= x(d = )0+ x)(1 + x3))F

( o? 2y + 1 ( d d ))
X + _—
0x,0x; X — x5 \0x, ax,

X (= x(1 = o)A + X+ x))F )

= (@ + X1+ x)(1 + x)f

+ (1 + x)(1 + x)Q2y + D + 1)f

1
+ 2y + DA — x)(1 — Xz)“x .
1 )

d d .
X (,_ - f*)((l + ) + )P

0x, ax,
+0(1 — x, 1 — x3).
Here the first two terms give

(1 + x)(1 + xy0a + 1)’ + 2 + 2v)f;
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the third term is smooth in x,, x, because
(14 x)(1 + )Y

is symmetric in x,, x, and C*°; the last term is also symmetric and C* in
X, X, and comes from action of

3
on p@ 1A +Dy
9x,0x,

and is of the form

(1 = x)o + (1 — x4

Now, to compute (9.35) we apply recursively Lemma 7 (9.36): we
obtain

1

V), (atrB+r)g
e pEEn Dk t

— (a0 + )+ r+ 142y + x)1 + x)f + g
with g, as in Lemma 7; then
D($+r*2.ﬁ+r-2.y)(D(t+1+r‘1,B+r*l.7>f)
=(a+r— I)a+r+2y)(1 +x) + xy)
x platr=1Btr=ing 4 2
=(a+r)a+r—1(a+r+1+2y)(a + r+ 2y)
X ((1+ x)( + x))f+ g
where g, and gy are as in Lemma 7. So we finally obtain
(9.37) DBV o o platrTlBtrlng
=+ r)a+r—1...(« +1)
X+ r+1+2y). . .(a+r+ 2y) X 2%e(1).

This implies, using (9.37), and the beginning of this part, the following
theorem.

THEOREM 3. The heat kernel of L'“*"PX"D (with r integer) at pole 1, is
e*(Zr((x+B+y+r+l)+r)t

9.37) 3
(a+r)y...(a +Ya+2y +r+1)...(« +2y + r)2°

X (D(Z))f;pia.B~Y)( 1 IX)

— p5a+r,B+r,y)( 1 lx ).
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Remark. Unfortunately, this formula is not sufficient to obtain heat
kernels for symmetric spaces of rank 2, because we need the action of J @
for 6 integer (positive or negative) and Theorem 3 gives the action for 6
even integer only in which case

T = 00y
On the other hand, in Theorem 3, y does not need to be integer or integer
+1/2.

9. Limit behaviour of the heat kernel for x' — 1.

a) Simplifying (9.29) for x’ — 1. We suppose below that y is “integer” or
“integer +1/2”. We come back to Theorem 2 formula (9.29) and we want
to examine the behaviour of

—(6/2),8—(6/2),
pﬁa (0/2).8—( )Y)(xlx/)

when x’ — 1 = (1, 1). We have an integral in n over the domain A(x")
shown on the figure of part 6. This domain shrinks to 1 when x” — 1 but
the denominator

@ —(9/2)./3—(0/2),7)(x/)

tends to 0. We shall show below that the same phenomenon as in Section
7, 6 occurs, namely that when —8 > 2y + 1, the integral

1 (—0 ,
O3 o ETm .[Auupga’ﬁ'”(é'") Xy 5l el

has the limit Cpﬁ“"g‘y)(éll) when x¥* — 1 (C being a fixed constant
independent of §). We assume below —0 > 2y + 1 = n — 1 (which is the
condition under which I (2;@3 is absolutely convergent (see part 3).

b) Computation of the integral (9.38) for x’ — 1. Let us fix a point
x" = (x4, o) (x0, ¥y > 1); by a translation of coordinates we shall
assume that x{,, y; > 0 and tends to 0 and x{, > ;. Then

m PN = (xpyp) (2 + X2 + ) )P — v
Call as usual
Uy = Xo = Yo Vo = Xo T X
which is in a light cone; call (56, V() a space-time point with
|§6| = u).
Obviously (‘26, vy) is in the forward light cone. Call A(g(’), v() the

intersection of the forward light cone with vertex (6, 0) with the backward
light cone with vertex (&), v;). We study the integral

1. v) = /A(gb_%)( (g = ) — 1§ — &I
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X m“BIE v)dEdy
when
(&, vp) — 0.

This integral depends only on |§g)1 = uj and v). We shall make (é}g, vy) tend
to 0 according to a straight line and we shall study

IAE, M) A— 0",
It is clear that when A — 07

T(\g, Avp) ~ 1(0, Avp).
But because

m(a,,&y)(é” y) ~ (u)27+l(v2 _ u2)a’

10, vp) ~ fmv&) (g = v)* — W20 — o)y ddy

where p = —8 — n — 1 and so this last integral is the integral over the
triangle

Yo

u

L((VO _ v)Z . uZ)p/2u2y+n(v2 _ uZ)adudv

which can be split into two integrals

Vo/ 2 v
(9.39) f 00 dv f o (Gg = ) = PO — ) du

Vo V0~V
+ /v dv ./0 (g — v)* — w07 — uh)du.
0/2

Both integrals in (9.39) are absolutely converging because p > —2 and are
equivalent to

Cv(2)a+2‘y+2+n+p

and so
I(Ag(,), AVE)) ~ C}\2a+2y+2+n+p DS O+.

But we obviously have

m(a—(0/2).6—(0/2).7)(}\116, }\v(/)) — C}\Za—0+2y+l

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

1382 A. DEBIARD AND B. GAVEAU

with
9 =p+n+1
so that
IAE, W) and  ml@~ GDBO20 00 vy

have the sum equivalent when A — 0.
We thus obtain:

LemmMa 8. The integral (9.38) tends to Cp\“PY(E1) when x' — 1 when
-0 >2y + 1.

¢) The heat kernel for —8 > 2y + 1.

LEMMA 9. Let us suppose that —8 > 2y + 1 and vy integer or integer
+1/2. Then we have

(9.40) pga*(G/Z).B—w/z).y)(Xl1)

_ Ceo(ﬂ+B+Y—(0/2)+(3/2))t v/;(x) jg9Y)+3(x|£)p(IﬂBY)(£|1)d£

where C is a constant depending only on a, B, 8, y. When 8 = —2r, we find
again (9.37).

Proof. This is obvious from Lemma 8 and Theorem 2.

d) The general case § < 0. We are now able to treat the general case, i.e.,
when we remove the condition —6 > 2y + 1. We maintain § < 0.

THEOREM 4. Let us suppose 8 negative and vy integer or integer +1/2.
Then

(9.41) P§a~<0/z),ﬁ—<o/z),y)(x|1)

_ Ceo(a+B+v~(0/2)+(3/2))t ’/1:(‘\') j‘20Y)+3(xI£)p(,“‘ﬁ’Y)($ll)dg,

C depending only on a, 3, 0, v.

Proof. We know by Lemma 3, formula (9.21) that the second member of
(9.41) is a solution of the next equation

d L(a—(0/2),ﬁ—(0/2).y)'

at

Let us prove that it has the correct singularity at ¢ = 0 when x — 1. Let f
be a C* function with compact support near 1. We study for r — 0

'/‘;Vf(x)m(a'(e/z)wﬁ*(a/z)ﬂ)(x)dx _[*(v\.) j(20\,)+3(xlg)p,a"8‘y)(£ll)df.

This is also
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(9.42) ng PEPTEDAE J, o fCJ5 s (xlem T ODEZODD )

where the second integral is extended on a domain of type A(x). Now, the
integral:

(9.43) A(a j(zoy)+3(X|$)m(a‘(0/2)ﬁ*(0/2).¥)(x)dx
is of the type studied above in (9.38) except that § — —#@ and

/) 6
Y JE— _ =
a a 5 B—B 5

and vy is unchanged. It was shown that it is equivalent for §¢ — 1 to
m‘“ﬁ”(g) provided that § > 2y + 1. In particular we obtain that there
exists a constant C depending only of a, B, v, # such that

N (O _ _
i 900 S Oy sl DL 0D )
£l m*“BV(g)

= /(D

for § > 2y + 1. But, by Riesz theory, the integral is analytic in 4 for all § if
fis C*. In particular, the function ®

(0 _ _
fm)f ()5 3l O DB=E D (g

P:(, 0) = P g

is analytic in 8, C* in ¢ and takes the value Cf(1) for £ = 1; we can
rewrite (9.42) as
(9.44) /Agpﬁ“""”(&l1)m‘“‘ﬂ”’($)<b(£, 0)ds.
But ’
PEPVEDM PN Gde — 8¢ — 1) i1 — 07,
so that (9.44) tends to ®(1, §) = Cf(1) which proves that
PO ODB D1 (| 1y O DB () — §(x — 1)
so Theorem 4 is proved.
References. The definition of DY) comes from [18]; the definition and

properties of the fractional wave operators come from [27].

10. Kernels of elliptic invariant operators on certain solvable groups and
applications to quantum mechanics. The purpose of this section is to apply
the preceding analysis to obtain explicit constructions for heat kernels on
certain solvable Lie groups. The case of nilpotent Lie groups has been
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treated in very special cases in [12], but apparently, few things are known
for non nilpotent solvable Lie groups.

1. A general construction: going from a symmetric space to a solvable
group or its quotient.

a) The symmetric space in horospherical coordinates and its associated
solvable group. We consider a root system (E, R, p) such that its
multiplicities correspond to a non compact symmetric space X = G/K.
Then, in horospherical coordinates, we obtain

X =NA- o

where N is a nilpotent group, A is an abelian group (isomorphic to £) and
Sy = NA is a solvable group which is the semi direct product of 4 and N.
It is clear that the Laplace-Beltrami operator of X written in horospherical
coordinates (which are just the coordinates of Sy) induces a left invariant
Laplace operator on Sy (see Section 5 for the analysis in horospherical
coordinates).

We have seen that we can compute the heat kernel of X in a more or less
explicit form in radial coordinates, in the following cases:

(1) X = SL(p + 1, C)/SU(p + 1) in which case

(Es *KR* p) = (Rp’ Ap’ p)

with all p, = 2 (see Section 3).

(i1) All symmetric spaces of rank 1, in which case p = 1, and there are
at most two roots (see Section 7).

(iii) (E, R, p) = (R?, BC,, p) where y = 1/2 (see Section 8), which
includes in particular SU(p, p)/S(U(p) X U(p)).

av) (E, R, p) = (Rz, B, or C,, p) (see Section 9).

In all these cases, the solution of the heat equation, the Green kernel,
eigenfunctions . .. for the solvable group Sy is obtained by a change of
variables in the radial expression for the heat kernel, Green kernel,
eigenfunctions . .. of X.

b) Generalization to other solvable groups of type Sy, ;. We now come
back to the notations of Section 5. In this section, we obtained the
following decomposition of the nilpotent algebra

(10.1) N = > g
k=1

where 8) is the sum of the root spaces ,, where « is a positive root
which is the sum of exactly k fundamental roots; in particular B is the
sum of the fundamental root spaces. Let us now fix n > 1 and define

(102) 900 = X a®

k=n
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which is an ideal of 2" due to the root structure of N(™ (more pre-
cisely the “filtration” induced by the root system, see Section 5); in
particular, the quotient algebra

(10.3) 9, , = R/RH

induces a solvable group Sy, _; with the Lie algebra % + <, _,.

Let us quickly prove this assertion; flrst Qn‘l is naturally a Lie algebra
because of (10.3) and the fact that *Jk( is an ideal. Then if 4 € U, we
obtain that

[4, X,] = a(4)X,

for X, € N, by definition of a root so that

n—I1
[, %)« vl
and the bracket by 9 induces a natural structure of Lie algebra
on A + 63"4 which is a quotient of % + NN in par-
ticular Sy, | is a quotient of Sy by the nilpotent Lie group with
Lie algebra SYEH)

Example 1. Let us take n = 2; then 9, is an abelian algebra generated
by the &, for a fundamental roots and Sy is a semi direct product of
two abelian algebras. Its Laplace operator is

4 82 Pa 82
(10.4) ASX,I = 2 —_ 4+ 2 E eZ(a.q) 5

j=1 aqu acR" j=1 axa’j

Here the g; are the coordinates of 4 (1n horospherical decomposition),
the p,, are the multiplicities of root a, X" is the set of fundamental roots
and the x, ,j = 1...p, are the variable in & .

Example 2. Let us take n = 3 (if this is possible); then £, is a nilpotent
Lie algebra of rank 2 (this means that two or more bracket operations give
0) and Sy, is a solvable Lie group which is a semi direct product of an
abelian group and a nilpotent Lie group of rank 2; its Laplace operator
is

~

(10.5) Ag = + 2 e x?
RE /‘laqz acFt j=1 /
Pg a
n s S 289
Be@ s HN® j=1 oxp,

Here xp ; are the variables of &g and (”Si + 3t ) N N s the set of
positive roots which are the sum of exactly two fundamental roots; the
X,,; are vector fields on N/N, which are left invariant. They are first order
operators, linear combinations of
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0 0
— and x,,—
09Xy dxg,
with
aced and Be BT+ N R
(We refer to Section 5 for the proofs of all these assertions.)
¢) Deduction of the kernels for Sy, _,. We shall start with the heat kernel
of Sy = N- 4. An element n € N has the exponential coordinates

n = (X k.
where (xx ) € gk (see Section 5); then the Laplace-Beltrami operator
Ay acts on functlons Jo which do not depend on the (x; ;); =, ; exactly as

the operator Ag  ; in particular it leaves this class of functions invariant.
Then the heat kernel on Sy,_, is obtained by integrating out all these
(xl\',/)/\* =n,j

(10.6)  ps, (@ e 167, )<

- f Pl ). g, (0)) H H dx .

*H

Remark. Our procedure here is exactly the opposite one of Karpelevic in
[18]. In this article, Karpelevic defined the heat kernel on the abelian part
of the Laplace operator of X in horospherical coordinates (which is
a constant coefficient operator) to study the boundary behaviour on a
symmetric space. Our procedure is to use information on X (in radial
coordinates) to deduce the kernels on solvable groups.

2. Generalization to other solvable groups. a) Until now our construction
applies only to solvable groups which are the quotient of the solvable Lie
group Sy associated to a symmetric space X by a nilpotent Lie algebra. But
in general, for a symmetric space, the multiplicities of the roots, and so the
dimension of the vector spaces appearing in the horospherical decomposi-
tion of Sy and its quotient, are rather special numbers.

We shall now prove that it is rather easy to overcome that difficulty by
using adapted Fourier-Bessel transforms.

b) Let us start with a root system (E, R, p) which does not correspond to
a symmetric space because its multiplicities p are not the correct ones for
such a space. Moreover let us consider the operator

p

107) A =21 4+ 3 2@ 2 —

j=1 aql2 aEBj j=1 ayaj

(only restricted to the fundamental roots) and the heat problem with heat
kernel
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1 0
J O]
satisfying:
du
— = Au
(10.8) i :

u,_o = 8(¢'" — ¢8O — ).

Let us also consider a symmetric space X with the root system (E, R, p’)
such that p/, # 0 for all « € X" we have

2 P
(109) Ay = X 5 + X &0
Sx j=1 aqf acF” j=1 ax
and we suppose that we know the heat kernel of AS;u

1 1 0) 0
P, (@) <8, g, xO)).

We can integrate out all the x(o) such that the corresponding p, in (10.7)
is 0; we obtain a heat kernel

p,(q(') (1)t|q(0) (0))
for
IR A TR A g
: j=1 aqf acy’ Pl j=1 8x
It satisfies
av
109 | a A

V|1=O — 3(6]“) _ (0))8()6(1) _ X(O))_

Now, both p; and p} depend only on the euclidean distances
Y =P = 2 5 = YOP and
1
KD — O _ 2 D — O,
Moreover if we perform a Fourier transform

5 = 11 )

P70

in yfll} variables on p; and a Fourier transform
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) _ (1)
&0 =11 34

a0

xﬁ,”/ on p), they satisfy

J (N ( & az 2( q) A2 ),\(I)
a1 B Py M-8 ")
(10.8) o e 1 _1.12, o7 az ( pe) [ Vo 17|55 Py
) (D

1 1 0)y i
??L )pl|[:0 = 8(q" — ( >)ezEuﬂ,u,

where the )Az(a]_)- are conjugate variables of yE,l), and
1 = 2 P
and with the same kind of notations

.
d ) L 9
_E)t ;gi}’pl = E S

=1 E)q_,2

_ 2 ez(a.(/)(l _ 8 0) Ix(])| )’K”(I) ’

ae}}*

(10.9) |

1 0 (O)/\(I)
} Do = 8(g" — ¢ Zratl,

At this level it is completely clear how to go from (1/0.\9) to (1/033), in fact
Pg(l Py is
@ g 15 6 15 ¢

where 6, is the angle between (x(o)) and (xm) for every « € &' and in
the same way we have

(10.10) & p)e. ¢, 131 0,0 1641 ¢
= &P ¢V 130 8 1] 6.

It i1s now sufficient to perform the inverse Fourier transform (%L”)" to
obtain the result. This can be expressed through Bessel functions. Explicit
examples will be given in part 4.

3. The easiest example: semi direct products of two abelian groups and the
real hyperbolic spaces.

a) The groups S,. The groups S, are the solvable Lie groups with the Lie
algebra generated by the left invariant vector fields
a ( , 0
—, fer—
dy axj

where y and x; are real.

)jzl...p
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Example. In the case p = 1, S, is the group of affine transformations in
the real line namely

(a, bt €ER—>at +b a,b>0.
If we define a = ¢* then we have the law
EDb)- (@ b) = (¢+ & D+ b)
with left invariant fields
a d 0
— + b—, —.
a¢ dab 0b
Defining b = ¢" and ¢ — 5 = x, ¢ = y we obtain the realization
a0
ay dx
In the general case we define the left invariant operator
82 . V4 82
(1011) L, = — + 2 X —.
P ay? j=1 A
b) The heat equation on S,. As usual we are interested in the Cauchy
problem for the heat equation on S,
a 82 7 )4 82
WP $ O
(10.12) 3 3 9y j=1 0x;
ul,_o = Uy
We shall denote the heat kernel by
KGO, 30, dx®, 540

so that the solution of (10.12) is
10.13) w(xD, YO 0y = fo o KGO, 50, 1xO, yO)

0
X g0, y0)e 27"y 0) 4,

. . . © .
with respect to the invariant measure e”” dx(o)dy(o) on this group.

¢) Consider now the hyperbolic space of dimension n + 1; we realize
this space as the upper half space

H o ={(n,...y4) € Ry, >0}
with the metric
_ it Tt dny

2
Yn+1

ds*
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The volume element is
dv =y, " Vay o dy,
If

;dy;

Y

is a 1-form. The adjoint 8§ of the exterior differential d is given on = by

L,,,  dnfdv = [,"  (alddy
_ nél af

"“,d ...dyn+]
Jj=1 a/ n+1
and so
n+1 T
2
b = — X Vapi— + (0 = Dy, om0
Jj=1 ay/
The Laplace-Beltrami operator is then
n+l 42 d
. iy 9
(10.14) Af = A8df=y3+] 2 —i; = (n — l)ynﬂ“i‘
J=1 a)// a)}n‘f'l

But y, , is positive on H,,, and we can define
(10.15) y, = e€'.
With this change of coordinate we obtain
‘__ 7) é 2./ 2] 8]
= a2
j=1 07 ay dy

and we rewrite

- ,19[ Q2w 9 0’ (e~ py 2/
ay? dy ay '

Let us now define

(10.16) g(yys. - sy ys t) = e*(n/Z)y\.(n“/4)1f(yl, Y Ve D).
Then the problem

of
(10]7) 5; = Af on 11»1+]
flico = Jo
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is equivalent to the problem

(10.18) 1 5 — 32 =
glio = &
For n even, the heat kernel of the space H, , , is known (see Section 7).

We call r the hyperbolic distance between two points of H,, , and
denote

(m“), tlmm)) = r(m(l), m"), t)
14 p

the heat kernel of (10.16), with respect to the volume element of H,, , ,

SV, 1) = ﬁ, (D), 1) fio(m ey ().
Using (10.16) we obtain the solution of (10.17) by the formula
(10.19) g(yyy .-y 20 1)

—(n/2)y —(n*/4 . 0 0 "

= e (RNl /p(yl ----- Yo @ Yy )
0 0 Oy — /2, (0) 0,0
X go(Vis oo sy Ve (n/ 2y dy(l ... dy,dy

because

! o
dv(mV) = 7y, .. Ay, = e Vdy, ... dy,dy
n+1

and we obtain

THEOREM 1. The heat kernel of problem (10.12) with p = n is
(10.20) K(x(]”, oD ) tlx(lo), R xf,()), )

n

=2y + )y O a4y (1) M (0 (0)
o e p(xy’, .. ..x, JHx, X
¥

e s Xy
e

where p is the heat kernel of H, .

4. Another expression for the heat kernel of the preceding solvable
group.

a) We want to obtain a slightly more explicit computation of the heat
kernel of problem (10.12). Let us first remark that in (10.12), we can
restrict ourselves to the case when the initial data is a radial function of
the x; ie.,

ug(xy, ..., X, ) = uy(p, y)
p

where
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because the heat kernel K is a function only of
IX(I) — X(O)l-

Moreover we have only a simple expression for the heat kernel of the
Lobatchevski space H; for which

(1021) p(r, 1) = (dmr) Y2 e 7L
sinh r

Let us take the Fourier transform in (x;)j=1. of (10.12) and denote 5,
the Fourier transform in these p var1ab1es we obtam

8i§pu B 9’ "J;pu
(0.12) | o )
%pultzo = :&pu()

2y A2
— e?p Spu

and
P 1/2
A 2: AD
j=1

where the X, are the dual variables of the x;.
Let us also take the Fourier transform of (10.17) for n = 2 and denote
&, this Fourier transform with respect to the two variables y;, y,.

We obtain
% 3’
s - Zg = ¢ gg - e 02,1}‘)g
(10.17) ot ay
828l—0 = B8
where
b - 6T+

We also reduce ourselves to the case where g, is a function of
o =01+
. YN
and y. The solution of (10.20) is
(10.22)  (328)(Py, ¥y, ¥1)

—y— R A A 1 AOAO 0
=e t/l’(yl)be)tl)ﬁ)’ze))

(%zgo)(Po, y )e Y d)A’ dj} dy

where we have used (10.18), the Plancherel Formula and the definition

;\\/\/\ ) AUA ,‘0
(10.22)  p(3 0,1 3999, )
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1 2 A 0A0 , 0 % ;0,0
- (277)2'/ &2y, vy, € N, Yo e )b idyady dyy)
A N 0
= ¢(o, 0, e”, 16°, &)
where
2
A 2, A
& = 2@y - 2] )
J= J=

and 6 is the angle between the vectors (y,, y,) and ( y?), yg). Then
(10.23)  (F:8)(a, y, 1)

oy — A 4 Jal : ~ 0
=e /(gzgo)(t’o, J’O)(.[(z) (6, 6, ¢, 1l6°, e )d0)

In (10.23), let us replace 6 by p, o by p 2, 5280 by &t in the right
hand side. On the left hand size, we obtain (3, u)(p, y, t), solution of
(10 12). Let us take the inverse Fourier transform “§ "in the p variables
Xprenns xp, we obtain

(10.24)  u(p, y, 1)
—y— A — 27 A ) A 0
e V! f(%puo)(po, yo)%,, ! fo q(p, 0, ”, 11p°, e )dbx

—0A A 0
X e Y Podpody .

On radial functions, we obtain

+OOA —1 4 A
fo p”" dpe(p)

&, 'o)o) = any
X [9"" e_ipﬁcosoda(ﬂ, Q@)
where
do(8, ay, . . ., ap,z)
= sin” 2 @ sin” 3 q,...sin a, sdfda; ... da,
in the volume element of the unit sphere and
0= H,al,...,ap,3 =7 0=a, , =27
Introducing the Bessel function
J(pfz)/z(pf,) = (pp)r—212 fii (1 — gz)«p~2>/2>—<1/2>e4m6£d§

we see that
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=2 too Ap— A A AN(2—p)/2 A
(10.24) (3, '9)p) = (2 );’ f B7 dpe(P)pP) > "2 2 20P)-

On the other hand
(&,t)(By. »)

+oo
2~
Op—2 / 0 dP()u()(Po» P)pobo)? " J( p— 2/2(PoPy)
and the heat kernel of (10.12) is then given by

(op‘:l)z —y—t +Oo/\ A AN2—p)/2 A
(10.25) Q2my’ e o Podpy(popo) J(p—-2/2(P0Py)

T Nl A 2—p)2 A
X f o PPTap(ep) TP, o) 5(00)

0 q(p, 0, ", 115, e")db

on the radial function uy(pg, ¥ ) with ¢ being defined as in (10.22) and p
given as in (10.20).

5. Quantum mechanics in the potential . The Schrodinger equation for
the one dimensional quantum problem in the potential e is

la_lp — ?:iz _ 5262_1'¢
(10.26) i ot 0x
Yo =

where £ is some coupling constant. This is equivalent to (161\7) First we
consider the problem in lmagmary time 7 = it. In (10.17), ¥, = ¥,g, and
does not depend on & = &% thls means that g, is a function of )"
and a Dirac mass at the origin in yl, yz, and (10.22) becomes

+
(1027) Yy, 1) =e > / OB €, 10, 0, e ey’

where

PE e, 10, 0, e

T +co P o
= '/?) fo I&PLOS (Pe _V’ [|O, O, e’ )Pdpd0

where p(y,, vy, e”, 10, 0, e’ ) is the heat kernel of the Lobatchevski space
H; and (p, 0) the polar coordinates of (y|, y,). It is clear that this function
is independent of # and we obtain

N i + oo X 0
(10.28)  p(&, e”, 10, 0, %) = 27 f o Jolop(p, e, 10,0, e* )pdp
with
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T icosgdl0
J(z) = f 1:cos0_.
ol2) 0o ¢ 27

The rem%ining problem is to express the variable r in (10.21) in terms of
(p, ¥, e”; ris the hyperbolic distance between the points

©,0,...,0, ")
and
(,0,...,0,¢e").

If p = 0, the geodesic is the y-axis, the metrics is just dy,, /v, 4+, and so it
is dy and the distance is | )° — y|. If p # 0, we can consider that we are in
the two dimensional Lobatchevski plane with coordinates (£, ); then if
¢ = & + in, the group SL(2, R) acts by the isometries

(a b) a + b

== ad — bc = 1.
c d ¢ +d

The isotropy group of in, is
(cos 0 —1, sin 0)
no 'sin@  cos @ ’

The point p + in can be put on the n-axis by such a transformation; it
then becomes the point in’ and § must be chosen so that

(p + im)cos 8 — 7 sin

son’

7 =
K (p + i'q)n(;1 sin @ + cos 6

from which we deduce
on’ = (n — )5 — 1'n)

and

’

2 2 2 2 2 2\2 2 2
gttt = Vg + ' + o) — dn’mg

n = n
The distance between the two points is then
(1029) r =
ez}’o + ez}" + p2 _ \/(82_1'0 + ez)' + p2)2 _ 482(_1'0+}’)
a IOg( 2¢" ) '
e

THEOREM 2. The kernel of the Schrédinger equation (10.26) is given by
(10.27), where p is given by
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+ o0
(1030) pi&, ", 10,0, = 2m / o JoEhp(p. e¥. 110, 0. e ypdp
where p is
(10‘31) P(P7 e}" tIO, O’ e_VO) = (4771)_3/2e_te_r2/4l . d
sinh r

and r is the function (10.29) of p, y and yO.

6. Second example: the semi direct product of an abelian group with a
Heisenberg group.

a) The group R X H,, .. In this section, we consider the semi direct
product of the real line (with coordinate v), with the Heisenberg group
H,, ;, of dimension 2n + 1 with coordinates x;, y; (j = 1...n) and u for
its center. The multiplicative law on this group is defined as follows

1°) on R, this is first the usual addition law

2°) on H,, ., this is just the law of the Heisenberg group (see [12])

3°) the action of R on H,, ,, is

e'((z). u) = ((€"%),, e'u).
The basis of left invariant vector fields on H,, , is
1 1 0 0
(10.32) X, = —(i + Zyii), Y = —(—a— - 2x,-—), U=—
2 \0x; ou 2\9y; ou du

so that [X,, Y] = — U (see [12] with a different normalization). The basis
of the Lie algebra of the semi direct product is then

(10.33) aﬂ ¢’ X, &Y, &'U
v

and the left invariant laplacian is

2 n
(1034) Ln = % + € 2 ()(,2 + le) + eZvUZ
4

i=1

and the heat equation is

v_,,
(10.35) at
flt=0 = f()

b) The hermitian hyperbolic space: abstract realization. We also consider
the hermitian hyperbolic space of complex dimension n + 1; this is

X, =SUmn + 1, 1)/Umn + 1);

its rank is 1 and its roots are R“)(q) = g with multiplicity p; = 2n and
R¥(g) = 2q with multiplicity p, = 1 (see Section 7, 1). The structure of
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the nilpotent Lie algebra of this space is an Heisenberg structure of real
dimension 2n + 1; in fact

NT = Gr0 ® Gz

where &z has dimension 2n, Gz has dimension 1 and moreover if X, Y
are in Gz, then [X, Y] is in @z» and thus defines a non degenerate
bilinear antisymmetric form on &zm which can be reduced to a canonical
form.

In particular, the expression of the Laplace-Beltrami operator in
horospherical coordinate will be L, + Z where L, is defined as in (10.34)
and Z is the vector field on the abelian subalgebra which is the sum of the
positive roots counted with their multiplicities (see Section 5).

¢) The hermitian hyperbolic space: half upper space realization. Now,
there is a well known realization of X,,; as the upper half space
realization in C" 1. We refer to [4], [5] for the following computations. In
C"*! we define

h(x) = Im z5 — E |Z/<|2
k=1

(coordinates z, . . ., z,) and we define
X,., = {z € Che) >0}

and we define the Bergmann metric on X, | (see [4], [5] ); then X, ; is the
space defined in the previous paragraph. If we define

(10.36) {Z — 92‘20)

the Laplace-Beltrami operator of X, , | is exactly
0
(1037 Ay =L, —((m+ H—.
S+l av

Moreover the invariant riemannian volume element is

(10.38) e (FD¥ (H dxidy,)dudv.

i=1

X, is invariant by the group SU(n + 1, 1) of biholomorphic isometries.
We shall only need the action of the elements of the solvable subgroup of
SUn + 1, 1) (i.e., the semi direct product of R, the abelian subgroup
of SU(n + 1, 1) with the Heisenberg subgroup H,, . ).

Let (zy, zy,...,2,) be a point in X, | ; (so that h(z) > 0) and v € R:
then v acts on (zg, ..., z,) by
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(1039) v (zp...,2,) = ('z, e"/zzl, R e"/zzn)

(dilatations subgroup).
If (u,§),...,¢,) isin Hy,,, its action on (z, . . .

(10.40) (u, &y, .08) " (2o - - -+ 2,

z,)1s

> H

n

n
_ (zo +u+ ikEI P +20 2 28z + &z, g,,)

so that the function & = €' is conserved. Moreover, on (Rezy, z, ..., z,)
the action of (u, §|, . . ., ,) is just the left multiplication of the Heisenberg
group H,, .| namely

(u’ §]7"'5§n)(%e20, Zl,...,z”)
= (u + Rezy + 23m 2 $Zpzy + 8z, F s“n)_

The heat kernel Px, . (m, t]m(o)) of A{ (with respect to the volume
element (10.38) ) generates the heat kernel K, (m, tlm(o’) of L, as in part 3

because
2 )
(a (n+ D

02 \ + 1)
_ e((n+1)/2)»m(e (e 0/2wpy (_n_z_)_/

so that
10.41) K, (v, u, x;, y;, tlv(o), U9 (0), y,O))

— o (nF D=V =((n+ 14y

n+1

0 0 0 0
X,y X v tV0, w030

is the heat kernel of (10.35) with respect to the invariant volume

n
e " Wayau [T dxdy,

i=1
on the solvable group R X H,, .

d) Expression of py  and of the distance between two points. Now, we
have to express Px,, m term of horospherical coordinates. But, we have
obtained an expressmn for Px, ., (m, tlm(O)) in Section 7, 7 in terms of a
kernel p(r(m, m(o)) t) of the hyperbohc distance between m and m'¥).

The only thing which remains to be computed is an explicit expression
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of the hyperbolic distance (m, m'”) between two points m and m'® of X,
in terms of their coordinates v, u, z; and v, 1), (0 respectively. Let us
write

) N (VNN (NP
m=mn-v- 0

where O is the origin of the symmetric space, here the point
O=(zy=1i2,=0,...,z,=0)

in C"*! and % (resp. n) the unique element of H,,,, which gives the
nilpotent part of m® (resp. m) and w0 (resp. v) the abelian part of m®
(resp. m). The action of these respective elements are given by (10.39) and
(10.40). It is clear that

rim, M) = r((© " 'ny v -0, - 0).
Moreover
n® = @O, OOy
- 0 0
@) = (=D =)
(n(O))_'n = (u — 4
0 0
*27"2[2() zl—z(,),...,zn f,))
i
The action of a nilpotent element conserves the value of / or v, so
r(m, m(O)) = r((v, u—
(©)
- 23m Z o zf?)), (e -i,0... 0))
Jj=1 !
and then using the isometric action of —y® given by (10.39)
) _
=r((va(0),e ! (u—u( — mZz -),
j=1
—(vO — (O
D A L A ) D W (A1) .,0)).

We have then to compute the hyperbolic distance from a point m’ of
X, 4 to the origin O of X,,, . The best way is to use the Cayley transform;
this is a mapping

Cz e InJ’_l _)Z(Z) S BVI+1

where B, .| is the unit ball
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n
21zl =1
j=0 -

of C"*!, which is a holomorphic isometry from ¥, . | into B, , | when B, |
has the Bergmann metric; moreover the origin O € X, ,, is sent by this
mapping into the origin Z = 0 of B, | (see [4] for the precise definition of
the Cayley transform). We have

r(m, 0) = rB"H(C(m), 0).

But it is clear that the distance of Z to O in B, .| is only a function of
|Z| and that the geodesics is the line segment joining 0 to Z with the clock
given by the Bergmann metric. This distance is easily seen to be:

rg,, (Z,0) = Arg tanh |Z|.

Using this last formula, the exact value of C given in [4], and the
coordinates v, u, z; in X, |, we obtain

r((v,u,z;...z,),0)

v $ 2 2 2 v 12
1 + e + 2 |z, ] + u- — 4e
k=1

= Arg tanh

n 2
(l + €& + 2 |Zk|2) +
k=1

so that the distance between m and m'” is
(10.42) r(m, m?) = Arg tanh(R(m, m?))!?
where

(10.43)  R(m, m?)

m 2
) ) )
=1— 4" [(1 + &7 + e’ 2|z/——zj(-0)|2)
J=1

n )

9,0 ) — |
+ % (u — 4O — 2xm > z}())zl.) I
Jj=1

7. Quantum mechanics in certain Morse potentials.
a) Schrodinger equation in a Morse potential. The Cauchy problem for
the Schrodinger equation in a Morse potential is

oy _ (@
1044y | ior (8v2 * V(V))‘l’
1l’ltz() = ‘1‘0
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where v denotes the spatial variable and
V(V) — _}\2ev _ ,82e2v

and —\?, B* are constants. (V(v) is called a Morse potential [20] ). We
shall treat this problem by a similar method as the one used in 5; in part 5
we have related the quantum mechanics in the potential e to the real
hyperbolic space. Here we relate the quantum mechanics in the Morse
potential to the hermitian hyperbolic space.

First, we come back to 7 = it to work with the heat kernel and heat
equation. We then look at the Fourier transform &,/ of (10.35) where we

take n = 1. This is
e

3 92 1{9° 9’ 9 3

—M =T ev(— (—7 + —2) - le— + XI,B_

4 \9x~ ay dx ay

ot av

10.35 02
(19399 = B+ AR~ FEES

%ufllz() = %u-fﬂ
\\

where

&S = ff(v, u, x, y)ePldu

(B 1s the conjugate variable of u).

b) Reduction of (10.35). (10.35) has a separation of coordin&tQ. More
precisely the coefficient of ¢’ in the second member of (10.35) is a
differential operator in x, y which we shall denote by H. In mathematics
it is the Fourier transform with respect to u of the subelliptic laplacian of
the Heisenberg group (see [20] and [12]) and in physics, it is just the
hamiltonian of a particle of charge B in a constant magnetic field in
the direction z ([20], [13}). This operator has a spectrum (because we
do not consider the z part of the motion). If —}\% is an eigenvalue and
<p)\B(B, x, y) is the corresponding eigenfunction of Hp, we have

(10.45) Hgey = —Ajan,

Now, because of the separation of variables, if we suppose that, at time
t = 0, we have

(B SOO: B, %, y) = o) (B, x, y)gy(v)

then at any later time ¢ > 0, we have

(10.46) ()0, B, x, p, 1) = o, (B, %, »)g(, 1, B)

where g(v, 1, B) satisfies

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-064-x

1402 A. DEBIARD AND B. GAVEAU

of (v, 1, B) 3’ 2y 2 2y
S T " PIO A )
(10.47) 3t (av2 )

gv,t =0, B) = gy(v)

which is of the form (10.44) with the identifications ¢, = g,, ¢ = g. Now
we shall define the solution of (10.47) by

(1048) g(v’ Z B) = fg()(v())ﬂ(t’ VIV(), 18’ }\ﬂ)e._zvndv()

(where we have stressed the B and Ay dependence of the propagator 7 of
(10.47)).

Now, we use the definition of K; it is clear by (10.41), (10.42) and
(10.43), that K, is a function

Ky(t, v, u — uy, x, ylvg, Xo, o)

(so that it depends only on u — u;), and we have

fO,u x,y,t) = fK](t, Vv, U — Uy, X, YIvg, Xps Vo)

X

?f'/;ol[%\ﬁ“(ﬁoﬁ X0 Y0)80(ve) (1)

X e - 2v0dV()du(}dedy0

1 .
- 2 € IB“M“KI(L v, U = Uy, X, Vg, Xo, Vo)
T

_.2 )
X ‘Pxﬁ“(ﬂo’ Xp» Yo)8o(Vole ~°

dBodvoduydxydy,.

X

Then
1

g, t, B) = ———— (&S (v, u, x, y, 1) )(B)
wﬂ(B, X.y)

= L _.__l fe’(ﬁl"ﬁuuu)

27 ar (B, x. ¥)

X

K\(t, v, u — uy, x, ylvg, xo, ¥0)
%,;“(Bo’ Xo» Yo)8o(vole 2"‘ldﬁdﬁoduduodxod}’()dv(,
1 1

72 )
X o (B, x0. ¥0)go(vole  ~dxody,dvy

X

f TK (@ v, u, x, ylvg, Xp. Yo)(B)

and we finally obtain
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7(t, vy, B, }\B)
B 1

a 2me\(B. x, y)
X %‘B(B’ Xo» Yo)dxodyodu

and the second member of this formula is independent of x and y. In
particular we can choose for x, y the value 0, 0 and so

(10.49) (2, vlvg, B, Ap)
1

" 2ren (5.0, 0)

X (B, o, Yo)dxodvodu.

The kernel K| is, in principle, computable by (10.41)
—((n+1)/2)(v—vg) —((n+ 1)2)/4zp£2(r)

/eiB“Kl(t, v, U, X, YIvg, Xg» Vo)

/eiB"Kl(t, v, u, 0, Olvg, X0, ¥o)

K (t, v, u, 0, Olvy, xp, yo) = e
where

r = Arg tanh(R'/?)
and

R=1—4¢""[(1 + e 70 4 ¢ iz + e o).

The functions qa)\ﬁ(,B, Xy, ¥p) are in principle known by the theory of
harmonic oscillators and py (r) is computable by the methods of Section 7
using a Riemann-Liouville integral.

References. The Heisenberg group was treated in [12] from the point of
view of the heat equation for subelliptic operators. Explicit formulae for
Schrodinger propagators in certain potentials (like cosh ™ %x or 8(x) ) were
obtained in [14].
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